CS303e Course Introduction

Chapman: | didn't expect a kind of Spanish Inquisition.

Cardinal Ximinez[Palin]: NOBODY expects the Spanish
Inquisition! Our chief weapon is surprise...surprise and
fear...fear and surprise.... Our two weapons are fear and
surprise...and ruthless efficiency.... Our three weapons are
fear, surprise, and ruthless efficiency...and an almost fanatical
devotion to the Pope.... Our four...no... Amongst our
weapons.... Amongst our weaponry...are such diverse

elements as fear, surprise....

Mike Scott

scottm@cs.utexas.edu
WWW.CS.utexas.edu/~scottm/cs303e

Agenda

> Overview of:

—this course

—the elements of computing program
> Course logistics including:

—how to get help

—the schedule

—tips for success

Who Am |

> Lecturer in CS
department since 2000

» Undergrad Stanford,
MSCS RPI

» US Navy for 8 years,
submarines

» 2 years Round Rock
High School

CS303e

My Path to CS

BMI
|
cn MEROCONPUTER [nmu ' | l

101 Great Games to Play on Your Home Computer. ‘

[By yourself or with others. Each complete with
programming and sample run. Edited by David H. Ahl ‘
\
\
] |

10 INPUT "What is your name: “; U§

20 PRINT "Hello "; U$§

25 REM

30 INPUT "How many stars do you want: "; N
35 S$ = rrrer

40 FOR I = 1 TO N I
50 3§ = 5§ + " .
55 NEXT I

60 PRINT $% '
65 REM

70 INPUT "Do you want more stars? "; A§
80 IF LEN{A$) = 0 THEN GOTO 70
90 A¢ = LEFT$(Ag, 1)
100 IF (A§ = "Y") OR (4§ = "y") THEN GOTO 30
110 PRINT "Goodbye ";
120 FOR I = 1 TO 200
130 PRINT U§; ™
140 NEXT I
150 PRINT | A 4

Intro to Programming
» Learn to design and implement computer

programs to solve problems.

» | assume you have NEVER written

© 0N wwDdE

a single line of code

output, fstrings

identifiers

errors (syntax, runtime, logic)
reserved words

variables, operators, computations
constants

built in math functions

conditional execution

boolean logic

CS303e

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.
20.

iteration, repetition
programmer defined functions
Strings

lists

lists of lists (matrices)

files

exceptions

dictionaries

objects and classes (programmer
defined data types)

recursion
sorting and searching

Programing and CS

> A tool for doing the cool stuff in CS

» You can't create a self driving vehicle
without the software to control the vehicle

Programming

. >>>
} >>>
Sta rt Sll I Iple - = mw = RESTART: C:/Users/scottm/Documents/303e/ Su 20/example programs
/assignments/Initials.py
MDS
MMMM MMMM DDDDDDDD SSS58SSSS
MMMM MMMM DDDDDDDDDD S85S88888S8S8S
} MM MM MM MM DD DDD SS58S
but et MM MM MM MM DD DD ssss
e MM MM MM MM DD DD 5588Ss
MM MMMM MM DD DD SSSSsSs
MM MMMM MM DD DD S8s8sS
COI I lp eX y MM MM MM DD DDD S8S8sS
MM MM MM - DDDDDDDDDD .. SSSSSSSSSS
| MM MM MM .. DDDDDDDD .. SS8S8S58S8SSSs
end of the class ..
>>>
>>>
P2
250 360
255

184 163 185 99 92 952 954 180 100
189 103 185 1ee 96 92 953 954 88
189 105 99 98 098 12 1e5 953 88
1e6 11e 1e4 99 1e3 112 112 97 91
113 113 112 1e3 1e5 1e9 1e7 91 90
121 121 119 1e7 1e3 99 S5 S0 90
114 117 112 1e5 1e5 95 92 93 94
l1el 107 103 1e3 1e5 96 92 96 97
94 188 11e 1e4 1e3 181 97 99 1ee
94 112 123 186 99 98 95 96 96
lee 116 123 187 99 160 55 1@l 96
1e4 115 113 185 99 188 97 le4 le4d
183 107 1e8 187 183 181 953 92 96
183 107 1e4 1e7 106 12 97 91 9@
109 107 1e4 1e5 1e8 1e4 1e5 1a5 98
16 11e 109 1ee 1e8 1e5 1e7 19 18
1e6 120 127 123 117 1e8 17 111 111

Startup

» If you have not already done so ...
> ... complete the items on the class
start-up page

> http://www.cs.utexas.edu/~scottm/
cs303e/handouts/startup.htm

CS303e 8

http://www.cs.utexas.edu/~scottm/cs303e/handouts/startup.htm

Book

* book Is required
- we follow It quite
closely

* programming
assignments, limited to
features from the book

P sacstod oxarcivoe
e suggested exercises

Course Overview

Graded Course Components

» Programming projects
— 13 projects, 10 or 20 points : 210 points

» Exams

— Midterm, In class Wednesday, July 3, 11:30 am — 1:30 pm
400 points

— Final, Thursday, August 1, 7 - 10 pm 400 points

> Extra credit
— CS background survey on Canvas. 10 points

— course survey completion, 10 points

210 +400+400+10+10=1030

> Programming Assignments capped at 200 pts
— 30 points of “slack”, including extra credit

> No points added! Grades based on 1000 points, not 1030

> Final point total = min(200, sum of points on programs +
background survey completion + instructor end of course
survey) + midterm exam score + final exam score

Letter Grades
» Final grade determined by final point total
>=025 -> A
900 - 924 -> A-
875 - 899 -> B+
825-874 ->B
800 - 824 -> B-
775-799 -> C+
25-774->C
700 - 724 -> C-
675 - 699 -> D+
625-674->D
600 - 624 -> D-
<=599 > F

In Class Exercises - Grade Bump

> Recall: Final point total = min(200, sum of points on
programs + background survey completion + instructor
end of course survey) + midterm exam score + final exam
score

> Each lecture shall have an in-class programming exercise. 21
total. Completing these may help you get bumped to the next
higher grade if you are close to a cutoff.

> 1 point added for every 2 exercises completed with
reasonable effort
— rounded up

> For example, you end up with 893 points per the formula
above. You complete 14 or more of the 21 in class
exercises with a reasonable attempt. You grade shall be
bumped from B+ to A-.

CS303e 12

Assighments
» Start out simple but get more challenging

> Individual — do your own work

» Programs checked automatically with
plagiarism detection software, MOSS

» Turn in the right thing - correct name, correct
format or you will lose points / slip days

> Slip days
— 8 for term, max 1 per assignment
— don’t use frivolously

» Graded on correctness and program hygiene
(style, best practices), typical 60% / 40% split

CS303e 13

http://www.cs.utexas.edu/~scottm/cs303e/Assignments/index.htm

Getting Help

» Post to Ed (link on Canvas).

— can make anonymous to other students
— can post to instructors only
— do not post more than 2 lines of code on a
public post
» Help Hours
— check schedule
— Most help hours in person in GDC 3.202

— A few help hours via Zoom, check the Canvas
course page and the Zoom tab for links

CS303e 14

https://cs303e.utcshelphours.com/view

Succeeding in the Course
» Randy Pausch, r S
CS Professor at CMU said:

*» "When I got tenure a year

early at Virginia, other
Assistant Professors would come up to me and say "You

got tenure early!?1?! What's your secret?/?I?" and I
would tell them, 'Call me in my office at 10pm on Friday

night and I'll tell you." "

> "A lot of people want a shortcut. I find the best
shortcut is the long way, which is basically two words:

work hard.” 15

> “Be the first penguin”
Randy Pausch
— Ask guestions!!!
— lecture, Pilazza, help hours

> “It is impossible to be perfect”
Captain Symons
— Mistakes are okay.
— That is how we learn.

— Trying to be perfect means
not taking risks.

—no risks, no learning
CS303e

o

&,

16

Succeeding in the Course - Concrete

» Whole course is cumulative!

» Material builds on itself

— failure to understand a concept leads to bigger

problems down the road, so ...
> do the readings
> come to class
> start on assignments early

> get help from the teaching staff when you get stuck on
an assignment

> participate on the class discussion group
» ask questions and get help when needed

» DO MORE PRACTICE PROBLEMS -> Book, CodingBat,
Professor Bulko's Site

17

https://codingbat.com/python

Succeeding in the Course

» Cannot succeed via memorization.

» The things | expect you to do are not rote.

— programming is a skill
— you cannot memorize your way through the
material and the course

» Learn by doing.
> If you are brand new to programming or
have limited experience | strongly

recommend you do lots and lots of
practice problems.

CS303e

18

CS303E: Elements of Computers and Programming

Python

Mike Scott
Department of Computer Science

University of Texas at Austin

Adapted from Dr, Bill Young's Slides

Last updated: May 23, 2023

Some Thoughts about Programming

“The only way to learn a new programming language is by writing
programs in it.” —B. Kernighan and D. Ritchie

"Computers are good at following instructions, but not at reading
your mind." —D. Knuth

"Programming is not a spectator sport.” - Bill Young

Program:

n. A magic spell cast over a computer allowing it to turn
one’s input into error messages.

tr. v. To engage in a pastime similar to banging one’s head
against a wall, but with fewer opportunities for reward.

CS303E Slideset 1: 2

What is Python?

Python is a high-level programming language developed by
Guido van Rossum in the Netherlands in the late 1980s. It
was released in 1991.

Python has twice
received recognition
as the language with
the largest growth
in popularity for the
year (2007, 2010).

It's named after the
British comedy
troupe Monty
Python.

CS303E Slideset 1: 3 Python

What is Python?

Python is a simple but powerful scripting language. It has
features that make it an excellent first programming language.

« Easy and intuitive mode of interacting with the system.
« (Clean syntax that is concise. You can say/do a lot with
few words.

 Design is compact. You can carry the most
important language constructs in your head.

« There is a very powerful library of useful functions
available.

You can be productive quite quickly. You will be spending more
time solving problems and writing code, and less time grappling
with the idiosyncrasies of the language.

CS303E Slideset 1: 4

What is Python?

Python is a general purpose programming language.
That means you can use Python to write code for any
programming tasks.

« Python was used to write code
for: the Google search engine

» mission critical projects at NASA
« programs for exchanging financial transactions at
the NY Stock Exchange

 the grading scripts for this class

CS303E Slideset 1: 5

What is Python?

Python can be an object-oriented programming language.
Object-oriented programming is a powerful approach to

developing reusable software. More on that later!

Python is interpreted, which means that Python
code is translated and executed one statement at a
time.

This is different from other languages such as C which are
compiled, the code is converted to machine code and
then the program can be run after the compilation is
finished.

CS303E Slideset 1: 6

The Interpreter

Actually, Python is always translated into byte code, a lower level
representation.

The byte code is then interpreted by the Python Virtual Machine.

Python Code
Syntax Checker and Translator

Byte Code {}

Input — = Python Virtual Machine (PVM)

Output {}

CS303E Slideset 1: 7

Getting Python

To install Python on your personal computer / laptop, you can
download it for free at: www.python.org/downloads

There are two major versions: Python 2 and Python 3.
Python 3 is newer and is not backward compatible with
Python 2. Make sure you're running Python 3.8.

It's available for Windows, Mac OS, Linux.

If you have a Mac, it may already be pre-installed.
It should already be available on most computers on campus.

It comes with an editor and user interface called IDLE.
I strongly recommend downloading and installing the
PyCharm, Educational version, IDE.

CS303E Slideset 1: 8

http://www.python.org/downloads

A Simple Python Program: Interactive Mode

This illustrates using Python in interactive mode from the
command line. Your command to start Python may be different.

Python 3.8.2 (tags/v3.8.2:7b3ab59, Feb 25 2020, 23:0
D64)] on win32

Type "help", "copyright", "credits" or "license()" £
>>> print('Hello World!')

Hello World!

>>> print('Hook \'em Horns!')

Hook 'em Horns!

>>> print((10.5 + 2 % 3) / 45 - 3.5)
-3.1333333333333333
>>>

Here you see the prompt for the OS/command loop for the
Python interpreter read, eval, print loop.

CS303E Slideset 1: 9

A Simple Python Program: Script Mode

Here'’s the “same” program as I'd be more likely to write it. Enter
the following text using a text editor into a file called, say,
MyFirstProgram.py. This is called script mode.

In file my_first_program.py:

def main():
Display two messages.
print('Hello World!"')

print('Hook \'em Horns!')

Evaluate an arithmetic expression :
print((10.5 + 2 = 3) / 45 - 3.5)

main()

CS303E Slideset 1: 10

A Simple Python Program

Hello World!
Hook 'em Horns!
-3.1333333333333333

Process finished with exit code 0

This submits the program in file my_first_program.py to
the Python interpreter to execute.

This is better, because you have a file containing your program and
you can fix errors and resubmit without retyping a bunch of stuff.

CS303E Slideset 1: 11

Aside: About Print

If you do a computation and want to display the result use the
print function.

You can print multiple values with one print statement:

>>> print('The wvalue is: ', 2 * 10)
‘'The value is: 20

>>> print(3 + 7, 3 - 10)
10 -7

>>> 3 + 7

10

>>> 3 - 10

-7

>>> 3 + 7, 3 - 10

(10, -=7)

>>2>

Notice that if you're computing an expression in interactive mode,
it will display the value without an explicit print.

Python will figure out the type of the value and print it
appropriately. This is very handy when learning the basics
of computations in Python.

Another aside: Binary Numbers, Base 2 Numbers

= The vast majority of computer systems use
digital storage
= Some physical phenomena that is interpreted

tobealOorl
= abstraction, pretending something is different,
simpler, than it really is

= also known as binary representations
= 1 bit -> 1 binary digit, a0 oral

= 1 byte -> 8 bits

= binary numbers, base 2 numbers

CS303E Slideset 1: 13

Base 2 Numbers

= 53724,

= = (5*1,000)+ (3*100)+ (7*10)+(2*1)

= = (5 %1039+ (3 * 109)+ (7 * 101)+ (2 * 109)

= Why do we use base 10?7 10 fingers?

= Choice of base is somewhat arbitrary

= In computing we also use base 2, base 8, and
base 16 depending on the situation

= In base 10, 10 digits, 0 - 9

= In base 2, 2 digits, 0 and 1

CS303E Slideset 1: 14

Base 2 Numbers

= 1011011,

= =(1*64)+ (0*32)+(1*16) + (1 *8) +
O0*4)+(1*2)+(1*1)=091

s = (1 %29+ (0*22)+(1*2%) +(1*23)+
(0*22)+ (1*21)+ (1*20)=091

= Negative numbers and real numbers are
typically stored in a non-obvious way

= If the computer systems only stores 0s and 1s
how do we get digital images, characters,
colors, sound, ...

= Encoding

CS303E Slideset 1: 15

= Encoding is a system or standard that dictates
what "thing" is representing by what number

= Example ASCII or UTF-8

= This number represents this character

= First 128 numbers of ASCII and UTF-8 same

= 32 -> space character

= 65 -> capital A et

= 97 -> lower case a Bl ©

= 48 -> digit 0

CS303E Slideset 1: 16

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/UTF-8

Computer Memory

= Recall, 1 bit -> asingleOor 1

= 1 byte = 8 bits

= A typical laptop or desktop circa 2023

= ... has 4 to 32 Gigabytes of RAM, also known
as main memory.

= 1 Gigabyte -> 1 billion bytes

= The programs that are running store their
instructions and data (typically) in the RAM

= ... have 100s of Gigabytes up to several
Terabytes (trillions of bytes) in secondary
storage. Long term storage of data, files

= Typically spinning disks or solid state drives.

CS303E Slideset 1: 17

The Framework of a Simple Python Program

Define your program in file
Filename.py:

def main (): Defining a function called main.
Python statement
Python statement These are the instructions that make up
Python statement your program. Indent all of them the
Python statement same amount (usually 4 spaces).
Python statement
Python statement
main () This says to execute the function main.
To run it: This submits your program in
> python file_name.py .file_name.py to the Python
Interpreter.

CS303E Slideset 1: 18

Aside: Running Python From a File

Typically, if your program is in file hello.py, you can run your
program by typing at the command line:

> python hello.py

You can also create a stand alone script. On a Unix / Linux
machine you can create a script called hello.py containing the
first line below (assuming that’s where your Python
implementation lives):

#!'/1lusr/bin/ python3
The line above may vary based on your system
print ((Hello World!")

CS303E Slideset 1: 19

Program Documentation

Documentation refers to comments included within a source code
file that explain what the code does.

Indude a file header: a summary at the beginning of each file
o explaining what the file contains, what the code does, and
what key feature or techniques appear.

You shall always include your name, email, grader, and
@ a brief description of the program.

File: <NAME OF FILE>

Description: <A DESCRIPTION OF YOUR PROGRAM>

Assignment Number: <Assignment Number, 1 - 13>

#

Name: <YOUR NAME>

EID: <YOUR EID>

Email: <YOUR EMAIL>

Grader: <YOUR GRADER'S NAME Carolyn OR Emma or Ahmad>
#

On my honor, <YOUR NAME>, this programming assignment is my own work
and | have not provided this code to any other student.

