
Copyright © 2018 Pearson Education, Inc.

C H A P T E R 4

Repetition

Structures

Copyright © 2018 Pearson Education, Inc.

Topics

• Introduction to Repetition Structures

• The while Loop: a Condition-Controlled Loop

• The for Loop: a Count-Controlled Loop

• Calculating a Running Total

• Sentinels

• Input Validation Loops

• Nested Loops

• Turtle Graphics: Using Loops to Draw Designs

Copyright © 2018 Pearson Education, Inc.

Introduction to Repetition

Structures
• Often have to write code that performs

the same task multiple times

• Disadvantages to duplicating code

• Makes program large

• Time consuming

• May need to be corrected in many places

• Repetition structure: makes computer

repeat included code as necessary

• Includes condition-controlled loops and count-

controlled loops

Copyright © 2018 Pearson Education, Inc.

The while Loop: a Condition-

Controlled Loop
• while loop: while condition is true, do

something

• Two parts:

• Condition tested for true or false value

• Statements repeated as long as condition is true

• In flow chart, line goes back to previous part

• General format:

while condition:

statements

Copyright © 2018 Pearson Education, Inc.

The while Loop: a Condition-

Controlled Loop (cont’d.)

Copyright © 2018 Pearson Education, Inc.

The while Loop: a Condition-

Controlled Loop (cont’d.)
• In order for a loop to stop executing,

something has to happen inside the

loop to make the condition false

• Iteration: one execution of the body of

a loop

• while loop is known as a pretest loop

– Tests condition before performing an iteration

• Will never execute if condition is false to start with

• Requires performing some steps prior to the loop

Copyright © 2018 Pearson Education, Inc.

Copyright © 2018 Pearson Education, Inc.

Infinite Loops

• Loops must contain within themselves

a way to terminate

• Something inside a while loop must

eventually make the condition false

• Infinite loop: loop that does not have a

way of stopping

• Repeats until program is interrupted

• Occurs when programmer forgets to include

stopping code in the loop

Copyright © 2018 Pearson Education, Inc.

The for Loop: a Count-

Controlled Loop
• Count-Controlled loop: iterates a

specific number of times

Use a for statement to write count-controlled

loop

• Designed to work with sequence of data items

– Iterates once for each item in the sequence

• General format:

for variable in [val1, val2, etc]:

statements

• Target variable: the variable which is the target of
the assignment at the beginning of each iteration

Copyright © 2018 Pearson Education, Inc.

Copyright © 2018 Pearson Education, Inc.

Using the range Function

with the for Loop
• The range function simplifies the

process of writing a for loop

• range returns an iterable object

• Iterable: contains a sequence of values that can be

iterated over

• range characteristics:

• One argument: used as ending limit

• Two arguments: starting value and ending

limit

• Three arguments: third argument is step value

Copyright © 2018 Pearson Education, Inc.

Using the Target Variable

Inside the Loop
• Purpose of target variable is to

reference each item in a sequence as

the loop iterates

• Target variable can be used in

calculations or tasks in the body of the

loop

Example: calculate square root of each
number in a range

Copyright © 2018 Pearson Education, Inc.

Letting the User Control the

Loop Iterations
• Sometimes the programmer does not

know exactly how many times the loop

will execute

• Can receive range inputs from the user,

place them in variables, and call the
range function in the for clause using

these variables

Be sure to consider the end cases: range

does not include the ending limit

Copyright © 2018 Pearson Education, Inc.

Generating an Iterable Sequence

that Ranges from Highest to Lowest

• The range function can be used to

generate a sequence with numbers in

descending order

• Make sure starting number is larger than end

limit, and step value is negative

• Example: range (10, 0, -1)

Copyright © 2018 Pearson Education, Inc.

Calculating a Running Total

• Programs often need to calculate a

total of a series of numbers

• Typically include two elements:

• A loop that reads each number in series

• An accumulator variable

• Known as program that keeps a running total:

accumulates total and reads in series

• At end of loop, accumulator will reference the

total

Copyright © 2018 Pearson Education, Inc.

Calculating a Running Total

(cont’d.)

Copyright © 2018 Pearson Education, Inc.

