
Copyright © 2018 Pearson Education, Inc. 

C H A P T E R  2

Input, 

Processing, 

and Output



Copyright © 2018 Pearson Education, Inc. 

Topics

• Designing a Program

• Input, Processing, and Output

• Displaying Output with print Function

• Comments 

• Variables

• Reading Input from the Keyboard

• Performing Calculations

• More About Data Output

• Named Constants

• Introduction to Turtle Graphics



Copyright © 2018 Pearson Education, Inc. 

Designing a Program

• Programs must be designed before 

they are written

• Program development cycle:

• Design the program

• Write the code

• Correct syntax errors

• Test the program

• Correct logic errors



Copyright © 2018 Pearson Education, Inc. 

Designing a Program (cont’d.)

• Design is the most important part of the 

program development cycle

• Understand the task that the program is 

to perform

• Work with customer to get a sense what the 

program is supposed to do

• Ask questions about program details

• Create one or more software requirements



Copyright © 2018 Pearson Education, Inc. 

Designing a Program (cont’d.)

• Determine the steps that must be taken 

to perform the task

• Break down required task into a series of 

steps

• Create an algorithm, listing logical steps that 

must be taken

• Algorithm: set of well-defined logical 

steps that must be taken to perform a 

task



Copyright © 2018 Pearson Education, Inc. 

Pseudocode

• Pseudocode: fake code

• Informal language that has no syntax rule 

• Not meant to be compiled or executed

• Used to create model program

• No need to worry about syntax errors, can focus 

on program’s design

• Can be translated directly into actual code in any 

programming language



Copyright © 2018 Pearson Education, Inc. 

Flowcharts

• Flowchart: diagram that graphically 

depicts the steps in a program

• Ovals are terminal symbols

• Parallelograms are input and output symbols

• Rectangles are processing symbols

• Symbols are connected by arrows that 

represent the flow of the program



Copyright © 2018 Pearson Education, Inc. 



Copyright © 2018 Pearson Education, Inc. 

Input, Processing, and Output

• Typically, computer performs three-

step process

• Receive input

• Input: any data that the program receives while it is 

running

• Perform some process on the input

• Example: mathematical calculation

• Produce output



Copyright © 2018 Pearson Education, Inc. 

Displaying Output with the 
print Function

• Function: piece of prewritten code that 

performs an operation

• print function: displays output on the 

screen

• Argument: data given to a function

• Example: data that is printed to screen

• Statements in a program execute in the order 

that they appear

• From top to bottom



Copyright © 2018 Pearson Education, Inc. 

Strings and String Literals

• String: sequence of characters that is used 

as data

• String literal: string that appears in actual 

code of a program

• Must be enclosed in single (') or double (") quote 

marks

• String literal can be enclosed in triple quotes (''' or 
""")

• Enclosed string can contain both single and double quotes 

and can have multiple lines



Copyright © 2018 Pearson Education, Inc. 

Comments

• Comments: notes of explanation within 

a program

• Ignored by Python interpreter

• Intended for a person reading the program’s code

• Begin with a # character

• End-line comment: appears at the end 

of a line of code

• Typically explains the purpose of that line



Copyright © 2018 Pearson Education, Inc. 

Variables

• Variable: name that represents a value stored 

in the computer memory

• Used to access and manipulate data stored in 

memory

• A variable references the value it represents

• Assignment statement: used to create a 

variable and make it reference data

• General format is variable = expression

• Example: age = 29

• Assignment operator: the equal sign (=)



Copyright © 2018 Pearson Education, Inc. 

Variables (cont’d.)

• In assignment statement, variable 

receiving value must be on left side

• A variable can be passed as an 

argument to a function

• Variable name should not be enclosed in 

quote marks

• You can only use a variable if a value is 

assigned to it



Copyright © 2018 Pearson Education, Inc. 

Variable Naming Rules

• Rules for naming variables in Python:

• Variable name cannot be a Python key word 

• Variable name cannot contain spaces

• First character must be a letter or an underscore

• After first character may use letters, digits, or 

underscores

• Variable names are case sensitive

• Variable name should reflect its use



Copyright © 2018 Pearson Education, Inc. 

Displaying Multiple Items with 
the print Function

• Python allows one to display multiple 
items with a single call to print

• Items are separated by commas when passed 

as arguments

• Arguments displayed in the order they are 

passed to the function

• Items are automatically separated by a space 

when displayed on screen



Copyright © 2018 Pearson Education, Inc. 

Variable Reassignment

• Variables can reference different values 

while program is running

• Garbage collection: removal of values that 

are no longer referenced by variables

• Carried out by Python interpreter

• A variable can refer to item of any type

• Variable that has been assigned to one type can be 

reassigned to another type



Copyright © 2018 Pearson Education, Inc. 

