CHAPTER 2

"

Input,
Processing,
and Output

TONY GADDIS

@ Pearson Copyright © 2018 Pearson Education, Inc.

Topics

* Designing a Program

* Input, Processing, and Output

» Displaying Output with print Function
+ Comments

* Variables

* Reading Input from the Keyboard

* Performing Calculations

* More About Data Output

* Named Constants

* Introduction to Turtle Graphics

@ Pearson Copyright © 2018 Pearson Education, Inc.

Designing a Program

* Programs must be designed before
they are written
* Program development cycle:
* Design the program
» Write the code
» Correct syntax errors
* Test the program
» Correct logic errors

@ Pearson Copyright © 2018 Pearson Education, Inc.

Designing a Program (cont’d.)

* Design is the most important part of the
program development cycle

* Understand the task that the program is
to perform

» Work with customer to get a sense what the
program is supposed to do

« Ask questions about program details
» Create one or more software requirements

@ Pearson Copyright © 2018 Pearson Education, Inc.

Designing a Program (cont’d.)

* Determine the steps that must be taken
to perform the task
» Break down required task into a series of
steps
» Create an algorithm, listing logical steps that
must be taken
« Algorithm: set of well-defined logical
steps that must be taken to perform a
task

@ Pearson Copyright © 2018 Pearson Education, Inc.

Pseudocode

« Pseudocode: fake code
« Informal language that has no syntax rule
* Not meant to be compiled or executed

» Used to create model program

* No need to worry about syntax errors, can focus
on program’s design

« Can be translated directly into actual code in any
programming language

@ Pearson Copyright © 2018 Pearson Education, Inc.

Flowcharts

* Flowchart: diagram that graphically
depicts the steps in a program
» Ovals are terminal symbols
« Parallelograms are input and output symbols
» Rectangles are processing symbols

« Symbols are connected by arrows that
represent the flow of the program

@ Pearson Copyright © 2018 Pearson Education, Inc.

Figure 2-2 Flowchart for the pay calculating program

/1npuilhe hours worl-ced/

'

Input the hourly pay rate

'

Calculate gross pay as
hours worked multiplied
by pay rate

!

/Dfsplaylhe-gross pay/

End

@ Pearson Copyright © 2018 Pearson Education, Inc.

Input, Processing, and Output

« Typically, computer performs three-
step process

* Receive input

* Input: any data that the program receives while it is
running

» Perform some process on the input
* Example: mathematical calculation

» Produce output

@ Pearson Copyright © 2018 Pearson Education, Inc.

Displaying Output with the
print Function

* Function: piece of prewritten code that
performs an operation
« print function: displays output on the
screen
« Argument: data given to a function
* Example: data that is printed to screen
« Statements in a program execute in the order
that they appear
* From top to bottom

@ Pearson Copyright © 2018 Pearson Education, Inc.

Strings and String Literals

» String: sequence of characters that is used
as data

» String literal: string that appears in actual
code of a program

» Must be enclosed in single (') or double (") quote
marks

» String literal can be enclosed in triple quotes ("' or

nn ")

* Enclosed string can contain both single and double quotes
and can have multiple lines

@ Pearson Copyright © 2018 Pearson Education, Inc.

Comments

« Comments: notes of explanation within
a program
* Ignored by Python interpreter
* Intended for a person reading the program’s code
» Begin with a # character

 End-line comment: appears at the end
of a line of code
 Typically explains the purpose of that line

@ Pearson Copyright © 2018 Pearson Education, Inc.

Variables

« Variable: name that represents a value stored
in the computer memory

* Used to access and manipulate data stored in
memory

» A variable references the value it represents

« Assignment statement: used to create a
variable and make it reference data

* General formatis variable = expression
* Example: age = 29
» Assignment operator: the equal sign (=)

@ Pearson Copyright © 2018 Pearson Education, Inc.

Variables (cont’d.)

* In assignment statement, variable
receiving value must be on left side

* A variable can be passed as an
argument to a function

» Variable name should not be enclosed in
quote marks

* You can only use a variable if a value is
assigned to it

@ Pearson Copyright © 2018 Pearson Education, Inc.