CS303E Slideset 1: 20

Program Documentation

o Comments shall also be interspersed in your code:
» Before each function or class definition (i.e., program
subdivision);
a Before each major code block that performs a significant task;
o Before or next to any line of code that may be hard to

understand.
sum = (
sum the integers [start ... end]
for i in range(start, end + 1):
sum += 1

CS303E Slideset 1: 21

Don‘t Over Comment

Comments are useful so that you and others can understand your
code. Useless comments just clutter things up:

x =1 # assign 1 to x
y = 2 # assign 2 to vy

CS303E Slideset 1: 22

Programming Style

Every language has
its own unique
syntax and style.
Thisisa C
program.

Good programmers
follow certain
conventions to
make programs
clear and easy to
read, understand,
debug, and
maintain. We have
conventions in
303e. Check the
assignment page.

CS303E Slideset 1: 23

#include <stdio. h>

/* print table of Fahrenheit to Celsius
[C = 5/9(F-32)] for fahr = 0, 20, .,
300 */
main()
{
int fahr, celsius;
int lower, upper, step;

lower = 0; /* lowlimit of table */
upper = 300; /* high limit of table */
step = 20; /* step size */
fahr = lower;
while (fahr <= upper) ({

celsius = 5 * (fahr-32) / 9;

printf (" %\t %d\n",
fahr = fahr + step;

fahr, celsius);

J
}

Programming Style

Some important Python programming conventions:
Follow variable and function naming conventions.
Use meaningful variable/function names.
Document your code effectively.
Each level indented the same (4 spaces).
Use blank lines to separate segments of code inside functions.
2 blank lines before the first line of function (the function header) and
after the last line of code of the function

We'll learn more elements of style as we go.

Check the assignments page for more details.

CS303E Slideset 1: 24

https://www.cs.utexas.edu/~scottm/cs303e/Assignments/index.htm

Errors:

Remember: “Program: n. A magic spell cast over a computer allowing it
to turn one’s input into error messages.”

We will encounter three types of errors when developing
our Python program.

syntax errors: these are ill-formed Python and caught by the interpreter
prior to executing your code.

>>> 3 = X

File "<stdin>", line 1
SyntaxError: can’t assign to
literal

These are typically the easiest to find and fix.

CS303E Slideset 1: 25

Errors: Runtime

runtime errors: you try something illegal while your code is
executing

>>> x = 0

>>> y = 3

>>> y [X

Traceback (nost recent call last):
File "<stdin>", line 1, in <nodule>

ZeroDivisionError: division by zero

CS303E Slideset 1: 26

Almost Certainly It's Our Fault!

At some point we all say: "My program is obviously right. The
interpreter / Python must be incorrect/ flaky/ and it hates me.

"As soon as we started programming, we found out
to our surprise that it wasn't as easy to get programs
right as we had thought. Debugging had to be
discovered. | can remember the exact instant when
| realized that a large part of my life from
then on was going to be spent in finding
mistakes in my own programs.”

-Sir Maurice V Wilkes

CS303E Slideset 1: 27

https://en.wikipedia.org/wiki/Maurice_Wilkes

logic errors: Calculate 6! (6 * 5 * 4 * 3 * 2 * 1)
your program runs but returns an incorrect result.

>>> prod = 0

>>> for x in range(1l, 6):
: prod *= x

>>> print (prod)

0

This program is syntactically fine and runs without error. But it
probably doesn't do what the programmer intended; it always
returns 0 no matter the values in range. How would you fix it?

Logic errors are typically the hardest errors to find and fix.

CS303E Slideset 1: 28

Try It!

“The only way to learn a new programming language is by writing
programs in it.” —B. Kernighan and D. Ritchie

.}'ﬁ$ﬁ="‘=::.

Python is wonderfully accessible. If you M
wonder whether something works or is legal, KEEP

just try it out.
CALM
AND

Programming is not a spectator sport!
Write programs! Do exercises!

GIVE IT A
TRY!

mlref TR Ty

CS303E Slideset 1: 29

CS303E: Elements of Computers and Programming

Simple Python

Mike Scott
Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: June 5, 2023

"Once a person has understood
the way variables are used in
programming, they have
understood the quintessence of

programming.”

-Professor Edsger W. Dijjkstra | Wa s Lt

CS303E Slideset 2: 2 Simple Python ; A

Simple Program: Body Mass Index

- Body Mass Index or BMI is a quick calculation based
on height and mass (weight) used by medical
professionals to broadly categorize people .

« Formula:

111 AaSS
BMI — € M8 w03

height?>, height?,

* Quick tool to get a rough estimate if someone is
underweight, normal weight, overweight, or obese

» Write an interactive program that gets the name,
height, and weight of a user and calculates BMI.

CS303E Slideset 2: 3 Simple Python

Assignment Statements

An assignment in Python has form:

<variable> = <expression>

This means that variable is assigned value. i.e, after the
assignment, variable "contains" value.

The equals sign is NOT algebraic equality.
It causes an action! The expressionon the right is evaluated
and the result is assigned to the variable on the left.

>>> x = 17.2

>>> y = -39

>>> z = x T y- 2
>>> print(z)
-672.8

CS303E Slideset 2: 4 Simple Python

A variable is a named memory location (in the RAM typically)
used to store values. We'll explain shortly how to name variables.

Unlike some programming languages, Python variables do not have

fixed data types.
/] Ccode
int x= 17; // variable x has type int
x=5.3; /] illegal

Python code

X 17 # x gets int value 17
X 5.3 # x gets float value 5.3

A variable in Python actually holds a pointer to a class object,
rather than the object itself.

A variable exists at a particular address. Each memory
location (4 or 8 bytes typically circa 2021) has an address or
location. A number that specifies that location in memory

CS303E Slideset 2: 5 Simple Python

What's a Pointer?

 Also called references, but pointers and references
have differences that are beyond the scope of this

class.
A variable exists at a particular address. Each 121237 121240
memory location (4 or 8 bytes typically circa 121238

2021) has an address or location. A number that 121239 0
specifies that location in memory. 121240
 Just like the address of a house or
building on a street

« S0 a variable is just @ name in our program for a
spot in the RAM that stores a value.

« But Python (for reasons we don't want to talk
about now) has a bit of " bureaucracy” when a
variable is bound to a value

X=12

let's assume the variable x is at memory

location 121237

CS303E Slideset 2: 6 Simple Python

Types in Python

Is it correct to say that there are no types in Python?

Yesand no. It is best to say that Python is "dynamically typed."
Variables in Python are untyped, but values have associated data
types (actually dasses). In some cases, you can convert one type to
another.

Most programming languages assign types to both variables and
values. This has its advantages and disadvantages.

What do you think the advantages are of requiring variables to
dedlare the data type of a variable?

CS303E Slideset 2: 7 Simple Python

Variables and Assignments

You can create a new variable in Python by assigning it a value.
You don’t have to declare variables' types, as in many other
programming languages.

>>>T X = 3 F creates x, assigns int
>>> print(x)

3

>>> x = "abc" # re-assigns x a string
>>> print(x)

abc

>>> x= 3.14 # re-assigns x a float
>>> print(x)

3.14

>>> y =6 # creates y, assigns int
>>> x *y # uses x and vy

18.84

CS303E Slideset 2: 8 Simple Python

Meaning of a Variable

x = 17 # Defines and initializes x
y= x + 3 #Defines y and initializes y
7z =W # Runtime error if w undefined

This code defines three variables x, y and z. Notice that on the left
hand side of an assignment the variable is created (if it doesn't
already exist), and given a value.

On the right hand side of an assignment is an expression.
When the assignment statement is run the expression shall be
evaluated and the resulting value will be bound to the variable
on the left hand side.

CS303E Slideset 2: 9 Simple Python

Naming Variables

Below are (most of) the rules for naming variables:

Variable names must begin with a letter or underscore (_)
character.

After that, use any number of letters, underscores, or digits.
Case matters: "score" is a different variable than "Score."

You can't use reserved words; these have a special meaning to
Python and cannot be variable names.

CS303E Slideset 2: 10 Simple Python

Python Keywords

Python Reserved Words.

Also known as Keywords.

and, as, assen, break, class, continue, def, del,
elif, else, except, False, finally, for, from,
global, if, import, In, I1s, lambda, nonlocal,
None, not, or, pass, raise, return, True, try,
while, with, yield

IDLE, PyCharm, and other IDEs display reserved
words in a different color to help you recognize
them.

CS303E Slideset 2: 11 Simple Python

https://docs.python.org/3.3/reference/lexical_analysis.html#keywords

Not Reserved, but avoid using names of common functions

« A function is a subprogram.

« Python has many built in functions we will use.

» Function names like print are not reserved
words. But using them as variable names is a
very bad idea because it redefines them.

>>> x = 12
>>> print (x)
12
>>> print = 37
>>> print (x)
Traceback (most recent call last):
File "<pyshell#3>", line 1, in <module>
print (x)
TypeError: 'int' object is not callable
>>> |

CS303E Slideset 2: 12 Simple Python

Naming Variables

>>> =10 # not standard but legal
>>> 123 = 11 # also not standard

>>> ab_cd = 12 # fine

>>> ablc = 13 # illegal character

File "<stdin>", line 1
SyntaxError: can’t assign to operator
>>> assert = 14 # assert is reserved
File "<stdin>", line 1
assert = 14

SyntaxError: invalid syntax
>>> max_value = 100 # good
>>> print = 8 # legal but ill-advised
>>> print("abc") # we’ve redefined print
Traceback (most recent call last):

File "<stdin>", line 1, in <nodule>
TypeError: “int’ object is not callable

CS303E Slideset 2: 13 Simple Python

Naming Variables

In addition to the rules, there are also some conventions that
programmers follow and we expect you to follow in CS303e:

Variable names shall begin with a lowercase letter.

Choose meaningful names that describe how the variable is
used. This helps with program readibility.

Use maxrather than m
Use num_columns rather than c.

Use underscores to separate multiple words
loop variables are often i, j, etc.

for i in range(1l, 20):
print(1)
rather than:
for some_value in range(1l, 20):

print(some_value)

Common Python Data Types

> _:;python', "python" ;\

. Numbers - > 10.5
/ ; 10+5j
| A y
Lists] »< [python', ‘website’] |
| Tuples » (‘python’, 'website')
| |
Apie < {'name";"python’,
Dictionary > " “number:1)
: | \
| Sets > > {1,2,3}
Boolean | ><:If:_f 0,1,True,False :l -
y \‘-.\ _/”

What is a Data Type?

A data type is a categorization of values.

DataType | Description ________|Example ______

int integer. An immutable number of 42
unlimited magnitude
float A real number. An immutable floating 3.1415927
point number, system defined precision '
str string. An immutable sequence of 'Wikipedia'
characters
bool boolean. An immutable truth value True. False
’
tuple Immutable sequence of mixed types. (4 0 'UT TFUE)
i ’
; Mutabl f mixed t .
list utable sequence of mixed types [12' 3’ 12’ 7’ 6]
set Mutable, unordered collection, no {12 6 3}
duplicates P
: dicti k.a. , A mutabl f Mme1'. "no'.
dict ictionary a.k.a. maps, A mutable group o { k1': 2_5’ k2' 5}

(key, value pairs)

Others we likely won't use in 303e:
complex, bytes, frozenset

CS303E Slideset 2: 16 Simple Python

The type Function

| >>> x = 17

>>> type(X)
<class |'int’ >
>>> y = -20.9

>>> type(y)
<class ’"float’>

o> type(w) e (lass is another

Traceback (nost recent call last):

File "<stdin>', line 1, in <mdule> ngme for data type.

NameError: nane "W is not defined

>>> 1st = [1, 2, 3 l

= tyLe{IL) | e Datatypeis a
<class "list’> . .

>>> type(20) CategOrlzathn
<class "int’> . o .

>>> type((2, 2.3)) or classification

<class ’tuple’>

>>> type(”abc’) * "What kind of thing

<class ’“str’>
>>> type({1, 2, 3})

cclass ‘set’s is the value this
>>> type(print)

. 1]
<class “builtin_function_or_method > Varlable I’EferS tO?

Three Common Data Types

Three data types we will use in many of our early Python programs are:
int: signed integers (whole numbers)
Computations are exact and of unlimited size
Examples: 4, -17, 0
float: signed real numbers (numbers with decimal points) Large

range, but fixed precision

Computations are approximate, not exact Examples:
3.2, -9.0, 3.5¢e/

str: represents text (a string)

We use it for input and output We'll see
more uses later Examples: "Hello, World!",
‘abc’

These are all immutable. The value cannot be altered.

CS303E Slideset 2: 18 Simple Python

Immutable

* |t may appear some
values are mutable >>> X
* they are not >>> X

* rather variables 37 _
are mutableand [>>> 1d(x)
can be bound 140711339416352

(referto) >>> x =x + 10

different values >>> X
* Note, how the id of x 477
(similar to its address) |>>> id (x)
has changed 140711339416672

37

CS303E Slideset 2: 19 Simple Python

X=37/

X 1 37

x=x+10
substitute in the value x is referring to

x=37+10
evaluate the exM

X =47 37

so now ... X ~
T 47

CS303E Slideset 2: 20 Simple Python

Mutable vs. Immutable

IMMUTABLE VS MUTABLE

o3> Z DATATYOES IN PYTHON

An immutable value is one that cannot be changed by the
programmer after you create it; e.g., numbers, strings, etc.

A mutable values is one that can be changed; e.g., sets, lists, etc.

CS303E Slideset 2: 21 Simple Python

What Immutable Means

« An immutable object is one that cannot be changed by
the programmer after you create it;
e.g., numbers, strings, etc.

« It also means that there is typically only one copy of the
object in memory.

« Whenever the system encounters a new reference to 17, say, it
creates a pointer (references) to the already stored value 17.

« Every reference to 17 is actually a pointer to the
only copy of 17 in memory. Ditto for "abc".

« If you do something to the object that yields a new value
(e.g., uppercase a string), you're actually creating a
new object, not changing the existing one.

CS303E Slideset 2: 22 Simple Python

Immutability

>>> x = 17 # x holds a pointer to the object 17
>>> y = 17 # so does y
>>> x is vy x and y point to the same object

True
>>> 1d(x) # the unique id associated with 17

10915008
>>> id(y)

10915008
>>> sl = "abc" # creates a new string

>>> g2 = "ab" + "c" # creates a new string (7)
>>>s] is s2 actually it doesn’t!
True

>>> id(sl)

140197430946704

>>> 1d(s2)

140197430946704

>>> s3 = s2. upper () # uppercase s2

>>> print(s3)

ABC

>>> id(s3) # this is a new string

140197408294088

E=S

-

CS303E Slideset 2: 23 Simple Python

Let’s Take a Break

- FOR A
BREAK

CS303E Slideset 2: 24 Simple Python

How is Data Stored?

Review from chapter 1

Fundamental fact: all data in the computer is stored as a series
of bits (0s and 1s) in the memory.

That’s true whether you're storing
numbers, letters, documents,
pictures, movies, sounds, programs,
etc. Everything!

A key problem in designing any
computing system or application is
deciding how to represent the data
we care about as a sequence of bits.

CS303E Slideset 2: 25 Simple Python

How is Data Stored: Digital Images

For example, images can be stored digitally in any of the following
formats (among others):

JPEG: Joint Photographic Experts Group
PNG: Portable Network Graphics

GIF: Graphics Interchange Format

TIFF: Tagged Image File

PDF: Portable Document Format

EPS: Encapsulated Postscript

Most of the time, we won’t needto know how data is stored in the
memory. The computer will take care of that for us.

Standards?

CS303E Slideset 2: 26 Simple Python

https://xkcd.com/927/

How is Data Stored?

The memory can be thought of as a big array of bytes, where a
byte is a sequence of 8 bits. Each memory address has an address
(0..maximum address) and contents (8 bits).

5
10000{ 00110011 Encoding for character '3’
10001! 00110000 Encoding for character ‘0’
100021 00110011 Encoding for character '3’
10003 | 01000101 Encoding for character ‘E’

A byte is the smallest unit of storage a programmer can address.
We say that the memory is byte-addressable.

Contemporary computer systems may have addressability of 4 or 8
bytes instead of single bytes,

CS303E Slideset 2: 27 Simple Python

Representation Example: ASCII

The standard way to represent characters in memory is ASCII. The
following is part of the ASCII (American Standard Code for
Information Interchange) representation:

032 sp 048 0 064 @ 080 P 096 ° 112 p
033 ! 0491 065 A 081 ¢ 097 a 113 g
034 050 2 066 B 082 R 098 b 114 r
035 # 051 3 067 C 083 S 099 ¢ 115 s
036 & 052 4 068 D 084 T 100d 116 t
037 % 053 5 069 E 085U 101 e 117 u
038 & 054 6 070 F 086V 102 £ 118 v
039 ° 055 7 071 G 087 W 103 g 119 w
040 (056 8 072 H 088 X 104 h 120 x
041) 057 9 073 I 089 Y 105 i 121 vy
042 * 058 : 074 J 090 2 106 § 122 z
043 + 059 ; 075 K 091 [107 k 123 {
044 , 060 < 076 L 092 \ 108 1 124 |
045 - 061 = 077 M 093] 109 m 125 }
046 . 062 > 078 N 094 ~ 110 n 126 ~
047 / 063 ? 079 0 095 111 o 127 o

The standard ASCII table defines 128 character codes (from 0 to
127), of which, the first 32 are control codes (non-printable), and
the remaining 96 character codes are printing characters.