Numeric Data Types, Literals, 
and the str Data Type

• Data types: categorize value in memory

• e.g., int for integer, float for real number, str used for 

storing strings in memory

• Numeric literal: number written in a program

• No decimal point considered int, otherwise, 

considered float

• Some operations behave differently 

depending on data type



Copyright © 2018 Pearson Education, Inc. 

Reassigning a Variable to a 

Different Type
• A variable in Python can refer to items of 

any type



Copyright © 2018 Pearson Education, Inc. 

Reading Input from the 

Keyboard
• Most programs need to read input from the 

user

• Built-in input function reads input from 

keyboard

• Returns the data as a string

• Format: variable = input(prompt)

• prompt is typically a string instructing user to enter a value

• Does not automatically display a space after the 
prompt



Copyright © 2018 Pearson Education, Inc. 

Reading Numbers with the 
input Function

• input function always returns a string

• Built-in functions convert between data types

• int(item) converts item to an int

• float(item) converts item to a float

• Nested function call: general format: 
function1(function2(argument))

• value returned by function2 is passed to function1

• Type conversion only works if item is valid numeric 
value, otherwise, throws exception



Copyright © 2018 Pearson Education, Inc. 

Performing Calculations

• Math expression: performs calculation and 

gives a value

• Math operator: tool for performing calculation

• Operands: values surrounding operator

• Variables can be used as operands

• Resulting value typically assigned to variable

• Two types of division:

• / operator performs floating point division

• // operator performs integer division

• Positive results truncated, negative rounded away from zero



Copyright © 2018 Pearson Education, Inc. 

Operator  Precedence and 

Grouping with Parentheses

• Python operator precedence:

1. Operations enclosed in parentheses

• Forces operations to be performed before others

2. Exponentiation (**)

3. Multiplication (*), division (/ and //), and remainder 

(%)

4. Addition (+) and subtraction (-)

• Higher precedence performed first

• Same precedence operators execute from left to right



Copyright © 2018 Pearson Education, Inc. 

The Exponent Operator and 

the Remainder Operator
• Exponent operator (**): Raises a 

number to a power

• x ** y = xy

• Remainder operator (%): Performs 

division and returns the remainder

• a.k.a. modulus operator

• e.g., 4%2=0, 5%2=1

• Typically used to convert times and distances, 

and to detect odd or even numbers



Copyright © 2018 Pearson Education, Inc. 

Converting Math Formulas to 

Programming Statements
• Operator required for any mathematical 

operation 

• When converting mathematical 

expression to programming statement:

• May need to add multiplication operators

• May need to insert parentheses 



Copyright © 2018 Pearson Education, Inc. 

Mixed-Type Expressions and 

Data Type Conversion
• Data type resulting from math operation 

depends on data types of operands

• Two int values: result is an int

• Two float values: result is a float

• int and float: int temporarily converted to float, 

result of the operation is a float

• Mixed-type expression

• Type conversion of float to int causes truncation 

of fractional part



Copyright © 2018 Pearson Education, Inc. 

Breaking Long Statements 

into Multiple Lines
• Long statements cannot be viewed on screen 

without scrolling and cannot be printed 

without cutting off

• Multiline continuation character (\): Allows 

to break a statement into multiple lines

result = var1 * 2 + var2 * 3 + \

var3 * 4 + var4 * 5



Copyright © 2018 Pearson Education, Inc. 

Breaking Long Statements 

into Multiple Lines
• Any part of a statement that is enclosed in 

parentheses can be broken without the line 

continuation character.

print("Monday's sales are", monday,

"and Tuesday's sales are", tuesday,

"and Wednesday's sales are", Wednesday)

total = (value1 + value2 +

value3 + value4 +

value5 + value6)



Copyright © 2018 Pearson Education, Inc. 

More About Data Output

• print function displays line of output 

• Newline character at end of printed data

• Special argument end='delimiter' causes print

to place delimiter at end of data instead of newline 

character

• print function uses space as item separator

• Special argument sep='delimiter' causes print

to use delimiter as item separator



Copyright © 2018 Pearson Education, Inc. 

More About Data Output 

(cont’d.)
• Special characters appearing in string literal 

• Preceded by backslash (\)

• Examples: newline (\n), horizontal tab (\t)

• Treated as commands embedded in string

• When + operator used on two strings in 

performs string concatenation

• Useful for breaking up a long string literal



Copyright © 2018 Pearson Education, Inc. 

Formatting Numbers

• Can format display of numbers on screen 
using built-in format function

• Two arguments:

• Numeric value to be formatted

• Format specifier

• Returns string containing formatted number

• Format specifier typically includes precision and data 

type

• Can be used to indicate scientific notation, comma 

separators, and the minimum field width used to display the 

value



Copyright © 2018 Pearson Education, Inc. 

Formatting Numbers (cont’d.)