Variable Naming Rules

* Rules for naming variables in Python:
Variable name cannot be a Python key word
Variable name cannot contain spaces

First character must be a letter or an underscore

After first character may use letters, digits, or
underscores

Variable names are case sensitive
» Variable name should reflect its use

(]

(]

@ Pearson Copyright © 2018 Pearson Education, Inc.

Displaying Multiple Items with
the print Function

* Python allows one to display multiple
items with a single call to print

* ltems are separated by commas when passed
as arguments

« Arguments displayed in the order they are
passed to the function

* ltems are automatically separated by a space
when displayed on screen

@ Pearson Copyright © 2018 Pearson Education, Inc.

Variable Reassignment

« Variables can reference different values
while program is running

« Garbage collection: removal of values that
are no longer referenced by variables
» Carried out by Python interpreter

« A variable can refer to item of any type

» Variable that has been assigned to one type can be
reassigned to another type

@ Pearson Copyright © 2018 Pearson Education, Inc.

Numeric Data Types, Literals,
and the str Data Type

« Data types: categorize value in memory

* e.g., int for integer, float for real number, str used for
storing strings in memory

* Numeric literal: number written in a program

* No decimal point considered int, otherwise,
considered float

+ Some operations behave differently
depending on data type

@ Pearson Copyright © 2018 Pearson Education, Inc.

Reassigning a Variable to a
Different Type

* A variable in Python can refer to items of
any type
Figure 2-7 The variable x references an integer

(= [w]

Figure 2-8 The variable x references a string

*
Take me to your leader

@ Pearson Copyright © 2018 Pearson Education, Inc.

Reading Input from the
Keyboard

* Most programs need to read input from the
user
* Built-in input function reads input from
keyboard
* Returns the data as a string
* Format: variable = input (prompt)
* prompt is typically a string instructing user to enter a value

* Does not automatically display a space after the
prompt

@ Pearson Copyright © 2018 Pearson Education, Inc.

Reading Numbers with the

input Function

« input function always returns a string

* Built-in functions convert between data types
* int (item) converts itemtoan int
 float (item) converts itemtoa float

* Nested function call: general format:
functionl (functionZ(argument))

« value returned by function2 is passed to function1

» Type conversion only works if item is valid numeric
value, otherwise, throws exception

@ Pearson Copyright © 2018 Pearson Education, Inc.

Performing Calculations

« Math expression: performs calculation and
gives a value
» Math operator: tool for performing calculation

* Operands: values surrounding operator
» Variables can be used as operands

* Resulting value typically assigned to variable

* Two types of division:
» / operator performs floating point division
» // operator performs integer division
« Positive results truncated, negative rounded away from zero

@ Pearson Copyright © 2018 Pearson Education, Inc.

Operator Precedence and
Grouping with Parentheses

« Python operator precedence:

1. Operations enclosed in parentheses
Forces operations to be performed before others

2. Exponentiation (**)
3. Multiplication (*), division (/ and //), and remainder
(%)
4. Addition (+) and subtraction (-)
* Higher precedence performed first
+ Same precedence operators execute from left to right

@ Pearson Copyright © 2018 Pearson Education, Inc.

The Exponent Operator and

the Remainder Operator

« Exponent operator (**): Raises a
number to a power
° * % y — Xy
 Remainder operator (%): Performs
division and returns the remainder
« a.k.a. modulus operator
« e.g., 4%2=0, 5%2=1

» Typically used to convert times and distances,
and to detect odd or even numbers

@ Pearson Copyright © 2018 Pearson Education, Inc.

Converting Math Formulas to

Programming Statements
» Operator required for any mathematical
operation

* When converting mathematical
expression to programming statement:
* May need to add multiplication operators
« May need to insert parentheses

@ Pearson Copyright © 2018 Pearson Education, Inc.

Mixed-Type Expressions and
Data Type Conversion

» Data type resulting from math operation
depends on data types of operands
* Two int values: resultis an int
* Two float values: resultisa float

* int and float: int temporarily converted to float,
result of the operation is a float
* Mixed-type expression
» Type conversion of float to int causes truncation
of fractional part

@ Pearson Copyright © 2018 Pearson Education, Inc.