CS303E Slideset 2: 28 Simple Python

How is Data Stored

 Characters or small numbers can be stored in one byte.
If data cant be stored in a single byte (e.g., a large
number), it must be split across a number of adjacent
bytes in memory.

« The way data is encoded in bytes varies
depending on: the data type

the specifics of the computer

 Most of the time, we won't need to know how data Is stored
in the memory. The computer will take care of that for us.

CS303E Slideset 2: 29 Simple Python

Formats of Data Types

« It would be nice to look at the character string
"25" and do arithmetic with it.

« However, the int 25 (@ humber) is represented in
binary in the computer by: 00011001. Why?

« And the string "25" (two characters) is represented by:
00110010 00110101. Why?

« float numbers are represented in an even more
complicated way, since you have to account for an
exponent. (Think "scientific notation.") So the number
25.0 (or 2.5 x101) is represented in yet a third way.

CS303E Slideset 2: 30 Simple Python

Data Type Conversion - Using Built in Functions

« Python provides functions to explicitly convert numbers from
one type to another:

float (< number, variable, string >)
int (<number, variable, string >)
str (<number, variable >)

* Note: int truncates, meaning it throws away the decimal
point and anything that comes after it. If you need to round
to the nearest whole number, use:

round (<number or variable >)

CS303E Slideset 2: 31 Simple Python

Conversion Examples

float (17)

17.0

>>> str(17)
117

>>> int (17.75)
17

>>> str(17.75)
"17.75’

>>> int ("17")
17

>>> float ("17")
17.0

>>> round(17.1)
17

>>> round(17. 6)
18

round(17.5)

18

>>> round(18.5)
18

truncates

round to even

round to even

CS303E Slideset 2: 32 Simple Python

Conversion Examples

If you have a string that you want to (try to) interpret as a
number, you can use eval.

>>> eval ("17")

17

>>> eval ("17 + 3")

20

>>> eval (17 + 3)

Traceback (nost recent call last):
File "<stdin>", line 1, in <nodul e>

TypeError: eval () arg 1 nust be a string,
bytes or code object

What was wrong with the last example?

CS303E Slideset 2: 33 Simple Python

Be Cautious Using eval

« Using the function eval is considered dangerous, especially
when applied to user input.

« eval passes its argument to the Python interpreter, and a
malicious (or careless) user could input a command string

that could:

delete all of your files,
take over your machine, or
some other horrible thing.

« Useint() orfloat() is you want to convert a string
input into one of these types.

CS303E Slideset 2: 34 Simple Python

Arithmetic Operations

Here are some useful operations you can perform on numeric data

types.
Name Meaning Example Result
+ Addition 34 +1 35
- Subtraction 34.0 - 0.1 33.9
* Multiplication 300 * 30 9000
/ Float division 1/ 2 0.5
// floor division 1 // 2 0
e Exponentiation 4 ** 0.5 2.0
% Remainder 20 % 3 2

(x %y) is often referred to as "x mod y"

CS303E Slideset 2: 35 Simple Python

Integer Division

* Floor Division specified
with the // operator >>> 37 // 10
* ...goes tothe flooron | . ,- 1/ 20
a number line 0

o Discards the ?z 2.5 /7 2.0

remainder from the >>> -22 // 7

division operation. -4
>>> =22 [/ -1

CS303E Slideset 2: 36 Simple Python

Modulo Operator

* % is the Modulo S>> 37 % 10
operator 7

* X%yevaluatestothe |sss 17 & 20
remainder of x // vy 17

* "The floor divisionand [>>> -22 % 7
modulo operators are |6
connected by the >>> =22 5 -7

following identity:" -1

== (x // y) *y+ (¥ %y

CS303E Slideset 2: 37 Simple Python

Simple Program: Body Mass Index

- Body Mass Index or BMI is a quick calculation based
on height and mass (weight) used by medical
professionals to broadly categorize people .

« Formula:

111 AaSS
BMI — € M8 w03

height?>, height?,

* Quick tool to get a rough estimate if someone is
underweight, normal weight, overweight, or obese

» Write an interactive program that gets the name,
height, and weight of a user and calculates BMI.

CS303E Slideset 2: 38 Simple Python

Simple Input

Obtain input from the user by calling a built in
Python function named input.
Just like we can send information (arguments) to
print, we can send information (again, arguments)
to input.

* The argument is a prompt that will be displayed.
Trying reading a height and weight from the user
and calculating BMI.
What happens?

More built in functions to convert from String data
type to int or float data type. int (), f£loat ()

CS303E Slideset 2: 39 Simple Python

Simple Program: Pythagorean Triples

In file pythagoreanTriple.py:

' The sides of a right triangle satisfy the relation:
a**2 + b**2 =c**2.
Test whether the three integers in variables a, b, ¢
forma pythagorean triple, i.e., satisfy this relation.

Nn oo
1
N O1 = W

ans (a**2 + b**2 == c**2)

print("a:", a, "b:", b, "c:", c, \
"is" if ans else "is not", \
"a pythagorean triple")

> python pythagoreanTriple. py
a: 3 b: 4 c: 5 is a pythagorean triple

Note, print can take multiple values.
Default separator is a space,

default end is a newline

Augmented Assignment Operators

Python (like C, Java, C++...) provides a shorthand syntax for
some common assignments:

i +=j functionally the same as i=1+]
i -=] functionally the same as i=1-j
i *=] functionally the same as i=1%]j
i /=] functionally the same as i=1/]j
i//=1 functionally the same as i=1//j
i %=j functionally the same as i=1%j
i =] functionally the same as 1=1%"]
>>> x = 2.4
>>> x *= 3.7 # functionally same as x = x * 3.7
>>> print (x)
8.88

CS303E Slideset 2: 41 Simple Python

Mixed-Type Expressions

Most arithmetic operations behave as you would expect for
numeric data types.

Combining two floats results in a float.

Combining two ints results in an int (except for /).
Use // for integer division.

Dividing two ints gives a float. E.g., 2 / 5 yields 2.5.
Combining a float with an int usually yields a float.

Python will figure out what the result will be and return a value of
the appropriate data type.

CS303E Slideset 2: 42 Simple Python

Mixed Type Expressions

I y

>>>5 73 -476 # (5 " 3) -4 *0o)
-9

>>> 4.2 * 3 - 1.2

11.400000000000002 # approximate result
>>> 5 // 2 + 4 # integer division

6

>>> 5 [2 + 4 # float division

6.5

CS303E Slideset 2: 43 Simple Python

Special Assignment Statements

Simultaneous assignments:

Multiple assignments:

n n

=2,

3

i =j = k=1

means the same as:

means the same as:

m= 2
n =3

With the caveat that these
happen at the same time.

k =1
j =k

i =]

What does the following do?

CS303E Slideset 2: 44 Simple Python

Note that these happen right to
left.

Advice on Programming

Think before you code!
Think before you code!
Think before you code!

Don’t jump right into writing code.
Think about the overall process of solving your problem;
write it down.

Refine each part into subtasks.
Subtasks may require further refinement.

Code and test each subtask before you proceed.
Add print statements to view intermediate results.

CS303E Slideset 2: 45 Simple Python

Advice on Programming

Software development is typically done via an iterative process.
You'll do well to follow it, except on the simplest programs.

‘ Design

Implementation 7

(Testing) Venfication +\

CS303E Slideset 2: 46 Simple Python

CS303E: Elements of Computers and Programming

Conditionals and Boolean Logic

Mike Scott
Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: May 31, 2023

CS303E Slideset 3: 1 Conditionals and Boolean Logic

Booleans

So far we've been considering straight line code, meaning
executing one statement after another.

a.k.a. sequential flow of control

But often in programming, you need to ask a question, and do
different things based on the answer. |

Boolean values are a useful
way to refer to the answer to a
yes/no question.

The Boolean literal values are
the values: True, False.
A Boolean expression
evaluates to a Boolean value.

Using Booleans

>>> import math

>>> b = (30.0 < math.sqrt(1024))
>>>print(b)

True

>>> x = 1 # statement

>>> x < 0 # boolean expression
False

>>> X >= -2 # boolean expression
True

>>> b = (x ==) # statement containing

boolean expression
>>> print (b)
False

Booleans are implemented in the bool class.

CS303E Slideset 3: 3 Conditionals and Boolean Logic

Booleans

Internally, Python uses 0 to represent False and anything not 0 to
represent True. You can convert from Boolean to int using the
int function and from int to Boolean using the bool function.

>>> bl = (-3 < 3)
>>> print (bl)
True

>>> bool (1)

True

>>> bool (0)

False

>>> bool (4)

True

>>> |

CS303E Slideset 3: 4 Conditionals and Boolean Logic

Boolean Context

In a Boolean context—one that expects a Boolean value—False,
0, "" (the empty string), and Noneall is considered False and
any other value is considered True.

>>> bool ("xyz")

True

>>> bool (0. 0)

False

>>>bool("")

False

>>> it 4: print("xyz") # boolean context
XYZ

>>>if 4.2: print("xyz")

Xyz

>>> if "ab": print("xyz")

Xyz

This may be confusion but can be very useful in some programming situations.

CS303E Slideset 3: 5 Conditionals and Boolean Logic

Comparison Operators

The following comparison (or relational) operators are
useful for comparing numeric values:

Operator Meaning Example
< Less than x < 0
<= Less than or equal x <=0
> Greater than x >0
>= Greater than or equal x >=0
== Equal to X ==

[= Not equal to x =0

Each of these returns a Boolean value, True or False.

>>> x = 10

>>> (x == math.sqrt(100))
True

>>> (x = math.sqrt(100))
SyntaxError: invalid syntax

What happened
on that last line?

CS303E Slideset 3: 6 Conditionals and Boolean Logic

Be very careful using “==" when comparing floats, because float
arithmetic is approximate.

>>> (1.1 * 3 == 3.3)

False # Waat happened?
>>> 1.1 * 3

3.3000000000000003

The problem: converting decimal 1.1 to binary yields a repeating binary
expansion: 1.000110011 ... = 1.00011. That meansit can’t be
represented exactly in a fixed size binary representation.

Thought for the day. Some rational numbers are repeating
decimals in one base, but not in others. 1/3 = 0.33333...;; = 0.1;

CS303E Slideset 3: 7 Conditionals and Boolean Logic

One Way If Statements

It's often useful to be able to perform an action only if some

conditions is true. 4
.--"/f' \.\-.‘
General form: T TN e
2 condition 7
if boolean-expression: e ™ s i
statement(s) cse T

Note the colon after the
boolean-expression.
All of the statements

statement (s)

controlled by the if must <
be indented the same v
amount. rest of code
if y!= 0:
z =(x/ vy)

CS303E Slideset 3: 8 Conditionals and Boolean Logic

If Statement Example

In file if_example.py:

def main():
A very uninteresting function to
illustrate 1f statements.
X = int(input(" Input an integer or 0 to do nothing: "))
if (x !'= 0):

print('The number you entered was',

X, '. Thank you!"')

Would “if x:” have worked instead of “if (x != 0):"?

>>> runfile('C:/Users/scottm/PycharmProjects/As
Input an integer or 0 to do nothing: >? 10

The number you entered was 10 . Thank you!
>>> punfile('C:/Users/scottm/PycharmProjec

Input an integer or 0 to do nothing: >? 0

CS303E Slideset 3: 9 Conditionals and Boolean Logic

Two-way If-else Statements

A two-way If-else statement executes one of two actions,
depending on the value of a Boolean expression.

false true

General form:

if boolean-expression:
true-case-statement(s)

else:
false-case-statement(s)

indented the same amount.

CS303E Slideset 3: 10

statement(s)

statement(s)

l

rest of code

Note the colons after the boolean-expression and after the else.
All of the statements in both if and else branches should be

Conditionals and Boolean Logic

If-else Statement: Example

In file compute_circle_area.py:
import math

def main():

Estimate area of circle based on radius from user
radius = float(input("Enter the radius of a circle: "))
if (radius >= 0):

area = math.pi * radius *x 2

print('A circle with a radius of ', radius,

'has an area of ', area)

else:

print('Negative radius entered: ', radius)

main()

Enter the radius of a circle: 4.3
A circle with a radius of 4.3 has an area of 58.088048

Enter the radius of a circle: -3.75
Negative radius entered: -3.75

CS303E Slideset 3: 11 Conditionals and Boolean Logic

Multiway if-elif-else Statements

If you have multiple options, you can use if-elif-else statements.

General Form:

it boolean-expressionl:
statement(s)

elif boolean-expression2:
statement(s)

elif boolean-expression3:

something

Do
something

Do
something

else: # optional cisedoti.
statement(s) —

You can have any number of elif branches with their conditions.
The else branch is optional.

CS303E Slideset 3: 12 Conditionals and Boolean Logic

Sample Program: Calculate US Federal Income Tax

Simplified US
Federal Income Tax
Table

Source:
https://www.nerdwa

Single filers

Tax rate

10%

12%

22%

llet.com/article/taxes

/federal-income-tax-
brackets

24%

32%

CS303E Slideset 3: 13

Taxable income
bracket

$0 to $9,875

$9,876 to $40,125

$40,126 to $85,525

$85,526 to
$163,300

$163,301 to
$207,350

Tax owed

10% of taxable income

$987.50 plus 12% of the amount
over $9,875

$4,617.50 plus 22% of the amount
over $40,125

$14,605.50 plus 24% of the amount
over $85,525

$33,271.50 plus 32% of the amount
over $163,300

Conditionals and Boolean Logic

https://www.nerdwallet.com/article/taxes/federal-income-tax-brackets

Ask user for income and calculate US Federal ﬁncome tax for 2021.
Tax rates and income bracket data from
https://www.nerdwallet.com/article/taxes/federal-income-tax-brackets
def main():
income = int(input('Enter 2021 income: '))
print()
if income <= 9_875:
tax = income % 0.1
bracket = "10%"
elif income <= 40_125:
tax = 987.5 + (income - 9_875) *x 0.12
bracket = "12%"
elif income <= 85_525:
tax = 4_617.50 + (income - 40_125) % 0.22
bracket = "22%"
elif income <= 163_300:
tax = 14_605.50 + (income - 85_525) % 0.24
bracket = "24%"
else:
tax = 33_271.50 + (income - 163_300) * 0.32
bracket = "32%"

print('An income of', income, 'places you in the',
bracket, 'income bracket.')

print('The US Federal tax on an income of', income,
'is', tax)

CS303E Slideset 3: 14 Conditionals and Boolean Logic

Break

Maybe take a break?

CS303E Slideset 3: 15 Conditionals and Boolean Logic

Logical Operators

Python has logical operators (and, or, not) that can be used to
make compound Boolean expressions.

not : logical negation
and : logical conjunction

or : logical disjunction

Operators and and or are always evaluated using short circuit
evaluation.

(Xx %100 == 0) and not (x %400 == 0)

CS303E Slideset 3: 16 Conditionals and Boolean Logic

Truth Tables

And: (A and B) is True
whenever both A is True and B is

True.
A B | AandB | Not: not A
False False False is True whenever A is False.
False True False
True False False A ‘ not A
True True True False | True
True False
Or: (A or B) is True whenever “ "
eithe(r AOis Trzle or B is True Remember that “is True” really
' means “is not False, the empty
A B A or B : ”
False False | False string, 0, or None.

False True True
True False True

True True True

CS303E Slideset 3: 17 Conditionals and Boolean Logic

Short Circuit Evaluation

Notice that (A and B) is False, if A is False; it doesnt matter what B is.
So there’s no need to evaluate B, if A is Falsel

Also, (A or B) is True, if A is True; it doesn't matter what B is.
Sothere’s no need to evaluate B, if A is True!

>>> x = 13

>>> y = (

>>> legal (y==0 or x/y > 0)
>>> pr1nt(1e al)

True

Python doesn't evaluate B if evaluating A is sufficient to determine
the value of the expression. That’s important sometimes.

This is called short circuiting the evaluation.

Stopping early when answer it know.

CS303E Slideset 3: 18 Conditionals and Boolean Logic

Boolean Operators

In a Boolean context, Python doesn’t always return True or False,
just something equivalent. What's going on in the following?

>>>"" and 14

7 7

>>> bool("" and 14)

equivalent to False

False # coerced to False
(>)>> 0 and “abc # equivalent to False
1>:>> bool (0 and “abe™) # coerced to False

alse

>>> not (0. 0) # same as not(False)
True

>>> not (1000) # same as not(True)
False

>>> 14 and ""

, 1 # equivalent to False
>>> (0 or "abc" # same as False or True
“abc’ # equivalent to True
>>> bool (0 or ’abc’) # coerced to True

True

CS303E Slideset 3: 19 Conditionals and Boolean Logic

Here's a concise way to do a Leap Year computation:

Determine 1f year entered is a leap year or not.
def main():
vear = int(input('Enter a year: '))
is_leap_year = ((year % 4 == 0)
and (not (year % 100 == 0) or (year % 400 == 0)))

if is_leap_year:

print(year, "is a leap year.")
else:

print(year, 'is not a leap year.')

main()

Note the use of outer parenthesis on the assignment to is_leap_year
to avoid the use of the continuation character, "\".