The Augmented Assignment

Operators
• In many assignment statements, the

variable on the left side of the =

operator also appears on the right side
of the = operator

• Augmented assignment operators:

special set of operators designed for

this type of job

• Shorthand operators

Copyright © 2018 Pearson Education, Inc.

The Augmented Assignment

Operators (cont’d.)

Copyright © 2018 Pearson Education, Inc.

Sentinels

• Sentinel: special value that marks the

end of a sequence of items

• When program reaches a sentinel, it knows

that the end of the sequence of items was

reached, and the loop terminates

• Must be distinctive enough so as not to be

mistaken for a regular value in the sequence

• Example: when reading an input file, empty

line can be used as a sentinel

Copyright © 2018 Pearson Education, Inc.

Input Validation Loops

• Computer cannot tell the difference

between good data and bad data

• If user provides bad input, program will

produce bad output

• GIGO: garbage in, garbage out

• It is important to design program such that

bad input is never accepted

Copyright © 2018 Pearson Education, Inc.

Input Validation Loops

(cont’d.)
• Input validation: inspecting input

before it is processed by the program

• If input is invalid, prompt user to enter correct

data

• Commonly accomplished using a while loop

which repeats as long as the input is bad

• If input is bad, display error message and receive

another set of data

• If input is good, continue to process the input

Copyright © 2018 Pearson Education, Inc.

Input Validation Loops

(cont’d.)

Copyright © 2018 Pearson Education, Inc.

Nested Loops

• Nested loop: loop that is contained

inside another loop

• Example: analog clock works like a nested

loop

• Hours hand moves once for every twelve

movements of the minutes hand: for each iteration

of the “hours,” do twelve iterations of “minutes”

• Seconds hand moves 60 times for each movement

of the minutes hand: for each iteration of “minutes,”
do 60 iterations of “seconds”

Copyright © 2018 Pearson Education, Inc.

Copyright © 2018 Pearson Education, Inc.

Nested Loops (cont’d.)

• Key points about nested loops:

• Inner loop goes through all of its iterations for

each iteration of outer loop

• Inner loops complete their iterations faster

than outer loops

• Total number of iterations in nested loop:
number_iterations_inner x

number_iterations_outer

Copyright © 2018 Pearson Education, Inc.

Turtle Graphics: Using Loops

to Draw Designs
• You can use loops with the turtle to draw both

simple shapes and elaborate designs. For example,

the following for loop iterates four times to draw a
square that is 100 pixels wide:

for x in range(4):

turtle.forward(100)

turtle.right(90)

Copyright © 2018 Pearson Education, Inc.

Turtle Graphics: Using Loops

to Draw Designs

• This for loop iterates eight times to draw the

octagon:

for x in range(8):

turtle.forward(100)

turtle.right(45)

Copyright © 2018 Pearson Education, Inc.

Turtle Graphics: Using Loops

to Draw Designs

• You can create interesting designs by repeatedly

drawing a simple shape, with the turtle tilted at a
slightly different angle each time it draws the shape.

NUM_CIRCLES = 36 # Number of circles to draw

RADIUS = 100 # Radius of each circle

ANGLE = 10 # Angle to turn

for x in range(NUM_CIRCLES):

turtle.circle(RADIUS)

turtle.left(ANGLE)

Copyright © 2018 Pearson Education, Inc.

Turtle Graphics: Using Loops

to Draw Designs

• This code draws a sequence of 36 straight
lines to make a "starburst" design.

START_X = -200 # Starting X coordinate

START_Y = 0 # Starting Y coordinate

NUM_LINES = 36 # Number of lines to draw

LINE_LENGTH = 400 # Length of each line

ANGLE = 170 # Angle to turn

turtle.hideturtle()

turtle.penup()

turtle.goto(START_X, START_Y)

turtle.pendown()

for x in range(NUM_LINES):

turtle.forward(LINE_LENGTH)

turtle.left(ANGLE)

Copyright © 2018 Pearson Education, Inc.

Summary

• This chapter covered:

• Repetition structures, including:

• Condition-controlled loops

• Count-controlled loops

• Nested loops

• Infinite loops and how they can be avoided

• range function as used in for loops

• Calculating a running total and augmented

assignment operators

• Use of sentinels to terminate loops

• Using loops to draw turtle graphic designs