Breaking Long Statements
into Multiple Lines

* Long statements cannot be viewed on screen
without scrolling and cannot be printed
without cutting off

« Multiline continuation character (\): Allows
to break a statement into multiple lines

result = varl * 2 + var2 * 3 + \

var3 * 4 + var4d * 5

@ Pearson Copyright © 2018 Pearson Education, Inc.

Breaking Long Statements
into Multiple Lines

* Any part of a statement that is enclosed in
parentheses can be broken without the line
continuation character.

print ("Monday's sales are", monday,
"and Tuesday's sales are", tuesday,

"and Wednesday's sales are", Wednesday)

total = (valuel + value2 +

valuel3 + valued +

valueb + valueb6)

@ Pearson Ccopyright © 2018 Pearson Education, Inc.

More About Data Output

 print function displays line of output

* Newline character at end of printed data

» Special argument end="delimiter' causes print
to place delimiter at end of data instead of newline
character

* print function uses space as item separator

* Special argument sep="delimiter' causes print
to use delimiter as item separator

@ Pearson Copyright © 2018 Pearson Education, Inc.

More About Data Output
(cont’d.)

« Special characters appearing in string literal
 Preceded by backslash (\)

» Examples: newline (\n), horizontal tab (\t)
+ Treated as commands embedded in string

 When + operator used on two strings in
performs string concatenation
» Useful for breaking up a long string literal

@ Pearson Copyright © 2018 Pearson Education, Inc.

Formatting Numbers

« Can format display of numbers on screen
using built-in format function
* Two arguments:
* Numeric value to be formatted
* Format specifier
* Returns string containing formatted number
» Format specifier typically includes precision and data
type
» Can be used to indicate scientific notation, comma

separators, and the minimum field width used to display the
value

@ Pearson Copyright © 2018 Pearson Education, Inc.

Formatting Numbers (cont’d.)

 The $ symbol can be used in the format
string of format function to format number
as percentage

+ To format an integer using format function:
* Use d as the type designator

* Do not specify precision

* Can still use format function to set field width or
comma separator

@ Pearson Copyright © 2018 Pearson Education, Inc.

Magic Numbers

* A magic number is an unexplained numeric
value that appears in a program’s code.
Example:

amount = balance * 0.069

« What is the value 0.0697? An interest rate? A
fee percentage? Only the person who wrote
the code knows for sure.

@ Pearson Copyright © 2018 Pearson Education, Inc.

The Problem with Magic
Numbers

* It can be difficult to determine the purpose of the
number.

* |f the magic number is used in multiple places in the
program, it can take a lot of effort to change the
number in each location, should the need arise.

* You take the risk of making a mistake each time you
type the magic number in the program’s code.

* For example, suppose you intend to type 0.069, but you
accidentally type .0069. This mistake will cause mathematical
errors that can be difficult to find.

@ Pearson Copyright © 2018 Pearson Education, Inc.

Named Constants

* You should use named constants instead of magic numbers.

* A named constant is a name that represents a value that does
not change during the program's execution.

+ Example:

INTEREST RATE = 0.069

+ This creates a named constant named INTEREST RATE,
assigned the value 0.069. It can be used instead of the magic
number:

amount = balance * INTEREST RATE

@ Pearson Copyright © 2018 Pearson Education, Inc.

Advantages of Using Named
Constants

+ Named constants make code self-explanatory (self-
documenting)

* Named constants make code easier to maintain
(change the value assigned to the constant, and the
new value takes effect everywhere the constant is
used)

* Named constants help prevent typographical errors
that are common when using magic numbers

@ Pearson Copyright © 2018 Pearson Education, Inc.

Introduction to Turtle
Graphics

* Python's turtle graphics system displays a
small cursor known as a turtle.

Python Turtle Graphics — O x

i

> |

=
K T

* You can use Python statements to move the
turtle around the screen, drawing lines and
shapes.

@ Pearson Copyright © 2018 Pearson Education, Inc.

Introduction to Turtle
Graphics

* To use the turtle graphics system, you
must import the turtle module with this
statement:

import turtle

This loads the turtle module into
memory

@ Pearson Copyright © 2018 Pearson Education, Inc.