CS303E Slideset 3: 20 Conditionals and Boolean Logic

Leap Years Revisited

>pyt hon LeapYear2. py

Enter a year: 2000

Year 2000 is a leap year.
>pyt hon LeapYear2. py

Enter a year: 1900

Year 1900 is not a leap year.
>pyt hon LeapYear2. py

Enter a year: 2004

Year 2004 is a leap year.
>pyt hon LeapYear2. py

Enter a year: 2005

Year 2005 is not a leap year.

CS303E Slideset 3: 21 Conditionals and Boolean Logic

Conditional Expressions

A Python conditional expression returns one of two values based
on a condition.

Consider the following code:

Set parity according to mum
if (mum% 2 == 0):

parity = "even"
else:

parity = "odd"

This sets variable parity to one of two values, “even” or “odd".

An alternative is:

parity = "even" if (num % 2 == 0) else "odd"

CS303E Slideset 3: 22 Conditionals and Boolean Logic

Conditional Expression

General form:

expr-1 if boolean-expr else expr-2

It means to return expr-1 if boolean-expr evaluates to True,
and to return expr-2 otherwise.

find maximum of x and vy
max = x if (x >y) else y

CS303E Slideset 3: 23 Conditionals and Boolean Logic

Conditional Expression

Use of conditional expressions can simplify your code.

In file test_sort.py:

Determine if 3 numbers are in sorted ascending order.
def main():
X = float(input("Enter first number: "))
y = float(input("Enter second number: "))
z = float(input("Enter second number: "))
print('Ascending' if (x <= y) and (y <= z)
else 'Not Ascending')

main()
Enter first number: 12 Enter first number: -26.6
Enter second number: 57 Enter second number: 0.72
Enter second number: 109 Enter second number: -12.75
Ascending Not Ascending

CS303E Slideset 3: 24 Conditionals and Boolean Logic

Operator Precedence

Arithmetic expressions in Python attempt to match widely
used mathematical rules of precedence. Thus,

3+4* (5+2)
is interpreted as representing:
3+(4*(5+2))).

That is, we perform the operation within parenthesis first, then the
multiplication, and finally the addition.

To make this happen we precedence rules are enforced.

CS303E Slideset 3: 25 Conditionals and Boolean Logic

Precedence

The following are the precedence rules for Python, with items
higher in the chart having higher precedence.

Operator Meaning

+, - Unary plus, minus, like - 3, +12
% Exponentiation

not logical negation

* |,]/, % | Multiplication, division,
integer division, modulus

+, - Binary plus, minus
<, <=, >, >= | Comparison

==, |= Equal, not equal
and Conjunction

or Disjunction

CS303E Slideset 3: 26 Conditionals and Boolean Logic

Precedence Examples

>>> -3 ¥ 4

-12

>>> - 3 + - 4

-7

>>> 3 4+ 2 ** 4

19

>> 4 + 6 < 11 and 3 - 10 < O

True

>>> 4 < 5 <= 17 # notice special syntax
True

>>> 4 + 5 < 2 + 7

False

>>> 4 + (b < 2) + 7 # this surprised me!
11

Most of the time, the precedence follows what you would expect.

CS303E Slideset 3: 27 Conditionals and Boolean Logic

Precedence

Operators on the same line have equal precedence.

Operator Meaning

+, - Binary plus, minus

* |, |/, % Multiplication, division,
integer division, remainder

Evaluate them left to right.

All binary operators are left associative. Example: x + y - z + w
means ((x +y) - z) + w.

Note that assignment is right associative.

X =y =12z =1 # assign z first

CS303E Slideset 3: 28 Conditionals and Boolean Logic

Use Parentheses to Override Precedence

Use parenthesis to override precedence or to
make the evaluation clearer.

>>> 10 - 8 + 5 # an expression

7

>>> (10 - 8) + 5 # what precedence will do
7

>>> 10 - (8 + 5) # override precedence

-3

>>> 5 - 3 * 4/ 2 # not particularly clear
-1.0

>>> 5 - ((3 * 4) / 2) # better

-1.0

Work to make your code easy to read!

CS303E Slideset 3: 29 Conditionals and Boolean Logic

CS303E: Elements of Computers and Programming

Repitition with Loops

Mike Scott
Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: May 30, 2024

Repetitive Activity

Often we need to do some (program) activity numerous times:

CS303E Slideset 4: 2 Loops

g Loops

So we might as well use cleverness to do it.
That’s what loops are for.

2 InClude {51a10.w
int rgin(vord)
1

int count
for (townT =15 counT{=500; count+s)

Fr-in‘l'{-‘ ("I will nal Throw paper dirplanes W clqi‘:‘.,"}; |

refurn 0;

$

—— —
LILIITTY

D 18-3

It doesn’t have to be the exact same thing over and over.

And this is how we really harness the power of a computer that
can perform tens of billions (or more) computations per second!

While Loop

The majority of programming
languages include syntax to repeat
operations.

Test False

Expreijiiiffffff

while condition: True
statement(s)

while loop is one option. General form:

4
Body of while Loop

Meaning: as long as the condition is
true when checked, execute the
statements.

As with conditionals (if/elif/else), all of

the statements in the body of the

loop must be indented the l
same amount.

CS303E Slideset 4: 4 Loops

While Loop

In file not_throw_airplanes.py:

Print out I will not throw paper airplanes in class
500 times.
def main():
COUNT = 500
MESSAGE = "I will not throw paper airplanes in class."
i=20
while i < COUNT:
print(i, MESSAGE)
i+=1

main()

What would happen if we forgot the i += 1?

will not throw paper airplanes in class.
will not throw paper airplanes in class.
will not throw paper airplanes in class.
will not throw paper airplanes in class.
will not throw paper airplanes in class.

CS303E Slideset 4: 5 Loops

I DN NN 2O
L H HH H H

While Loop Example: Test Primality

How do prime numbers work?

13 has only two

An integer is prime if it is greater ¥ \ factors - itself

and 1. Soitis a
than 1 and has no positive integer prime number.
divisors except 1 and itself.

To test whether an arbitrary integer n ¢ has three
. . . . factors - itself, 1
IS prime, see if any number in ¥ § N and 2. Soitis

. NOT a prime
[2 ... n-1], divides it with no remainder number.

You couldn’t do that in straight line code without knowing n in
advance. Why not?

Even then it would be really tedious if n is very large.

CS303E Slideset 4: 6 Loops

IS_prime_1 Loop Example

IS_prime_1.py

def main():
number = int(input("Please enter a number greater than"

+ " or equal to 2: "))
prime = True
divisor = 2
while divisor < number and prime:

prime = number % divisor != 0
divisor += 1
if prime:
print(number, "is prime.")
else:

print(number, "is not prime.")
OR print(number, " 1is",
"not" if not prime else "", " prime", sep="")

main()

CS303E Slideset 4: 7 Loops

Is_prime_1 Loop

Please enter a number greater than or equal to 2: 357
37 1s prime.

Please enter a number greater than or equal to 2: 176970203
176970203 1s prime.

The second example took ~24 seconds to complete on my laptop.

It works, though it's pretty inefficient. If a number is prime, we
test every possible divisor in [2 ... n-1].

If n is not prime, it will have a divisor less than or equal to \/ﬁ
There's no need to test any even divisor except 2.

CS303E Slideset 4: 8 Loops

A Better Version: is_prime 2.py

import math

def main():

"""Determine 1f a number entered by the user is prime or not."""
number = int(input("Please enter a number greater than"
+ " or equal to 2: "))

Special case for 2, the only even prime.

prime = number == 2 or number % 2 != 0

If number 1is not even then we only need to divide
by odd numbers.

divisor = 3

1imit = math.sqrt(number)
while divisor <= 1limit and prime:

prime = number % divisor != 0
divisor += 1
if prime:
print(number, "is prime.")
else:

print(number, "is not prime.")
OR print(number, " is",
"not" if not prime else "", " prime", sep="")

-main()

The Better is_prime_2 Version

is_prime_1 does 176,970,202 divisions to discover
that 176_970_203 is prime.

is_prime_2 does "only” 13,302.
Took much less than a second to complete.

Computer scientists and software developers spend a
lot of time trying to improve the efficiency of their
programs and algorithms.

Measurably reduce the number of computations.

CS303E Slideset 4: 10 Loops

Example While Loop: Approximate Square Root

You could approximate the square root of
a positive integer as follows: square_root.py

Approximate the square root of a positive
integer VERY SLOWLY by increments of 0.1
def main():
number = int(input("Enter a positive integer: "))
while number < 0O:
print(number, 'isn\'t a positive int')
number = int(input("Enter a positive integer: "))
guess = 0.1
while guess ** 2 < number:
guess += 0.1
print('The square root of', number,
'is approximately equal to ', guess)

main()

CS303E Slideset 4: 11 Loops

Running the Example

Enter a positive integer: -37

-37 isn't a positive int

Enter a positive integer: -12

-12 isn't a positive int

Enter a positive integer: -891273

-891273 isn't a positive int

Enter a positive integer: 1_024_237

The square root of 1024237 is approximately equal to 1012.1000000001616

Enter a positive integer: 100
The square root of 100 is approximately equal to 10.09999999999998

Notice that the last one isn’t quite right. The square root of 100 is
exactly 10.0. Foiled again by the approximate nature of floating
point numbers and floating point arithmetic.

CS303E Slideset 4: 12 Loops

More efficient way of calculating square root?

Newton's method for approximating square roots adapted

from the Dr. Math website
The goal is to find the square root of a number. Let's call it num
1. Choose a rough approximation of the square root of num, call it
approx.
How to choose?
2. Divide num by approx and then average the quotient with approx,
in other words we want to evaluate the
expression ((hum/approx) + approx)/ 2
3. How close are we? In programming we would store the result of the
expression back into the variable approx.
4. How do you know if you have the right answer?

CS303E Slideset 4: 13 Loops

In a for loop, you typically know how many times you'll
execute.

for each

item in
General form: lsequence

for <var> in <sequence>:
statement(s)> Last e
- item >
Meaning: assign each element of reached?
sequence in turn to var and execute
the statements. {No
As usual, all of the statements in
the body must be indented the Body of for
same amount.
Exit loop |

CS303E Slideset 4: 14 Loops

What's a Sequence?

A Python sequence holds multiple items stored one after another.

>>> seq = [2, 3, 5, 7, 11, 13] # a list

The range function is a good way to generate a sequence.
range(a, b) : denotes the sequence a, a+1, ..., b-1.
range(b) :is the same as range(0, b).

range(a, b, ¢) :generatesa, a+c, a+2c,, b’, where
b’ is the last value < b.

CS303E Slideset 4: 15 Loops

Range Examples

>>> for 1 1in range(3, 6): print(i, end=" ")

345 , o
>>> for 1 in range(3): print(i, end=" ")

012
>>> for i in range (0, 11, 3): print(i, end=" ")

0369 o

>>> for i in range (11, 0, -3): print(i, end=" ")
11 8 5 2

>>>

CS303E Slideset 4: 16 Loops

For Loop Example

Suppose you want to print a table of the powers of

a given base up to base". In file powers_of.py:

Print the powers of a base entered by the user up to
the nth power, also entered by the user.
def main():

base = int(input('Enter the base: '))

max_power = int(input('Enter the maximum power: '))

for power in range(O, max_power + 1):

print(base, 'to the', power, 'is',
base ** power)

main()

CS303E Slideset 4: 17 Loops

For Loop Example

Enter the base: 2
Enter the maximum power: 42

2 to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

N NN NNDNMNMNDNNNNNDNNNDNNDNDNMNDNDNDNDDND

the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the

CO~J OO NWDNDEO

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

1

2

4

8

16

32

64

128

256

512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288

Enter the base:
Enter the maximum power: 12

1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037
1037

to
to
to
to
to
to
to
to
to
to
to
to
to

1037

1

1037

1075369

1115157653

1156418486161
1199205970148957
1243576591044468409
1289588924913113740133
1337303715134898948517921
1386783952594890209613084077

10 1s 1438094958840901147368768187849
11 is 1491304472318014489821412610799413

the 0 1is
the 1 1is
the 2 is
the 3 1is
the 4 1is
the 5 1is
the 6 1is
the 7 1is
the 8 1is
the 9 1is
the

the

the

12 1s 154648273779378102594480487739899128

CS303E Slideset 4: 18 Loops

Nested Loops

The body of while loops and for loops contain
any kind of statements, including other loops.

Suppose we want to compute and print out the BMI value

for heights from 4' 6" (4 feet, 6 inches = 54 inches) to 6' 10"
(82 inches) going up by 2 inches each time

AND weights from 85 to 350 pounds, going up by 5 pounds?

We could then take that data and create a visual graph for
quick look up.

It is arbitrary whether the outer loopis height or weight

CS303E Slideset 4: 19 Loops

Print BMI for various heights and weights

Print out BMI (Body Mass Index) values for heights from for
heights from 4' 6" (4 feet, 6 inches = 54 inches)
to 6' 10" (82 inches) going up by 2 inches each time
AND weights from 85 to 350 pounds, going up by 5 pounds.
def main():
english_units_conversion = 703
for height in range(54, 83, 2):
print('current height =', height)
for weight in range(85, 351, 5):
bmi = english_units_conversion * weight / (height #*x 2)

Below 1s an example of the format function.

< means left justify

4 means 4 total spots

.1 means 1 digit after the decimal

f means a floating point number

print('height =', height, 'weight =', weight,
"bmi =', format(bmi, '<4.1f'))

CS303E Slideset 4: 20 Loops

CS303E: Elements of Computers and Programming

Functions

Mike Scott
Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: June 21, 2023

CS303E Slideset 6: 1 Functions

Functions

* We have used several built in functions already:
 print(), input(), int(), float(), range()
* List of Python built in functions

Built-in Functions

abs () aiét 1) help () min () setattr ()
all () gir () hex () next () sligel)

any () divmad () object () sorted ()
asgii() enumerate () oct () staticmethod ()}
bin () eval () open () ok b

bool () execi) leilnstance () ord () sum ()
bytearray () filter () isgubelass () pow () super ()
bytes () iter () tuple ()
callable() format () len () type ()

ehr () frozenset () list () range () vars ()
classmethod () getattr () locals () repr () Z1p)
compile () globals () map () reversed() _ impert ()
complex () hasattr() max () round ()

. delattr () hash () memoryview () set ()

https://docs.python.org/3.8/library/functions.html
https://docs.python.org/3.3/library/functions.html

Modules - More Functions

 In addition to the standard built in functions.

standard Python includes many modules
* Modules are Python scripts (programs) that contain,
typically, related functions that we can reuse in many
Python programs and scripts

* When you download Python, yvou download the
standard modules.

* Most of these modules are beyond the scope of
this course.

* Two that we will use are the math module
mathematical operations which don't have defined
operators and the random module, with functions to

generate pseudo random numbers.

https://docs.python.org/3.8/tutorial/modules.html
https://docs.python.org/3.8/library/index.html
https://docs.python.org/3.8/library/math.html
https://docs.python.org/3.8/library/random.html

Description

Example

log (x)

(%,

base)

Returns the absolute value of the argument.

Rounds x up to its nearest integer and
returns this integer.

Rounds x down to its nearest integer and
returns this integer.

Returns the exponential function of x (e’x).

Returns the natural logarithm of x.

Returns the logarithm of x for the specified
base.

Returns the square root of x.

Returns the sine of x. x represents an angle
in radians.

Returns the angle in radians for the inverse
of sine.

Returns the cosine of x. x represents an
angle in radians.

Returns the angle in radians for the inverse
of cosine.

Returns the tangent of x. X represents an

angle in radians.

Returns the remainder of x/y as double.

Converts angle x from radians to degrees

Converts angle x from degrees to radians

fabs(-2) 1is 2
ceil(2.1) is 3
ceil(-2.1) is -2
floor(2.1) is 2
floor(-2.1) is -3
exp(l) is 2.71828
log(2.71828) is 1.0
logl0 (10, 10) is 1

sqgrt(4.0) is 2
sin(3.14159 / 2) is 1
sin(3.14159) 1is 0
asin(l1.0) is 1.57
asin(0.5) is 0.523599
cos (3.14159 / 2) is O
cos (3.14159) is -1
acos(1.0) is O
acos(0.5) is 1.0472
tan(3.14159 / 4) is 1
tan(0.0) is O

fmod (2.4, 1.3) is 1.1
degrees (1.57) 1is 90
radians (90) is 1.57

Importing Modules

* To use non standard functions, ones that are part of
a module, we call the function with the name of the
module, a period spoken “dot”, and the name of the

function. math.sqrt(1000)

>>> math.sqrt(1000)

Traceback (most recent call last):
File "<input>", 1line 1, in <module>

NameError: name 'math' is not defined

* must also import the module

>>> import math
>>> math.sqrt(1000)
31.622776601683793

* In a program or script, imports at the top of the file.