• The % symbol can be used in the format 

string of format function to format number 

as percentage

• To format an integer using format function:

• Use d as the type designator

• Do not specify precision

• Can still use format function to set field width or 

comma separator



Copyright © 2018 Pearson Education, Inc. 

Magic Numbers

• A magic number is an unexplained numeric 

value that appears in a program’s code. 

Example:

amount = balance * 0.069

• What is the value 0.069? An interest rate? A 

fee percentage? Only the person who wrote 

the code knows for sure.



Copyright © 2018 Pearson Education, Inc. 

The Problem with Magic 

Numbers
• It can be difficult to determine the purpose of the 

number.

• If the magic number is used in multiple places in the 

program, it can take a lot of effort to change the 

number in each location, should the need arise.

• You take the risk of making a mistake each time you 

type the magic number in the program’s code. 

• For example, suppose you intend to type 0.069, but you 

accidentally type .0069. This mistake will cause mathematical 

errors that can be difficult to find.



Copyright © 2018 Pearson Education, Inc. 

Named Constants

• You should use named constants instead of magic numbers.

• A named constant is a name that represents a value that does 

not change during the program's execution.

• Example:

INTEREST_RATE = 0.069

• This creates a named constant named INTEREST_RATE, 

assigned the value 0.069. It can be used instead of the magic 

number:

amount = balance * INTEREST_RATE



Copyright © 2018 Pearson Education, Inc. 

Advantages of Using Named 

Constants
• Named constants make code self-explanatory (self-

documenting)

• Named constants make code easier to maintain 

(change the value assigned to the constant, and the 

new value takes effect everywhere the constant is 

used)

• Named constants help prevent typographical errors 

that are common when using magic numbers



Copyright © 2018 Pearson Education, Inc. 

Introduction to Turtle 

Graphics
• Python's turtle graphics system displays a 

small cursor known as a turtle.

• You can use Python statements to move the 

turtle around the screen, drawing lines and 

shapes.



Copyright © 2018 Pearson Education, Inc. 

Introduction to Turtle 

Graphics
• To use the turtle graphics system, you 

must import the turtle module with this 

statement:

import turtle

This loads the turtle module into 

memory



Copyright © 2018 Pearson Education, Inc. 

Moving the Turtle Forward

• Use the turtle.forward(n)

statement to move the turtle forward n

pixels.

>>> import turtle

>>> turtle.forward(100)

>>>



Copyright © 2018 Pearson Education, Inc. 

Turning the Turtle

• The turtle's initial heading is 0 degrees (east)

• Use the turtle.right(angle) statement to 

turn the turtle right by angle degrees.

• Use the turtle.left(angle) statement to 

turn the turtle left by angle degrees.



Copyright © 2018 Pearson Education, Inc. 

Turning the Turtle

>>> import turtle

>>> turtle.forward(100)

>>> turtle.left(90)

>>> turtle.forward(100)

>>>



Copyright © 2018 Pearson Education, Inc. 

Turning the Turtle

>>> import turtle

>>> turtle.forward(100)

>>> turtle.right(45)

>>> turtle.forward(100)

>>>



Copyright © 2018 Pearson Education, Inc. 

Setting the Turtle's Heading

• Use the turtle.setheading(angle)

statement to set the turtle's heading to a 

specific angle.

>>> import turtle

>>> turtle.forward(50)

>>> turtle.setheading(90)

>>> turtle.forward(100)

>>> turtle.setheading(180)

>>> turtle.forward(50)

>>> turtle.setheading(270)

>>> turtle.forward(100)

>>>



Copyright © 2018 Pearson Education, Inc. 

Setting the Pen Up or Down

• When the turtle's pen is down, the turtle draws a line 

as it moves. By default, the pen is down.

• When the turtle's pen is up, the turtle does not draw 

as it moves.

• Use the turtle.penup() statement to raise the pen.

• Use the turtle.pendown() statement to lower the 

pen.



Copyright © 2018 Pearson Education, Inc. 

Setting the Pen Up or Down

>>> import turtle

>>> turtle.forward(50)

>>> turtle.penup()

>>> turtle.forward(25)

>>> turtle.pendown()

>>> turtle.forward(50)

>>> turtle.penup()

>>> turtle.forward(25)

>>> turtle.pendown()

>>> turtle.forward(50)

>>>



Copyright © 2018 Pearson Education, Inc. 

Drawing Circles

• Use the turtle.circle(radius) statement to 

draw a circle with a specified radius.

>>> import turtle

>>> turtle.circle(100)

>>>



Copyright © 2018 Pearson Education, Inc. 

Drawing Dots

• Use the turtle.dot() statement to draw a simple 

dot at the turtle's current location.

>>> import turtle

>>> turtle.dot()

>>> turtle.forward(50)

>>> turtle.dot()

>>> turtle.forward(50)

>>> turtle.dot()

>>> turtle.forward(50)

>>>



Copyright © 2018 Pearson Education, Inc. 