Moving the Turtle Forward

* Use the turtle. forward (n)
statement to move the turtle forward n

pixels.

Python Turtle Graphics - | ®

>>> import turtle
>>> turtle.forward (100)
>>>

@ Pearson Copyright © 2018 Pearson Education, Inc.

Turning the Turtle
* The turtle's initial heading is 0 degrees (east)

* Use the turtle.right (angle) statement to
turn the turtle right by angle degrees.

* Use the turtle.left (angle) statement to
turn the turtle left by angle degrees.

@ Pearson Ccopyright © 2018 Pearson Education, Inc.

Turning the Turtle

Python Turtle Graphics - m] x
=
>>> import turtle
>>> turtle.forward(100)
>>> turtle.left (90)
>>> turtle.forward(100)
>>>
=]
ki | 2l

@ Pearson Copyright © 2018 Pearson Education, Inc.

Turning the Turtle

Python Turtle Graphics —] *
vt P

>>> import turtle
>>> turtle.forward (100)
>>> turtle.right (45)

>>> turtle.forward (100)
>>> =

@ Pearson Copyright © 2018 Pearson Education, Inc.

Setting the Turtle's Heading

* Use the turtle.setheading(angle)
statement to set the turtle's heading to a
specific angle.

Python Turtle Graphics - O X

>>> import turtle

>>> turtle.forward (50)

>>> turtle.setheading (90)
>>> turtle.forward(100)
>>> turtle.setheading (180)
>>> turtle.forward (50)

>>> turtle.setheading(270) =
>>> turtle.forward(100) =]
>>> &1 [== [oe]

@ Pearson Copyright © 2018 Pearson Education, Inc.

Setting the Pen Up or Down

* When the turtle's pen is down, the turtle draws a line
as it moves. By default, the pen is down.

* When the turtle's pen is up, the turtle does not draw
as it moves.

* Use the turtle.penup () statement to raise the pen.

* Use the turtle.pendown () statement to lower the
pen.

@ Pearson Copyright © 2018 Pearson Education, Inc.

Setting the Pen Up or Down

>>> import turtle

>>> turtle.forward (50) i o -t -

>>> turtle.penup ()

>>> turtle.forward(25)
>>> turtle.pendown ()
>>> turtle.forward(50) - — —*
>>> turtle.penup ()
>>> turtle.forward(25) =
>>> turtle.pendown () -

>>> turtle.forward (50) L =
>>>

@ Pearson Copyright © 2018 Pearson Education, Inc.

Drawing Circles

* Use the turtle.circle (radius) statement to
draw a circle with a specified radius.

Python Turtle Graphics - O x

>>> import turtle
>>> turtle.circle (100)
>>>

@ Pearson Copyright © 2018 Pearson Education, Inc.

Drawing Dots

* Use the turtle.dot () statement to draw a simple
dot at the turtle's current location.

. # Python Turtle Graphi - o X
>>> import turtle el

>>> turtle.dot ()

>>> turtle.forward(50)
>>> turtle.dot ()

>>> turtle.forward (50)
>>> turtle.dot ()

>>> turtle.forward (50) |
>>> : | [

@ Pearson Copyright © 2018 Pearson Education, Inc.

Changing the Pen Size and
Drawing Color

* Use the turtle.pensize (width) statement to
change the width of the turtle's pen, in pixels.

* Use the turtle.pencolor (color) statement to
change the turtle's drawing color.
» See Appendix D in your textbook for a complete list of colors.

>>> import turtle

>>> turtle.pensize (5)

>>> turtle.pencolor ('red')
>>> turtle.circle (100)

>>>

@ Pearson Copyright © 2018 Pearson Education, Inc.

Working with the Turtle's
Window

* Use the turtle.bgcolor (color) statement to set
the window's background color.
+ See Appendix D in your textbook for a complete list of colors.

* Use the turtle.setup (width, height) statement
to set the size of the turtle's window, in pixels.

* The width and height arguments are the width and height, in
pixels.

» For example, the following interactive session creates a graphics
window that is 640 pixels wide and 480 pixels high:

>>> import turtle
>>> turtle.setup (640, 480)
>>>

@ Pearson Copyright © 2018 Pearson Education, Inc.