CS303E Slideset 6: 5 Functions

The random Module

Several useful functions are defined in the
random module:

randint (a, b): generate a random
integer between a and b, inclusively.
randrange (a, b): generate a random
integer between a and b-1, inclusively.
random () : generate a float in the

range [0 ... 1).

How would we simulate flipping a coin with
two sides?

CS303E Slideset 6: 6 Functions

Examples of Calls to random Functions

>>> import random >>> random.randrange(l, 3)
>>> random.randint(1, 2) 1

2 >>> prandom.randrange(1, 3)
>>> pandom.randint(1, 2) 2

2 >>> pandom.random()

>>> pandom.randint(1, 2) 0.8773265491912745

2 >>> pandom.random()

>>> pandom.randint(1, 2) 0.6165742684164001

1 >>> prandom.random()

>>> random.randint(1, 2) 0.9273524701896365

1 >>> pandom.random()

>>> pandom.randint(1, 6) 0.13852627933299988

6 >>> pandom.random()

>>> prandom.randint(1, 6) 0.664132281949973

4 >>> for 1 in range(0, 10):
>>> prandom.randint(1, 6) .. print(random.randint(1, 100))
3 ..

>>> prandom.randrange(l, 2) 63

1 51

>>> prandom.randrange(l, 2) 43

1 87

>>> pandom.randrange(l, 2) 60

1 51

>>> Ir'andom.r\andr\anuefl. 2 33

N S N 26

CS303E Slideset 6: 7 Functions

Importing Modules

* Typing the name of the module every time

can be tedious
* A lot of programming languages and IDEs have
features to reduce the amount of typing we have to do

« Can import specific or all functions from a module:

>>> from random import randint
>>> prandint(1, 100)

78

>>> prandint(1, 10)

8

>>> pandom()

Traceback (most recent call last): The * is a

File "<input>", 1line 1, in <module>]
TypeError: 'module' object is not callable wildcard,

>>> from random import * < meaning
>>> pandom() 11
|0.06999097275883659 all.

* Any downside to always importing all?

Three Common Data Types

Three data types we will use in many of our early Python programs are:
int: signed integers (whole numbers)
Computations are exact and of unlimited size
Examples: 4, -17, 0
float: signed real numbers (numbers with decimal points) Large

range, but fixed precision

Computations are approximate, not exact Examples:
3.2, -9.0, 3.5¢e/

str: represents text (a string)

We use it for input and output We'll see
more uses later Examples: "Hello, World!",
‘abc’

These are all immutable. The value cannot be altered.

CS303E Slideset 6: 9 Functions

Immutable

* |t may appear some
values are mutable >>> X
* they are not >>> X

* rather variables 37 _
are mutableand [>>> 1d(x)
can be bound 140711339416352

(referto) >>> x =x + 10

different values >>> X
* Note, how the id of x 477
(similar to its address) |>>> id (x)
has changed 140711339416672

37

CS303E Slideset 6: 10 Functions

X=37/

X 1 37

x=x+10
substitute in the value x is referring to

x=37+10
evaluate the exM

X =47 37

so now ... X ~
T 47

CS303E Slideset 6: 11 Functions

Mutable vs. Immutable

IMMUTABLE VS MUTABLE

o3> Z DATATYOES IN PYTHON

An immutable value is one that cannot be changed by the
programmer after you create it; e.g., numbers, strings, etc.

A mutable values is one that can be changed; e.g., sets, lists, etc.

CS303E Slideset 6: 12 Functions

What Immutable Means

* An immutable object is one that cannot be changed by
the programmer after you create it;
e.g., numbers, strings, etc.

* It also means that there is typically only one copy of the
object in memory.

* Whenever the system encounters a new reference to 17, say, it
creates a pointer (references) to the already stored value 17.

 Every reference to 17 is actually a pointer to the
only copy of 17 in memory. Ditto for "abc".

* If you do something to the object that yields a new value
(e.g., uppercase a string), you're actually creating a
new object, not changing the existing one.

CS303E Slideset 6: 13 Functions

We've seen lots of system-defined functions;
now it's time to define our own., like main.

General form:

def functionName(list of parameters):
z

header statement(s) # body

Meaning: a function definition defines a block of code that
performs a specific task. It can reference any of the variables
in the list of parameters. It may or may not return a value.

The parameters are formal parameters;
they hold arguments (refer to the same values) passed
to the function later when the function is called.

CS303E Slideset 6: 14 Functions

Function name Arguments

An identifier by which the <---
function is called

,~==# (ontains a list of values

!
| passed to the function
I

def name(arguments) :

. statement “
Indentation Function body
Function body must - --- statement . __y Thisis executed each time
be indented o the function is called
return value -

Return value

----- » Ends function call & sends
data back to the program

CS303E Slideset 6: 15 Functions

Calling a Function

Parameters
Function Definition

def add(a, b):
returna+>b

Function Call

add(2, 3)

CS303E Slideset 6: 16 Functions

getKT.com

Function Example

Suppose you want to sum the integers 1 to n.

In file function_examples.py:

Return the sum of values from 1 to n.
This 1s an example of a cumulative sum algorithm.
def sum_to_n(n):

total = 0
for i in range(l, n + 1):
total += 1

return total

Notice this defines a function to perform the task, but won't
perform the task until the function is called from else where.
We still have to call/invoke the function with specific arguments.

def main(): 1
print(sum_to_n(1)) 500500
print(sum_to_n(1000))

Process finished with exit code

CS303E Slideset 6: 17 Functions

Some Observations

def sum_to_n(n) # function header
function body

Here nis a formal parameter. It is used in the definition as a place
holder for an actual parameter (e.g., 10 or 1000) in
any specific call.

sum_to_n(n) returns an int value, meaning that a call to sum to n
can be used anyplace an int expression can be used.

X = sum_to_n(30)
print(x)
print('Even' if sum_to_n(5) % 2 == 0 else '0dd')
for i in range(l1, 30):
print(i, sum_to_n(i))

Note, with functions the argument is the input.
We occasionally ask the user for input in the function.

CS303E Slideset 6: 18 Functions

Functional Abstraction

Once we've defined sum to n,we can use it almost
asif werea primitive in the language without
worry about the details of the definition.

We need to know what it does,
but don’t care anymore how it does it!

This is called information hiding ,
and / or functional abstraction. r\

And that is POWERFUL!

CS303E Slideset 6: 19 Functions

Another Way to Add Integers 1 to N

Suppose later we discover that we could have coded
sumIoN more efficiently (as discovered by the 8-year old

C.F. Gauss in 1785):

Efficient implementation of summing the values
from 1 to n. We assume n >= 1

def sum_to_n(n):
return (n + 1) * n // 2

Because we defined sum_to n asa function, we can just swap in
this definition without changing any other code. If we'd done
the implementation in-line, we'd have had to go find every

instance and change it.

CS303E Slideset 6: 20 Functions

Return Statements

When you execute a return statement, you return to the calling
environment. Your functions may or may not explicitly return a value

General forms:

return
return expression

A return that doesn't return a value actually
returns the constant None. Use return without a value sparingly.

Every function has an implicit return at the end.

Demonstrate the implicit return 1n functions even
1if no return written.
def print_x(x):

print(x)

73

print(print_x(73)) —
None

CS303E Slideset 6: 21 Functions

Some More Function Examples

Suppose we want to multiply the integers from 1 to n:

Return the result of multiply the values from
1 to n. This is the factorial function. We assume n >= 0
def multiply_to_n(n):
result = 1
for 1 in range(2, n + 1):
result *= result

Convert Fahrenheit to Celsius AND Celsius to Fahrenheit :

Convert degrees fahrenheit to degrees celsius.
def fahrenheit_to_celsius(degrees_f):
return 5 / 9 * (degrees_f - 32)

Convert degrees celsius to degrees fahrenheit.
def celsius_to_fahrenheit(degrees_c):
return 1.8 % degrees_c + 32

CS303E Slideset 6: 22 Functions

Fahr to Celsius Table

In slideset 1, we showed the C version of a program to print a
table of Fahrenheit to Celsius values. Here's a Python version:

In file fahr_to_celsius_table.py:

from function_examples import fahrenheit_to_celsius

Print the table.

def main():
lower_temp = -50
upper_temp = 250
step = 10

If the loop variable has meaning beyond a simple
counter, okay to name it something other than 1, k, 7J.
for degrees_f in range(lower_temp, upper_temp + 1, step):
degrees_c = fahrenheit_to_celsius(degrees_f)
print(format(degrees_f, "3d"), '\t',
format(degrees_c, "5.1f"))

-main() —

Running the Temperature Program

-50 -45.6
-40 -40.0
-30 -34.4
-20 -28.9 F C
-10 -23.3 1
0 -17.8 20 =) |E 0
10 -12.2 0= = 4
20 ~6.7 30 = g;;g
30 -1.1 60—2 %—_ 0
40 4.6 w=|E o
50 10.0 20_% %40
60 15.6 =Il=-20
70 21.1 UEIIE =
80 26.7 20 = | = 40
90 32.2 40 - | E 50
100 37.8 ®
110 43.3
120 48.9

Exercise: Do a similar problem converting Celsius to Fahrenheit.

CS303E Slideset 6: 24 Functions

A Bigger Example: Print First 100 Primes

Suppose you want to print out a table of the first 100 primes, 10

per line.
Yo_u could sit down and write T3 T 15 T a5 T 25 e
this program from scratch, 31 37 41 43 47 |53 |59 61 67 71
without using functions. But it 731798 |8 |97 101]103]107) 109 113
. 127 131 137 139|149 151|157 163 167 173
would be d Compllcated MESS 179 181 191 193 197 199 211 223|227 229
(See section 58) 233|239 | 241 251 257 263 269 271 277 281
_ 283|293 | 307 311 313 317 331 337|347 349
Better to use functional 353|359 | 367 373 379 383 389 397|401 409
abstraction: find parts of the 419|421 431 433 439 443 | 449 457 | 461 463
algorithm that can be coded 467 | 479 487 491 499 503 509 | 521|523 | 541
separately and “packaged” as
functions.

CS303E Slideset 6: 25 Functions

Print First 100 Primes: Algorithm

Here's some Python-like pseudocode to print 100 primes:

def printl00Primes():

primeCount = 0

nm= (

while (primeCount < 100):
it (we’ve already printed 10 on the current line):

goto a newline

nextPrime = (the next prime > num)
print nextPrime onthe current line
num= nextPrime
primeCount += 1

Note that most of this is just straightforward Python
programming! The only "new” part is how to find the next prime.
So we'll make that a function.

CS303E Slideset 6: 26 Functions

Top Down Development

So let’s assume we can define a function:

Return the first prime larger than n.
def get_next_prime(n):

in such a way that it returns the first prime
larger than num.

Is that even possible?

Is there always a "next” prime larger than nhum?

Yes! There are an infinite number of primes. So if we keep testing
successive numbers starting at rum+ 1, we'll eventually find the next
prime. That may not be the most efficient way!

CS303E Slideset 6: 27 Functions

https://en.wikipedia.org/wiki/Euclid's_theorem

Value of Functional Abstraction

Notice we're following a “divide and
conquer” approach: Reduce the
solution of our bigger problem into one
or more subproblems which we can
tackle independently.

It's also an instance of “information
hiding.” We don’t want to think about

how to find the next prime, while we're D IVI DE &
worrying about printing 100 primes.

Put that off! Think about one thing at CONQU E R

eepCalmAndPoster

a time. Structural decomposition.

CS303E Slideset 6: 28 Functions

Next Step

Now solve the original problem, assuming we can write get_next_prime(n)

In file function_examples.py:

Print a table of the first n primes
10 per line. We expect n >= 1
def print_prime_table(n):
current_num = 1
for i in range(1l, n + 1):
current_num = get_next_prime(current_num)

print(format(current_num, '5d'), end=' ')
go to next line after every ten primes
if 1 % 10 ==
print()
print()

CS303E Slideset 6: 29 Functions

Looking Ahead

Here's what the output should look like.

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 33 389 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 @ 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 @ 349
353 359 367 373 379 383 389 397 401 @ 409
419 421 431 433 439 443 449 457 461 @ 463
467 479 487 491 499 503 b9 521 523 541

Of course, we couldn’t do this if we really hadn’t defined
get_next_prime. So let’s see what that looks like.

CS303E Slideset 6: 30 Functions

How to Find the Next Prime

The next prime (> num) can be found as indicated in the
following pseudocode:

def get_next_prime(mum):
if num< 2:
return 2 as the answer
else:
guess = num+ 1
while (guess is not prime)
guess += 1
return guess as the answer

Again we solved one problem by assuming the solution to another
problem: deciding whether a number is prime.

Can you think of ways to improve this algorithm?

CS303E Slideset 6: 31 Functions

Here's the Implementation

Note that we're assuming we can write:

We assume n >= 2. Return True 1f n 1s prime,
False otherwise.
def is_prime(n):

Return the first prime larger than n.
def get_next_prime(n):
if n < 2:
return 2
guess = n + 1
while not is_prime(guess):
guess += 1
return guess

This works (assuming we have defined is_prime), but it's
got an inefficiency. How can we make it more efficient?

CS303E Slideset 6: 32 Functions

Find Next Prime: A Better Version

When looking for the next prime, we don't have to test every
number, just the odd numbers (after 2).

Return the first prime larger than n.
def get_next_prime(n):
if n < 2:
return 2
We know n >= 2 and that no even integers
greater than 2 are prime. So go to the next
odd number and only check odd numbers.
guess = n+ 1 if n % 2 == 0 else n + 2

OR maybe more clearly
quess = n + 1

1f quess % 2 == 0:

guess = guess + 1

while not is_prime(guess):
guess += 2
return guess

Now all that remains is to write is_prime.

CS303E Slideset 6: 33 Functions

Is @a Number Prime?

We already solved a version of this in a previous lecture.
Let's rewrite that code as a Boolean-valued function:

We assume n >= 2. Return True 1if n 1s prime,
False otherwise.
def is_prime(n):
Special case for 2, the only even prime.
if n ==
return True
Check if there are any odd divisors
up to the square root of the number.
prime = n % 2 != 0
divisor = 3
1imit = math.sqrt(n)
while divisor <= 1imit and prime:
prime = n % divisor != 0
divisor += 2
return prime

CS303E Slideset 6: 34 Functions

Sidetrack - Boolean "Zen"

* Did you notice this line of code in the
is_prime method?
return prime
 prime is a boolean that holds the value True
of False, so we simply return than value in

that variable

YUCK!!!!

* avoid the following: 1t prime == lrue:
. . return True
it is unnecessarily _
verbose else:

return False

CS303E Slideset 6: 35 Functions

One More Example

Suppose we want to find and print k primes, starting from a given number:

In file function_examples.py:

Print the first num primes after the
value start. One prime per line.
def print_num_primes_staring_from(num, start):
if num ==
print("Request was for 0 primes")
else:
print('First', num, 'primes after', start,
current = start
for i in range(num):
current = get_next_prime(current)
print((i + 1), current)

Notice that we can use functions we've defined such as
get_next_prime and is_prime (almost) as if they were
Python primitives.

CS303E Slideset 6: 36 Functions

")

Positional Arguments

This function has four formal parameters:

Demo of positional arguments.
def some_function(x1, x2, x3, x4):

Any call to this function should have exactly folr actu
arguments, which are matched to the/corregpondi
formal parameters:

some_function(b, 12, 5, 13)

X = 3

y = -5

some_function(x, v + 2, x * vy, 12)

This is called using positional arguments.

CS303E Slideset 6: 37 Functions

Keyword Arguments

It is also possible to use the formal parameters as keywords.

Demo of positional arguments.
def some_function(x1, x2, x3, X4):
print('In some_function')

print(x1l, x2, X3, x4)

These two calls are equivalent:

some_function(5, 12, -7, 13)
some_function(x3=-7, x1=5, x4=13, x2=12)

In some_function
5 12 -7 13
In some_function

. > 12 -7 13

Keyword Arguments

You can list the keyword arguments in any order,
but all must still be specified.

some_function(x3=12, x1=12)

Traceback (most recent call last):
File "C:/Users/scottm/PycharmProjects/AssignnmentSolutions/SlidesCode/function.
main()
File "C:/Users/scottm/PycharmProjects/AssignnmentSolutions/SlidesCode/function.
some_function(x3=12, x1=12)
TypeError: some_function() missing 2 required positional arguments: 'x2' and 'Xx4'

CS303E Slideset 6: 39 Functions

Keyword Arguments

And even possible to mix keyword arguments with
positional arguments.

The positional arguments must come first followed by the keyword.

some_function(5, 12, x4=13, x3=-7)

N\

def some_function(x1l, x2, x3, X4):

CS303E Slideset 6: 40 Functions

Default Parameters

You can also specify default arguments for a function. If you
don't specify a corresponding actual argument, the default is used.