Changing the Pen Size and 

Drawing Color
• Use the turtle.pensize(width) statement to 

change the width of the turtle's pen, in pixels.

• Use the turtle.pencolor(color) statement to 

change the turtle's drawing color.

• See Appendix D in your textbook for a complete list of colors.

>>> import turtle

>>> turtle.pensize(5)

>>> turtle.pencolor('red')

>>> turtle.circle(100)

>>>



Copyright © 2018 Pearson Education, Inc. 

Working with the Turtle's 

Window
• Use the turtle.bgcolor(color) statement to set 

the window's background color.

• See Appendix D in your textbook for a complete list of colors.

• Use the turtle.setup(width, height) statement 

to set the size of the turtle's window, in pixels.

• The width and height arguments are the width and height, in 

pixels. 

• For example, the following interactive session creates a graphics 

window that is 640 pixels wide and 480 pixels high:

>>> import turtle

>>> turtle.setup(640, 480)

>>>



Copyright © 2018 Pearson Education, Inc. 

Resetting the Turtle's Window

• The turtle.reset() statement:

• Erases all drawings that currently appear in the graphics window.

• Resets the drawing color to black.

• Resets the turtle to its original position in the center of the screen. 

• Does not reset the graphics window’s background color.

• The turtle.clear() statement:

• Erases all drawings that currently appear in the graphics window.

• Does not change the turtle's position.

• Does not change the drawing color.

• Does not change the graphics window’s background color.

• The turtle.clearscreen() statement:

• Erases all drawings that currently appear in the graphics window.

• Resets the drawing color to black.

• Resets the turtle to its original position in the center of the screen. 

• Resets the graphics window’s background color to white.



Copyright © 2018 Pearson Education, Inc. 

Working with Coordinates

• The turtle uses Cartesian Coordinates



Copyright © 2018 Pearson Education, Inc. 

Moving the Turtle to a 

Specific Location
• Use the turtle.goto(x, y) statement to move the 

turtle to a specific location.

>>> import turtle

>>> turtle.goto(0, 100)

>>> turtle.goto(−100, 0)

>>> turtle.goto(0, 0)

>>>

• The turtle.pos() statement displays the turtle's current X,Y coordinates.

• The turtle.xcor() statement displays the turtle's current X coordinate and 

the turtle.ycor() statement displays the turtle's current Y coordinate.



Copyright © 2018 Pearson Education, Inc. 

Animation Speed

• Use the turtle.speed(speed)

command to change the speed at which 

the turtle moves. 

• The speed argument is a number in the 

range of 0 through 10. 

• If you specify 0, then the turtle will make all of 

its moves instantly (animation is disabled).



Copyright © 2018 Pearson Education, Inc. 

Hiding and Displaying the 

Turtle
• Use the turtle.hideturtle() command to 

hide the turtle. 

• This command does not change the way graphics are 

drawn, it simply hides the turtle icon.

• Use the turtle.showturtle() command to 

display the turtle. 



Copyright © 2018 Pearson Education, Inc. 

Displaying Text

• Use the turtle.write(text) statement to 

display text in the turtle's graphics window.

• The text argument is a string that you want to 

display. 

• The lower-left corner of the first character will be 

positioned at the turtle’s X and Y coordinates.



Copyright © 2018 Pearson Education, Inc. 

Displaying Text

>>> import turtle

>>> turtle.write('Hello World')

>>>



Copyright © 2018 Pearson Education, Inc. 

Filling Shapes

• To fill a shape with a color:

• Use the turtle.begin_fill() command before 

drawing the shape

• Then use the turtle.end_fill() command after 

the shape is drawn. 

• When the turtle.end_fill() command 

executes, the shape will be filled with the current fill 

color



Copyright © 2018 Pearson Education, Inc. 

Filling Shapes

>>> import turtle

>>> turtle.hideturtle()

>>> turtle.fillcolor('red')

>>> turtle.begin_fill()

>>> turtle.circle(100)

>>> turtle.end_fill()

>>>



Copyright © 2018 Pearson Education, Inc. 

Keeping the Graphics 

Window Open
• When running a turtle graphics program outside 

IDLE, the graphics window closes immediately when 

the program is done.

• To prevent this, add the turtle.done() statement 

to the very end of your turtle graphics programs.

• This will cause the graphics window to remain open, so you can 

see its contents after the program finishes executing.



Copyright © 2018 Pearson Education, Inc. 

Summary

• This chapter covered:

• The program development cycle, tools for program 

design, and the design process

• Ways in which programs can receive input, 

particularly from the keyboard 

• Ways in which programs can present and format 

output

• Use of comments in programs

• Uses of variables and named constants

• Tools for performing calculations in programs

• The turtle graphics system