Resetting the Turtle's Window

* The turtle.reset () statement:
« Erases all drawings that currently appear in the graphics window.
* Resets the drawing color to black.
» Resets the turtle to its original position in the center of the screen.
» Does not reset the graphics window’s background color.

« The turtle.clear () statement:
» Erases all drawings that currently appear in the graphics window.
« Does not change the turtle's position.
» Does not change the drawing color.
» Does not change the graphics window’s background color.

* The turtle.clearscreen () statement:
« Erases all drawings that currently appear in the graphics window.
* Resets the drawing color to black.
» Resets the turtle to its original position in the center of the screen.
* Resets the graphics window’s background color to white.

@ Pearson Copyright © 2018 Pearson Education, Inc.

Working with Coordinates

* The turtle uses Cartesian Coordinates

¥ Pyhon T Graphics

+ Y coordinates

(0,0)

- X coordinates + X coordinates

- Y coordinates

@ Pearson Copyright © 2018 Pearson Education, Inc.

Moving the Turtle to a
Specific Location

* Use the turtle.goto(x, y) statement to move the
turtle to a specific location.

Python Turtle Graphics - O X
=
>>> import turtle
>>> turtle.goto (0, 100)
>>> turtle.goto (=100, 0)
>>> turtle.goto (0, 0)
>>>
=
Kl]

* The turtle.pos () statement displays the turtle's current X,Y coordinates.
* The turtle.xcor () statement displays the turtle's current X coordinate and
the turtle.ycor () statement displays the turtle's current Y coordinate.

@ Pearson Copyright © 2018 Pearson Education, Inc.

Animation Speed

* Use the turtle. speed (speed)
command to change the speed at which
the turtle moves.

* The speed argument is a number in the
range of 0 through 10.

* If you specify 0, then the turtle will make all of
its moves instantly (animation is disabled).

@ Pearson Copyright © 2018 Pearson Education, Inc.

Hiding and Displaying the
Turtle

 Use the turtle.hideturtle () command to
hide the turtle.

» This command does not change the way graphics are
drawn, it simply hides the turtle icon.

* Use the turtle.showturtle () command to
display the turtle.

@ Pearson Copyright © 2018 Pearson Education, Inc.

Displaying Text

* Use the turtle.write (text) statement to
display text in the turtle's graphics window.
* The text argument is a string that you want to
display.
* The lower-left corner of the first character will be
positioned at the turtle’s X and Y coordinates.

@ Pearson Copyright © 2018 Pearson Education, Inc.

Displaying Text

>>> import turtle
>>> turtle.write('Hello World')
>>>

Python Turtle Graphics ~ — O X

=l

Hello World
>

@ Pearson Copyright © 2018 Pearson Education, Inc.

Filling Shapes

» To fill a shape with a color:
* Usethe turtle.begin fill () command before
drawing the shape
* Thenuse the turtle.end fill () command after
the shape is drawn.
* When the turtle.end fill () command

executes, the shape will be filled with the current fill
color

@ Pearson Copyright © 2018 Pearson Education, Inc.

Filling Shapes

Python Turtle Graphics - m] X

>>> import turtle

>>> turtle.hideturtle()

>>> turtle.fillcolor ('red"')
>>> turtle.begin fill ()

>>> turtle.circle(100)

>>> turtle.end fill()

>>>

@ Pearson Copyright © 2018 Pearson Education, Inc.

Keeping the Graphics
Window Open

* When running a turtle graphics program outside
IDLE, the graphics window closes immediately when
the program is done.

* To prevent this, add the turtle.done () statement
to the very end of your turtle graphics programs.

« This will cause the graphics window to remain open, so you can
see its contents after the program finishes executing.

@ Pearson Copyright © 2018 Pearson Education, Inc.

Summary

« This chapter covered:

» The program development cycle, tools for program
design, and the design process

* Ways in which programs can receive input,
particularly from the keyboard

* Ways in which programs can present and format
output

» Use of comments in programs

» Uses of variables and named constants

* Tools for performing calculations in programs
* The turtle graphics system

@ Pearson Copyright © 2018 Pearson Education, Inc.