Demonstrate a default argument for a parameter.
def print_rectangle_area(width=1.0, height=2.0):
area = width * height
print('A rectangle with a width of', width,
'and a height of', height,
'has an area equal to', area)

print_rectangle_area() # uses default arguhents
print_rectangle_area(4.5, 7.6) # vuses positional arguments
print_rectangle_area(height=20.5, width=5.2) # vuses keyword arguments
print_rectangle_area(4.5) # defoult height
print_rectangle_area(height=10.0) # default width
print_rectangle_area(width=5.25) # defoult height

Do any of the built in functions we have been using have
default arguments?

CS303E Slideset 6: 41 Functions

Using Defaults

A rectangle with a width of 1.0 and a height of 2.0 has an area equal to 2.0

A rectangle with a width of 4.5 and a height of 7.6 has an area equal to 34.199
A rectangle with a width of 5.2 and a height of 20.5 has an area equal to 106.6
A rectangle with a width of 4.5 and a height of 2.0 has an area equal to 9.0

A rectangle with a width of 1.0 and a height of 10.0 has an area equal to 10.0
A rectangle with a width of 5.25 and a height of 2.0 has an area equal to 10.5

You can mix default and non-default
arguments, but must define the non-
default arguments first.

def email(address, message=""):

CS303E Slideset 6: 42 Functions

Passing by Reference

All values in Python are objects, including numbers, strings, etc.

When you pass an argument to a function, you're actually passing
a reference to the object, not the object itself.

There are two kinds of objects in Python:
mutable: you can change them in your program.

immutable: you can’t change them in your program.

If you pass a reference to a mutable object, it can be changed by
your function. If you passareference to an immutable object, it
can’t be changed by your function.

CS303E Slideset 6: 43 Functions

What is a Data Type?

A data type is a categorization of values.

DataType | Description ________|Example ______

int integer. An immutable number of 42
unlimited magnitude
float A real number. An immutable floating 3.1415927
point number, system defined precision '
str string. An immutable sequence of 'Wikipedia'
characters
bool boolean. An immutable truth value True. False
’
tuple Immutable sequence of mixed types. (4 0 'UT TFUE)
i ’
; Mutabl f mixed t .
list utable sequence of mixed types [12' 3’ 12’ 7’ 6]
set Mutable, unordered collection, no [12 6 3]
duplicates Y
: dicti k.a. , A mutabl f Mme1'. "no'.
dict ictionary a.k.a. maps, A mutable group o { k1': 2_5’ k2' 5}

(key, value pairs)

Others we likely won't use in 303e:
complex, bytes, frozenset

CS303E Slideset 6: 44 Functions

Passing an Immutable Object

Consider the following code:
def increment_x(x):

X += 1
print('Value of x in the function increment_x =', X)

def reverse_list(lst):
1st.reverse()
print('list in the function reverse_list =', 1lst)

print()

X =3

print('x before function call:', x)
increment_x(x)

print('x after function call: ', x)
print()

st = [2, 3, 5, 7, 11]
print('list before function call:', 1st)
reverse_list(1lst)

pr'int("List after function call: ', lst)

Passing Immutable and Mutable Objects - Output

X before function call: 3
Value of X in the function
X after function call: 3

list before function call:

list after function call:

increment_Xx = 4

(2, 3, 5, 7, 11]

list in the function reverse_list = [11, 7, 5, 3, 2]

[11, 7, 5, 3, 2]

Notice that the immutable integer parameter to increment_x
was unchanged, while the mutable list parameter to

reverse_list was changed.

Variables are mutable. They can be made to refer to different

objects (values), but some objects
Strings in Python are immutable.

CS303E Slideset 6: 46

(values) such as ints, floats, and

Functions

Scope of Variables

Variables defined in a Python program have an associated
scope, meaning the portion of the program in which they
are defined.

A global variable is defined outside of a function and is
visible after it is defined. Use of global variables is
generally considered bad programming practice.

Not allowed per our 303e program hygiene guidelines.

A local variable is defined within a function and is visible
from the definition until the end of the function.

A local definition overrides a global definition.

CS303E Slideset 6: 47 Functions

A local definition (locally) overrides the global definition.

x=1 # xis global
def func():
« =D # this xis local
print(x) # will print 2
func ()
print(x) # will print 1

Running the program:

> python funcy.py
2

1

CS303E Slideset 6: 48 Functions

Returning Multiple Values - Useful

The Python return statement can also return multiple values. In
fact it returns a tuple of values.

def nmultipleValues (x, y):
return x + 1, y + 1

print("Values returned are: ", mul tipleValues (4, 5.2))

x1, x2 = multipleValues(4, 5.2)
print("x1: ", x1, "\tx2: ", x2)

Values returned are: (5, 6.2)
xl: 5 x2: 6.2

You can operate on this using tuple functions, which we’ll cover
later in the semester, or assign them to variables.

CS303E Slideset 6: 49 Functions

CS303E: Elements of Computers and Programming

Files

Mike Scott
Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: June 23, 2022

Value of Files

Files are a persistent way to store programs, input
data, and output data.

Files are stored in the memory of
your computer in an area allocated
to the file system, which is typically
arranged into a hierarchy of
directories (aka folders).

The path to a particular file
details where the file is stored
within this hierarchy.

CS303E Slideset 6: 2 Files

A path to a file may be absolute or relative.

If you just use the name of the file, you’re assuming that
it is in the current working directory.

plato%s pwd
/u/scottm/314
plato% 1ls -1
total 8

scottm prof 4096 14 2020 grade
-rw-r—--r-—- scottm prof 42 25 2019 nums
-rw-r—--r-—- scottm prof 42 4 11:28 nums sorted
-rw-r—--r-—- scottm prof 58 25 2019 simple. txt
scottm prof 4096 19 2020 src

pwd -> print working directory
Is -| -> list the contents of the current

directory in long form (with details)

ve Pathnames

scottm prof 4096 Sep 14 2020 grade
-rw-r—--r-—- scottm prof 42 Nov 25 2019 nums
i-rw-r—--r—- scottm prof 42 May 4 11:28 nums_ sorted
-rw-r—--r-—- scottm prof 58 Nov 25 2019 simple. txt
scottm prof 4096 Aug 19 2020 src
K calculate taxes.pv
fcat: calculate taxes.py: No such file or directory
pPplatos cac src/calculate_taxes.py
def main() :
"""Calculate US Federal Income Tax.

Ask user for income and calculate US
Federal income tax for 2021.
Assumes user 1s filing single.

cat -> from concatenate, synonym for append
(in this case to standard output)
src/ means look for the file in the directory

named src

File Paths

On Windows, a file path might be:

C:\ Users\scottm\314\src\calculate_texas.py
On Linux or MacOS, it might be:

/home/scottm/314/src/calculate_texas.py

Python passes filenames around as strings, which causes
some problems for Windows systems, partly because
Windows uses the '\' in filepaths.

Recall that backslash is an escape character, and including it
in a string may require escaping it.

CS303E Slideset 6: 5 Files

There is a way in Python to treat a string as a raw string,
meaning that escaped characters are treated just as any
other characters.

>>> print('abc\ndef")
abc

def

>>> print (r'abc\ndef')
abc \ndef

Prefix the string with an 'r'. You may or may not need to
do the for Windows pathnames including '\

CS303E Slideset 6: 6 Files

Python - Show the Current Working Directory

In CS303e when we open a file we will
generally assume it is in the same directory as
the running Python program.

When doing homework, how do you know what that is
SO you can put your data files in the same directory?

import os
print (os.getcwd())

print(os.getcwd()) # os already imported above

C:\Users\scottm\Documents\303e_Su2l\lecture_code\examples
Of course your output will be different.

CS303E Slideset 6: 7 Files

Working with Files in Python

Python provides a simple, elegant interface to
storing and retrieving data in files.

Functions for dealing with files:

open : establish a connection to the file and associate
a local file handle with a physical file.

close : terminate the connection to the file.

CS303E Slideset 6: 8 Files

Opening a File

Before your program can access the data in a file, it is necessary
to open it. This returns a file object, also called a 'handle,' that
you can use within your program to access the file.

CYP6B File Handle Our
i‘ii}i Program
Data In Data Out

(Operating (Our Python
System) Program)

O

—

It also informs the system how you intend for your program to
interact with the file, the 'mode.

Example of Opening a File

General Form:

fileVariable = open(filename, mode)

>>> outfile = open('test_file.txt', 'w')

>>> outfile.write('Testing can show the presence of bugs ...\n')
42

>>> ogutfile.write('but not prove their absence.\n')

29

>>> outfile.close()

What do you think the 42 and 29 (an int returned by the write
function) represent above?

Notice we are calling a function (method) on a variable.
outfile.write

(lecture_code) C:\Users\scottm\Documents\303e_Su2l\lecture_code>type test_file.txt
Testing can show the presence of bugs ...
but not prove their absence.

CS303E Slideset 6: 10 Files

Opening a File: Modes

Permissible modes for files:

Mode Description

r Open for reading.

w' Open for writing. If the file already exists the
old contents are overwritten.

'a’ Open for appending data to the end of the file.

'rb" Open for reading binary data.

wb' Open for writing binary data.

You also have to have necessary permissions from the
operating system to access the files.

This semester we won't be using the binary modes.

In other words we are going to read from files assuming it is
encoded as text. In binary we would read the raw 0s and 1s.

CS303E Slideset 6: 11 Files

Closing the File

General form:
file_variable.close()

All files are closed by the OS when your program terminates. Still,
it is very important to close any file you open in Python.

the file will be locked from access by any other program while
you have it open;

items you write to the file may be held in internal buffers
rather than written to the physical file;

if you have a file open for writing, you can't read it until you
close it, and re-open for reading;

it’s just good programming practice.

CS303E Slideset 6: 12 Files

Using the with statement

Although not in the textbook, the preferred way of opening a
file is with the with statement. (Another Python keyword)

def demo_with(file_name):

"""Demonstrate creating file objects with the with keyword."""
with open(file_name, 'r') as in_file:

Simply print the lines in the file

for 1line in in_file:

print(line, end="'")
print('Still in with. Is file closed? ',
in_file.closed)

Is the file closed?

print('After with block. Is file closed? ', in_file.closed)

Still 1in with. Is file closed? False
After with block. Is file closed? True

CS303E Slideset 6: 13 Files

Reading/Writing a File

There are various Python functions for reading data
from or writing data to a file, given the file object in

variable fn.
Function Description
fn.read() Return entire remaining contents of file as a string.
fn.read (k) Return next k characters from the file as a string.

fn.readline() Returns the next line as a string.
fn.readlines() Returns all remaining lines in the file as a list of strings.
fn.write(str) Writes the string to the file.

These functions advance an internal file pointer (like a
cursor in a word processing document or a program editor)
that indicates where in the file you're reading/writing.
open sets the file pointer or cursor at the beginning of
the file.

CS303E Slideset 6: 14 Files

Testing File Existence

Sometimes you need to know whether a file exists,
otherwise you may overwrite an existing file.
Use theisfile function from the os.path module.

>>> isfile('foo.txt")
Traceback (most recent call last):

File "<input>", 1line 1, 1in <module>
NameError: name 'isfile' is not defined
>>> import os.path
>>> os.path.isfile('foo.txt")

False
>>> os.path.isfile('test_file.txt')
True

Here the filepath given is relative to the current directory.

CS303E Slideset 6: 15 Files

Example: Read Lines from File

import os.path

def main():
"""Open the file. Print out all lines with a line number."""
file_name = input('Enter file name: ')
if not os.path.isfile(file_name)4
print(file_name, 'does not exist in the current directory.')
else:
file = open(file_name, 'r')
line = file.readline()
line_number = 0

Print out lines of file with line numbers.
while 1line:
line_number += 1
print(format(line_number, '4d'), ': ',
line.strip(), sep="")
line = file.readline()
print('Found', line_number, 'lines.')
print('Value of line that caused loop to stop:', line)

L file.close() 3

Example: Read Lines from File

Enter file name: lyrics.txt

1: That's great, it starts with an earthquake
: Birds and snakes, and aeroplanes
: And Lenny Bruce is not afraid

o1 N NN

: Eye of a hurricane, listen to yourself churn

66: It's the end of the world as we know it (tin

67: It's the end of the world as we know it (tin

68: It's the end of the world as we know it and
Found 68 1lines.

_Value of 1ine that caused loopn to stop: |

CS303E Slideset 6: 17 Files

Example: Write File

Let's write out the flip of 10,000 coins to a file, H for heads,
T for tails. 50 results per line separated by a space.

One major difference is that print inserts a newline at the
end of each line, unless you ask it not to. write does not
do that.

Write out the results of coin flips to a file.
import random

def main():

num_flips = 10_000

flips_per_line = 50

out_file = open('flip_results.txt', 'w')

for i in range(1, num_flips + 1):
side = 'H' if random.random() < 0.5 else 'T'
out_file.write(side)
if 1 % flips_per_line ==

out_file.write('\n")
out_file.close()

Part of Resulting File - Coin Flip Results

THTHATHHHATTHHHAAAAAATHTHTTHHTTTTHHTTTTTTTTTTTTTHH
HHTHTTHTTHTTTHHTTTTHTHTHHTHTHHHHTHEHTHHTTTHHHHTTHTH
HHTHTTHHTTHTTTTTHTTTHTHTHHHTHHHHHTHTTHHHTTHHHTTHHH
HHTHTHTHTHHHHTHTHTTHTHHHTTHTTHTTHTTTHTHTHTHTTHHHHH
THTTTTTHTTHHTHHAAATHAAOATTTHHHTTHHATTHAEATHAETTTHTHTH
HITHHTHTHHTHHTTHTHTTHHTTHHTHTTHTTHTHTTTHTHHHTTHTTTT
HTTHHHTHTHTTHTHTTTTHHHHHHTTTHTTHHTTTHHTTHHHTHHHHHAHA
THHTTHHTTTTTHHTHHTHHHTHTTHTTTHHTTTHHTTHTHTHTTTTHHT
TTTHTHHTHHHTTHTTTTTHTHETTHTHTTTTTTTTHEEHAETHHHATTHT
TTTTTTTTHHHTHHHATTHTHTHHHTHTTTTTHTHTHTHHHHHHHTHTTT
THTHTHTTHHHHHHHHAHTHTTHTTHHTHTHHTHTTHTHHTTHHHHHHTHH
HHHHHTHHTHHHHTTHHHHTHTTHHHHTHTHHTTHTHTTTHHTHHHTTTT
THTTHHHTTHTTTHHTTHTTTHHEATHHHTTHAHATTHTTTTTTHTTTTHHT
THTTHTHHTTHTTTTHHHHTTHTHHHHTHTTTTHHHHHTTHHTHHHTHTH
TTTHHHTHTHHTTTHHTTHTHTHHTTTHTTHTHTHHTHHTTHTTTHHHHH
HHHTHTHTHHHHHTHTHHTHHTHTHTHTTHTHTHHHTTTTHTTHTTTHHH
HOTTHHTHHTHTTTHAATHEATTTHHHHAATHTHTTHETHAETHTTHHHTT
HITHTHTTTTTHHHHTHHHHHHTTTTTTHTTTTHHHTHTTHHHTHHTHTT
TTHTHHHTTHTHTTHTTTHTHTTTTHTHTHTHTTHHHTHTTHTHTHTTHT
HHHTHHTHHTTHHTHTHHHTTTHHTHTHHTTHTTHTTHHHTTTHTHHHTH

Note, the line numbers are NOT part of the

file. They are shown by the text editor | used.

Aside: Redirecting Output

There's another way to get the output of a program into a file.

When your file does a print, it sends the output to
standard out, which is typically the terminal.

You can redirect the output to a file, using > filename on
Linux systems. Anything that would have been printed on the
screen goes into a file instead.

Notice that this happens at the OS level, not at the Python level.
Programmers know how to do things multiple ways!

Can even redirect standard output inside of a Python program.

This is part of how the auto grader works. Redirecting your program’s
standard output so we can compare it to what we expect the output
to be.

CS303E Slideset 6: 20 Files

irecting Output

plato% 1ls -1
total 36
[drwxrwxr-x scottm usl 4096 Feb OOFall
drwxr-x—--—- scottm usl 4096 Dec 00Spring
scottm prof 4096 Jun assignmn solutions
scottm usl 4096 Feb Fall2000
scottm prof 4096 Jul 28 grading
-rw-r—--r—- scottm prof 422 Jun 3 hello world.py
drwxr-sr-x scottm usl 4096 May 20 Quilt
drwxr-sr-x scottm usl 4096 Feb 16 Rock
drwxr-sr-x scottm usl 4096 Feb 7 Spring2000
platof? python hello world.py > output.
plato% 1s
OOFall assignmn solutions grading output. txt| Rock
00Spring Fall2000 hello world.py Quilt Spring2000
plato% cat output. txt
3
Hello World!
Hook 'em Horns!

CS303E Slideset 6: 21

Example: Reading and Writing File

inport os. path

def copy file():
""" Copy contents from filel to file2.
Ask user for filenames
f1 = input('Source filename: ').strip()
t2 = input('Target filename: ").strip()
Check it target file exists.
if os.path.isfile(f2):
print(f2 +' already exists')
return
Open files for input and output
infile = open(f1, 'r')
outfile = open(2, 'wW)
Copy from input to output a line at a time

ra

Close both fri1les

outfile. close()

copy_file()

for line in infile: .
Li outfile. write(line)|<\ NOt|Ce the use Oft
infile.close() for IOOp tO read al

3

the lines in the fiIeF.

CS303E Slideset 6: 22 Files

Example: Reading and Writing File

One cannot simultaneously read and write a file in Python.
However, you can write a file, close it, and re-open it for reading.

import random

def main():
"""lWrite out 100 random integers to a file, then read the file."""
outfile = open('random_nums.txt', 'w')
for i in range(100):
outfile.write(str(random.randint(0, 99)) + ' ')
outfile.close()

Now read in the numbers and print 10 per line
infile = open('random_nums.txt', 'r')

nums = infile.read()

print(nums, '\n')

numbers = [int(x) for x in nums.split()]
num_printed = 0
for x in numbers:
num_printed += 1
print(format(x, '3d'), end='")
if num_printed == 10:
print()
num_printed = 0
else:
print(' ', end="")

Reading and Writing File

19 52 13 78 48 67 56 10 8 26
34 54 75 80 16 85 83 97 40 70
b5 8 30 67 70 85 6 11 80 O
b6 56 28 57 67 2 57 52 90 52
79 85 87 74 24 50 67 74 64 32
71 42 97 22 75 57 7 18 77 1
29 74 43 62 53 28 35 21 235 18
48 82 22 71 62 23 84 98 D53 36
11 79 72 32 57 95 1 59 357 18
42 27 45 54 11 50 12 77 80 43

CS303E Slideset 6: 24 Files

Append Mode

Opening a file in append mode 'a’, means that writing a value to
the file appends it at the end of the file.

It does not overwrite the
previous content of the file.

You might use this to maintain
a log file of transactions on an
account.

New transactions are added at
the end, but all transactions
are recorded.

CS303E Slideset 6: 25 Files

CS303E: Elements of Computers and Programming

Lists

Mike Scott
Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: June 28, 2023

The list class is a very useful tool in Python.

length =5
index 0 1 2 3 4
negative index -5 -4 -3 -2 -1

Both lists and strings are sequence types in Python, so
share many similar methods. Unlike strings, lists are

mutable.

If you change a list, it doesn'’t create a new copy; it
changes the actual contents of the list.

CS303E Slideset 7: 2 Lists

Value of Lists

Suppose you have 30 different test grades to average. You could
use 30 variables: gradel, grade?, ..., grade30. Or you could use
one list with 30 elements: grades|0], grades[1], ..., grades|29].

def grades_example():

"""Shows creation of a list and determining

average of elements."""

grades = [67, 82, 56, 84, 66, 77, 64, 64, 85, 67,
73, 63, 98, 74, 81, 67, 93, 77, 97, 65,
77, 91, 91, 74, 93, 56, 96, 90, 91, 99]

total = 0

for score 1in grades:

total += score
average = total / len(grades)
print("Class average =", format(average, '.2f'))

CS303E Slideset 7: 3 Lists

Indexing and Slicing

With Lists you can get sublists using slicing

»
index out of range
Forward Indexing 0 1 2 3 4 A] 7 ,///J
List 1 2 3 4 5
-8 -7 -6 -5 4 -3 -2 1 Reverse Indexing
/ 4
index out of range

CS303E Slideset 7: 4 Lists

List Slicing

e Listslicingformat: 1ist[start : end]

e Span is a list containing copies of elements

from start up to, but not including, end

o|lf start not specified, O is used for start index
o|f end not specified, 1en (1ist) is used for end
index

* Slicing expressions can include a step value
and negative indexes relative to end of list

CS303E Slideset 7: 5 Lists

Creating Lists

Lists can be created with the 1ist class constructor or using
special syntax.

>>> list() # create enpty list, with constructor

[]
>>> list([1, 2, 3]) # create list [1, 2, 3]

[1, 2, 3]
>>> list (["red", 3, 2.5]) # create heterogeneous list
["red’”, 3, 2.5]

>>> ["red", 3, 2.5] # create list, no explicit constructor
["red”, 3, 2.5]

>>> range (4) # not an actual list
ii:gi(gi(flmge(@) # create list wusing range

[0, 1, 2, 3]

>>> list("abcd") # create character list from string

[IaI, IbI, ICI’ Idl]

CS303E Slideset 7: 6 Lists

Many programming languages have an array type.

Element

First index (at index 8)

1 23456 ?\a 9—— Indices

[N

44— Array length is 10 >
Arrays are: Python lists are:
homogeneous (all elements heterogeneous (can contain
are of the same type) elements of different types)
fixed size variable size
permit very fast access time permit fast access time

Lists and arrays are examples of data structures. Avery simple definition of
a data structure is a variable that stores other variables.
CS313e explores many standard data structures.

CS303E Slideset 7: 7 Lists

Sequence Operations

Lists are sequences and inherit various functions
from seqguences.

Function Description

X in s X IS In sequence s

X not in s X IS hot in sequence s

sl + s2 concatenates two seguences

s * n repeat sequence s n times
s[i] ith element of sequence (0-based)
s[i:j] slice of sequence sfrom i to j-1
len(s) number of elements in s
min(s) minimum element of s

max(s) maximum element of s
sum(s) sum of elements in s

for loop traverse elements of sequence
<, <=, >, >= compares two sequences

J

4

=

CS303E Slideset 7: 8 Lists

compares two seguences

Calling Functions on Lists

>>> 11 =1[1, 2, 3, 4, 5]
>>> len(11)

5

>>> min(11) # assumes elements are comparable
1

>>> max(11) # assumes elements are comparable
5

>>> sun(11) # assumes summing makes sense

15

>>> 12 — [1, 2’ uredvv]

>>> sun(12)

Traceback (nost recent call last):
File "<stdin>", line 1, in <nodule>

TypeError: unsupported operand type(s) for +: “int’ and ’“str
>>> min(12)
Traceback (nost recent call last):
File "<stdin>", line 1, in <nodule>
TypeError: "<’ not supported between instances of “str’ and

“int’
>>>

CS303E Slideset 7: 9 Lists

Using Functions

We could rewrite the grades examples function as follows:

def grades_example_2():

"""Shows creation of a list and determining

average of elements. This version takes advantage

of the sum function for sequences."""

grades = [67, 82, 56, 84, 66, 77, 64, 64, 85, 67,
753, 63, 98, 74, 81, 67, 93, 77, 97, 65,
77, 91, 91, 74, 93, 56, 96, 90, 91, 99]

average = sum(grades) / len(grades)

print("Class average =", format(average, '.2f'))

CS303E Slideset 7: 10 Lists

Traversing Elements with a For Loop

General Form:;
for uin list:

body

In file test.py:

for u in range(3): # not really a list
print (u, end=" ")

print ()

for uin [2, 3, 5, 7]:
print (u, end=" ")

print ()

for u in range(15, 1, -3): # not really a list
print (u, end=" ")

print ()

> python test. py
012

2357

15 12 9 6 3

CS303E Slideset 7: 11 Lists

Comparing Lists

Compare lists using the operators:. >, >=, <, <=, ==, =, Uses
lexicographic ordering: Compare the first elements of the two lists;
If they match, compare the second elements, and soon. The

elements must be of comparable classes.

>>> listl = ["red", 3, "green"]
>>> list2 = ["red", 3, "grey"]
>>> listl <list2

True

>>> list3 = ["red", 5, "green"]
>>>1ist3 > listl

True

>>> list4 = [5, "red", "green"]

>>> list3 < list4
Traceback (nost recent call last):
File "<stdin>", line 1, in <nodule>

“int’
>>> ["red", 5, "green"] == [5, "red",
False

TypeError: "<’ not supported between instances of ’“str

"green" |

/4

and

CS303E Slideset 7: 12 Lists

List Comprehension

List comprehension gives a compact syntax for
building lists.

>>> range (4) # not actually a list
range (0, 4)

>>> [x for x in range(4)] # create list from range
[0, 1, 2, 3]

>>> [x ** 2 for x in range(4) |

[0, 1, 4, 9]

>>> st = [2, 3, 5, 7, 11, 13]

>>> [x ** 3 for x in Ist]

[8, 27, 125, 343, 1331, 2197]

>>> [x for x in lIst if x > 2]

[3, 5, 7, 11, 13]

>>> [s[0] for sin ["red", "green", "blue"] if s <= "green"]

8", 'b’]

>>> from IsPrime3 import

>>> [x for x in range(100) if isPrine(x)]

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89, 97]

*

CS303E Slideset 7: 13 Lists

List Comprehension with Files

List comprehension gives a compact syntax for
building lists, even from files.

Team by team, reporters baffled, trumped, tethered, cropped
Look at that low plane, fine, then

Uh oh, overflow, population, common group

But it'll do, save yourself, serve yourself

World serves its own needs, listen to your heart bleed

Tell me with the Rapture and the reverent in the right, right
You vitriolic, patriotic, slam fight, bright light

Feeling pretty psyched

CS303E Slideset 7: 14 Lists

List Comprehension with Files

List comprehension gives a compact syntax for
building lists, even from files.

def list_from_file(file_path):
"""Read the lines from the given file and print them out."""
with open(file_path, 'r') as infile:
ines = [line.strip() for 1line in infile]

print('number of lines:', Tlen(lines
line_num = 1
for 1line 1n lines:

print(line_num, ': ', 1line, sep='")

line_num += 1

CS303E Slideset 7: 15 Lists

List Comprehension with Files

List comprehension gives a compact syntax for
building lists, even from files.

: Team by team, reporters baffled, trumped, tethered, cropped
Look at that low plane, fine, then

: Uh oh, overflow, population, common group

: But 1t'1l do, save yourself, serve yourself

: World serves its own needs, listen to your heart bleed

: Tell me with the Rapture and the reverent in the right, right
: You vitriolic, patriotic, slam fight, bright 1light

: Feeling pretty psyched

coO~JOoO~0O1T NWWN B

CS303E Slideset 7: 16 Lists

Let’s Take a Break

- FOR A
BREAK

CS303E Slideset 7: 17 Lists

More List Methods

These are methods from class list.
Since lists are mutable, these actually change t.

Method

Description

t.append(x)
t.count(x)
t.extend(l1)
t.index(x)
t.insert(i, x)
t.pop()
t.pop(i)
t.remove(x)
t.reverse()
t.sort()

CS303E Slideset 7: 18 Lists

add x to the end of t

number of times x appearsin t

append elements of 11 tot

Index of first occurence of X in t
Insert X into t at position |

remove and return the last element of t
remove and return the ith element of t
remove the first occurence of x from t
reverse the elements of t

order the elements of t

List Examples

>SS 1T = [1, 2, 3]
>>>]1. append (4)# add 4 to the end of I1

>>> 11 # note: changes 11

[1, 2, 3, 4]

>>> 11.count (4) # count occurrences of 4 in 11
1

>>> 12 = [5, 6, 7]

>>>]1.extend (12) # add elements of 12 to 11
>>> 11

[1, 2, 3, 4, 5, 6, 7]

>>> 11.index(5) # where does 5 occur in 117

4

>>> 11.insert (0, 0) # add 0 at the start of I1

>>> 1 # note new value of 11

0, 1, 2, 3, 4, 5, 6, 7]

>>>]1.insert (3, "a’) # lists are heterogenous
>>> 11

0, 1, 2, ’a’, 3, 4, 5, 6, 7]
>>>]1.remove(’a’) # what goes in can come out

>>> 11
[0, 1, 2, 3, 4, 5, 6, 7]

CS303E Slideset 7: 19 Lists

List Examples

'\ >>> 1T .pop () # remove and return last element
7

>>> 11

[0, 1, 2, 3, 4, 5, 6]

>>> 11.reverse () # reverse order of elements

>>> 11

6, 5, 4, 3, 2, 1, 0]

>>> 11.sort () # elements must be comparable
>>> 11

[0, 1, 2, 3, 4, 5, 6]
>>> 12 = [4, 1.3, "dog"]

>>> 12 .sort () # elements must be comparable
Traceback (most recent call last):

File "<stdin>", line 1, in <nodule>
TypeError: "<’ not supported between instances of ’str’ and

"float’
>>> 12. pop() # remove 'dog'
U dogl
>>> 12
[4, 1.3]
>>> 12.sort () # int and float are comparable
>>> 12
[1.3, 4]

|

CS303E Slideset 7: 20 Lists

Random Shuffle

A useful method on lists Is random.shuffle()
from the random module.

>>> listl = [x for x in range(9) |
>>> listl

[0, 1, 2, 3, 4, 5, 6, 7, 8]
>>> random shuffle(listl
>>> listl

(7, 4, 0, 8, 1, 6, 5, 2, 3]
>>> random shuffle(listl
>>> listl

[4, 1, 5, 0, 7, 8, 3, 2, 6]
>>> random shuffle(listl)
>>> listl

(7, 5, 2, 6, 0, 4, 3, 1, 8]

CS303E Slideset 7: 21 Lists

Processing CSV Lines

Suppose grades for a class were stored in a list of csv strings, such
as.

student_data = ['Ale, 90, 75",
'Robert, 8, 77",
'Charlie, 60, 80']

Here the fields are: Name, Midterm grade, Final Exam grade.

Compute the average for each student and print a table of results.

CS303E Slideset 7: 22 Lists

Processing CSV Lines from List

def print_test_scores(student_data):
"""Ppint the test scores for the elements of student_data.

student_data 1is a list of Strings. Each String is of the form:

'<Name>, <Midterm Score>, <Final Score>'
Course score is based on 1/3 of midterm score and 2/3s of

final score.

mmn

print('Name MT FN Course')
print('-=----------““““““-mmmmeo-- ")
for student in student_data:
data = student.split(",")
if len(data) !'= 3:
print('Bad student data:', student)

else:
name = datal[0].strip()

midterm = int(datal[l].strip())

final = int(datal[2].strip())

course_score = midterm / 3 + final *x 2 / 3

print(format(name, '10s'), format(midterm, '4d'),
format(final, '4d'), format(course_score, '6.2f'))

CS303E Slideset 7: 23 Lists

Processing CSV Lines

students = ['Alice, 90 ,98', ' Robert ,58 ,77',
'Michael, 80', 'Charlie, 60 ,80']
print_test_scores(students)

Name MT FN Course
Alice Q0 28 95.33
Robert H8 77 T70.67

Bad student data: Michael, 80
Charlie 60 80 73.33

CS303E Slideset 7: 24 Lists

Copying Lists

Suppose you want to make a copy of a list. The following won’t work!

>>> nums = [12, 56, 37, 12]
>>> N2 = nums
>>> n2 1s nums

True

>>> N2 == nums
True

>>> N2

[12, 37, 12]
>>> nums

[12, 37, 12]

CS303E Slideset 7: 25 Lists

Copying Lists

But, many ways of making a copy of a list.

>>> nuUms

[12, 73, 37, 12]

>>> n2 = nums.copy()
>>> n2 1s nums

False

. > 1= n2 = {list: 4} [12, 73, 37, 12]
>>> n3 = list(nums) ,
s>> n3 is nums > 2= n3 = {list: 4} [12, 73, 37, 12
False > 2= nd = {list: 4} [12, 73, 37, 12]
>>> n3 1s n2 S] : : :
False 2 n5 = {list: 4} [12, 73, 37, 12
>>> n4 = nums[0:] > 2= nums = {list: 4} [12, 73, 37, 12]

>>> n4 1s nums

False

>>> n5 = [1i for 1 in nums]
>>> nb5 1s nums

False

CoosUsE slldeset 7. Zb Lists

Passing Lists to Functions

Like any other mutable object, when you passallist to afunction,
you're really passing a reference (pointer) to the object in memory:.

def alter(1st):
1st. pop()

def main():
st = [1, 2, 3, 4]
print("Before call: ", 1st)
alter(Ist)
print("After call: ", Ist)

main()

> python ListArg. py
Before call: [1, 2, 3, 4]
After call: [1, 2, 3]

CS303E Slideset 7: 27 Lists

Let’s Take a Break

- FOR A
BREAK

CS303E Slideset 7: 28 Lists

Example Problems

To get good at working with lists, we must practice!
» CodingBat: hitps://codingbat.com/python
 Listl: first_last6, same_first_last, max_end3
 List2: count_even, big_diff, has_22
 given list of ints or floats, Is it sorted in descending order?
 get last index of a given value in list
 given two lists of ints, return a list that contains the
difference between corresponding elements
« change to be the max
« are all the elements of a given list unique? In other words,
no duplicate values in the list
 given a list of ints place all even values before all odd
values

https://codingbat.com/python

CS303E: Elements of Computers and Programming

Lists of Lists

Mike Scott
Department of Computer Science

University of Texas at Austin

Last updated: May 30, 2024

Creating list of lists

Can create list of lists in Python
table =[[1, 2], [3, 6], [7,-3], [5, 6]]
* Access an element with 2 subscripts.
* By convention first subscript is row and the
second is the column

0 1 -—index of column

011]| 2

1 :73 6 access element with
2 2 subscripts:

315] 6

7 table[2][0] -> 7
index of row

CS303E Slideset 7: 2 List of Lists

Creating list of lists

Can also use list comprehension
table2 =[[0] * 12] * 10
A list of lists with 10 rows and 12 columns
per row.

flips = [['H' if random.random() <= 0.5 else 'T
for x in range(12)] for x in range(10)]

A table with 10 rows and 12 columns per row.
Each elements is a random coin flip.

CS303E Slideset 7: 3 List of Lists

List of Lists Problems

Write a function that returns the index
of the row of a list of lists of ints has the
largest sum. In the case of a tie return
the index closest to 0.

Write a function that returns the index
of the column of a list of lists of ints has
the largest sum. In the case of a tie
return the index closest to 0.

CS303E Slideset 7: 4 List of Lists

Example of using a list of lists

Conway's Game of Life

* acellular automaton designed by John
Conway, a mathematician

* not really a game

* asimulation

* takes place on a 2d grid

* each element of the grid is occupied
or empty by a simple organism, but not
any known organism

CS303E Slideset 7: 5 List of Lists

http://www.cuug.ab.ca/dewara/life/life.html

* Select pattern from menu

* Select region in large area with
mouse by pressing the control key
and left click at the same time

* Select the paste button

CS303E Slideset 7: 6 List of Lists

http://www.cuug.ab.ca/dewara/life/life.html

0 1 2 3 4 S
O * * *
1 * * * * *
2 * * *
3 * * * *

* Indicates occupied, . Indicates empty

CS303E Slideset 7: 7 List of Lists

CS303E Slideset 7: 8 List of Lists

0 1 2 3 4 S
O * * *
1 *
2 *
3 * *

* Indicates occupied, . Indicates empty

CS303E Slideset 7: 9 List of Lists

Or , Generation 1

0 1 2 3 4

0|8

CS303E Slideset 7: 10 List of Lists

Rules of the "Game"

If a cell is occupied in this generation.

e jtsurvives if it has 2 or 3 neighbors in this generation
e itdiesifit hasOor 1 neighborsin this generation
e jtdiesifit has4 or more neighbors in this generation

If a cell is unoccupied in this generation.
there is a birth if it has exactly 3 neighboring cells that are
occupied in this generation

Neighboring cells are up, down, lett, right,
and diagonal. In general a cell has 8
neighboring cells

CS303E Slideset 7: 11 List of Lists

Case study

Design and implement a complete

Python program to automate Conway's
Game of Life

e text based

e user input for size of world
* wrapped or bounded?

* border or not?

* high level design first,

. jf_‘i__.r-t)

then implement solution -
* test, test, test, test

CS303E Slideset 7: 12 List of Lists

starting out with >>> PYTH O N

FIFTH EDITION

7.9 and Chapter 8

Tuples
and

More About
Strings

’,D TONY GADDIS

@ Pearson Copyright © 2018 Pearson Education, Inc.

Tuples

 Tuple: an Immmutable sequence
« similar to a list, but
* Once It is created it cannot be changed
* Format: tuple name = (iteml, item2)
* Notice the use of () instead of []

Tuples have operations similar to lists

« Subscript indexing for retrieving elements
« Methods such as index

 Built in functions such as 1en, min, max
* Slicing expressions
 The in, +, and * operators

@ Pearson Copyright © 2018 Pearson Education, Inc.

Tuples (cont’d.)

 Tuples do not support the methods:
* append
¢ remove
* Insert
¢ reverse

* SOrtC

Why not? They are immutable.

@ Pearson Copyright © 2018 Pearson Education, Inc.

Tuples (cont’d.)

 Advantages for using tuples over lists:
* Processing tuples is faster than processing

ISts

* Tuples can be safer (immutable)

« Some operations in Python require use of
tuples

« list () function: converts tuple to list

« tuple () function: converts list to tuple

* Fun fact, a function that returns 2 or
more values returns them in a tuple

@ Pearson Copyright © 2018 Pearson Education, Inc.

Basic String Operations

 Many types of programs perform
operations on strings

* In Python, many tools for examining
and manipulating strings

« Strings are sequences, so many of the tools
that work with sequences (such as ranges,
lists, and tuples) also can be used
with strings

@ Pearson Copyright © 2018 Pearson Education, Inc.

Accessing the Individual

Characters in a String
e To access an individual character in a

string:
 Use a for loop

e Format: for character in string:

« Useful when need to iterate over the whole string,
such as to count the occurrences of a specific
character

« Each ‘character’ is simply a string of length 1

« Use Iindexing

« Each character has an index specifying its position
In the string, starting at 0

* Format: character = my string[i]
@ Pearson Copyright © 2018 Pearson Education, Inc.

Figure 8-1 lterating over the string 'Juliet’

1st lteration for ch in

name:

print(ch)

name ——m-

'Juliet’

ch

3rd lteration for ch in

IJI

name:

print(ch)

name ——— |

'Juliet’

ch

5th Iteration for ch in

Ill

name:

print(ch)

name ——— |

'Juliet’

ch — =

I'EI

@ Pearson Copyright © 2018 Pearson Education, Inc.

2nd lteration for ch in

name:

print(ch)

name ——-

'Juliet’

en——= [

4th lteration for ch in

name:

print(ch)

name —— =

'Juliet’

en——={T

Bth lteration for ch in

name:

print(ch)

name ——— -

'Juliet’

ch—

TtT

Accessing the Individual
Characters in a String (cont’d.)

'Ros es are red'
trrtr b bt
01 2 3 456 7 8 9101112
-13-12-11-10 -9 -8 -7 -6 -5 4 -3 -2 -1

Getting a copy of a character from a string

my string = |'Roses are red'

ch = |'a'

ch = my string[6]

@ PeaI‘SOIl Copyright © 2018 Pearson Education, Inc.

Accessing the Individual
Characters in a String (cont’d.)

« IndexError exception will occur If:

* You try to use an index that is out of range for
the string

Likely to happen when loop iterates beyond the
end of the string

 usethe len(string) function to
obtain the length of a string

Useful to prevent loops from iterating beyond
the end of a string

@ Pearson Copyright © 2018 Pearson Education, Inc.

Accessing the Individual

Characters in a String
« How to access the individual elements

of the string using a for loop and the

range function?
name = 'Oliwvia A.'
for in range(len(name)) :
print (name[1i],
type (name[1])
e Or A
for ch i1n string var:

Q< H A O

<class
<class
<class
<class
<class
<class
<class
<class

. <class

'str'>
'str'>
'str'>
'str'>
'str'>
'str'>
'str'>
'str'>
'str'>

If we don’t care about position

@ Pearson Copyright © 2018 Pearson Education, Inc.

String Concatenation

« Concatenation: appending one string to
the end of another string
« Use the + operator to produce a string that Is
a combination of its operands

 The augmented assignment operator += can

also be used to concatenate strings

* The operand on the left side of the += operator
must be an existing variable; otherwise, an
exception is raised

@ Pearson Copyright © 2018 Pearson Education, Inc.

Strings Are Immutable

« Strings are immutable

* Once they are created, they cannot be changed

« Concatenation doesn’t actually change the existing
string, but rather creates a new string and assigns the
new string to the previously used variable

« Cannot use an expression of the form

* sStringlindex] = new character
« Statement of this type will raise an exception

>>> name

'Olivia A.'

>>> name[7] = 'R’

Traceback (most recent call last):
File "<input>", 1line 1, in <module>

TypeError: 'str' object does not support item assignment

Strings Are Immutable,
Variables Are Not

The string ‘Carmen’ assigned to name

name = 'Carmen'

name »| Carmen

The string ‘Carmen Brown’ assigned to name

name = name + ' Brown'

name — Carmen

| Carmen Brown

@ Pearson Copyright © 2018 Pearson Education, Inc.

String Slicing

« Slice: span of items taken from a
sequence, known as substring
« Slicing format: string[start : end]

« Expression will return a string containing a copy of
the characters from start up to, but not including,
end

* If start not specified, 0 is used for start index
* If end not specified, 1en (string) IS used for end
iIndex

 Slicing expressions can include a step value
and negative indexes relative to end of string

@ Pearson Copyright © 2018 Pearson Education, Inc.

Testing, Searching, and
Manipulating Strings
* You can use the in operator to

determine whether one string Is
contained in another string

 General format. stringl in string?2

« stringl and string2 can be string literals or
variables referencing strings

 Similarly you can use the not in

operator to determine whether one
string Is not contained in another string

@ Pearson Copyright © 2018 Pearson Education, Inc.

String Methods

« Strings In Python have many types of
methods, divided into different types of
operations

» General format:
mystring.method(arguments)

« Some methods test a string for
specific characteristics

« Generally Boolean methods, that return True
If a condition exists, and False otherwise

@ Pearson Copyright © 2018 Pearson Education, Inc.

String Methods (cont’d.)

Table 8-1 Some string testing methods

Method Description

isalnum() Returns true if the string contains only alphabetic letters or digits and is at
least one character in length. Returns false otherwise.

isalpha() Returns true if the string contains only alphabetic letters and is at least one
character in length. Returns false otherwise.

isdigit() Returns true if the string contains only numeric digits and is at least one
character in length. Returns false otherwise.

islower() Returns true if all of the alphabetic letters in the string are lowercase, and the
string contains at least one alphabetic letter. Returns false otherwise.

isspace() Returns true if the string contains only whitespace characters and is at least

isupper()

one character in length. Returns false otherwise. (Whitespace characters are
spaces, newlines (\n), and tabs (\t).

Returns true if all of the alphabetic letters in the string are uppercase, and the
string contains at least one alphabetic letter. Returns false otherwise.

Implement a function that prompts the user for an int
and error checks it. Keep prompting until they enter an int

@ Pearson Copyright © 2018 Pearson Education, Inc.

String Methods (cont’d.)

« Some methods create and return a
modified version of the string

« Simulate strings as mutable objects

« String comparisons are case-sensitive

« Uppercase characters are distinguished from
lowercase characters

 lower and upper methods can be used for
making case-insensitive string comparisons

@ Pearson Copyright © 2018 Pearson Education, Inc.

String Methods (cont’d.)

Table 8-2 String Modification Methods

Method Description

lower() Returns a copy of the string with all alphabetic letters converted to lowercase. Any
character that is already lowercase, or is not an alphabetic letter, is unchanged.

lstrip() Returns a copy of the string with all leading whitespace characters removed.
Leading whitespace characters are spaces, newlines (\n), and tabs (\t) that
appear at the beginning of the string.

lstrip(char) The char argument is a string containing a character. Returns a copy of the string
with all instances of char that appear at the beginning of the string removed.

rstrip() Returns a copy of the string with all trailing whitespace characters removed.
Trailing whitespace characters are spaces, newlines (\n), and tabs (\t) that
appear at the end of the string.

rstrip(char) The char argument is a string containing a character. The method returns a
copy of the string with all instances of char that appear at the end of the string
removed.

strip() Returns a copy of the string with all leading and trailing whitespace characters
removed.

strip(char) Returns a copy of the string with all instances of char that appear at the begin-
ning and the end of the string removed.

upper () Returns a copy of the string with all alphabetic letters converted to uppercase. Any

character that is already uppercase, or is not an alphabetic letter, is unchanged.

String Methods (cont’d.)

 Programs commonly need to search for
substrings

« Several methods to accomplish this:

* endswith (substring): checks if the string
ends with substring
 Returns True Or False
* startswith (substring): checks if the
string starts with substring
* Returns True or False

@ Pearson Copyright © 2018 Pearson Education, Inc.

String Methods (cont’d.)

« Several methods to accomplish this
(cont’d):
* find (substring): searches for
substring within the string

« Returns lowest index of the substring, or if the
substring is not contained in the string, returns -1

* replace(substring, new string).

« Returns a copy of the string where every
occurrence of substringis replaced with
new string

@ Pearson Copyright © 2018 Pearson Education, Inc.

String Methods (cont’d.)

Table 8-3 Search and replace methods

Method Description

endswith(substring) The substring argument is a string. The method returns true if
the string ends with substring.

find(substring) The substring argument is a string. The method returns
the lowest index in the string where substring is found. If
substring is not found, the method returns -1.

replace(old, new) The old and new arguments are both strings. The method returns
a copy of the string with all instances of o1d replaced by new.

startswith(substring) The substring argument is a string. The method returns true if
the string starts with substring.

@ Pearson Copyright © 2018 Pearson Education, Inc.

The Repetition Operator

* Repetition operator: makes multiple
copies of a string and joins them

together

* The * symbol is a repetition operator when
applied to a string and an integer

« String Is left operand; number is right
* General format: string to copy * n

* Variable references a new string which
contains multiple copies of the original string

@ Pearson Copyright © 2018 Pearson Education, Inc.

Splitting a String

« split method: returns a list containing
the words In the string
« By default, uses space as separator

« Can specify a different separator by passing it
as an argument to the split method

 Also referred to as parsing a string.

@ Pearson Copyright © 2018 Pearson Education, Inc.

chr and ord Functions

* Recall, the vast majority of
computer systems store data In
a binary form, O's and 1's

* We have encoding schemes to
specify what a given sequence
of O's and 1's represents, such
as characters, colors, sound

* In Python, the built in chr and
ord functions can be used to
see the encoding for strings of
length 1

@ Pearson Copyright © 2018 Pearson Education, Inc.

>2>2

65
>>>

32
>>>

97
>>>

‘o
>2>2
'B!

ord('A")
ord(")
ord('a")
chr(101)

chr(66)

starting out with >>> PYTH O N

FIFTH EDITION

CHAPTER 9

Dictionaries
and Sets

TONY GADDIS

@ Pearson Copyright © 2018 Pearson Education, Inc.

Topics

 Dictionaries
e Sets
« Serializing Objects

@ Pearson Copyright © 2018 Pearson Education, Inc.

DNA Count

 DNA Deoxyribonucleic acid

* "The polymer carries genetic instructions for the
development, functioning, growth and
reproduction of all known organisms and many
viruses. "

« Part of the building blocks of DNA are 4
nitrogen containing nucleobases

« cytosine [C], guanine [G], adenine [A]
or thymine [T]

@ Pearson Copyright © 2018 Pearson Education, Inc.

DNA Data

 Massive amounts of work to catalog
and decode DNA in organisms has

been done.

 https://www.kaggle.com/datasets/nageshsingh/dna-
sequence-dataset?select=doqg.txt

« ATGCCACAGCTAGATACATCCACCTGATTTATTATA
ATCTTTTCAATATTTCTCACCCTCTTCATCCTATTTC
AACTAAAAATTTCAAATCACTACTACCCAGAAAAC
CCGATAACCAAATCTGCTAAAATTGCTGGTCAACA
TAATCCTTGAGAAAACAAATGAACGAAAATCTATTC
GCTTCTTTCGCTGCCCCCTCAATAA

@ Pearson Copyright © 2018 Pearson Education, Inc.

https://www.kaggle.com/datasets/nageshsingh/dna-sequence-dataset?select=dog.txt

DNA Counts

 Write a function that given a string that
represents a portion of DNA returns the
frequency of the four nucleobases

« cytosine [C], guanine [G], adenine [A]
or thymine [T]

@ Pearson Copyright © 2018 Pearson Education, Inc.

Dictionaries
* Dictionary: data structure that stores a
collection of key-value pairs
« Each element consists of a key and a value
« Often referred to as mapping of key to value

« Key must be an immutable object

A real world dictionary, the words are the keys and the
definitions are the values

» Given the word you can find the value quickly
* To retrieve a specific value, use the key associated
with it
« Format for creating a dictionary with given values
dictionary = {keyl:vall, keyZ:vall}

@ Pearson Copyright © 2018 Pearson Education, Inc.

Visualization of Dictionary

Keys Values

f
YYZ -] Toronto Pearsonj

DUB K Y London Heathrow]
R

 Dublin Airport |

https://docs.swift.org/swift-book/LanguageGuide/CollectionTypes.html

@ Pearson Copyright © 2018 Pearson Education, Inc.

Retrieving a Value from a Dictionary

* Prior to Python 3.7 the keys in a dictionary are in
no discernible order from the client's perspective

« Python 3.7 and later, dictionaries maintain keys in
insertion order

* General format for retrieving value from
dictionary: dictionary|[key]

 If key In the dictionary, associated value is returned,
otherwise, KeyError exception is raised

 Test whether a key is in a dictionary using the in
and not in operators
* Helps prevent KeyError exceptions

@ Pearson Copyright © 2018 Pearson Education, Inc.

Adding Elements to an
Existing Dictionary
* Dictionaries are mutable objects

 To add a new key-value pair:
dictionary[key] = value

* If key exists in the dictionary, the value
associated with it will be changed

« if the key doesn't exist this adds the key-value
pair to the dictionary

@ Pearson Copyright © 2018 Pearson Education, Inc.

Deleting Elements From an
Existing Dictionary
 To remove a key-value pair:
d.pop(key)

* If key Is not in the dictionary, KeyError
exception is raised

* OR del dictionarylkey]

@ PeaI'SOIl Copyright © 2018 Pearson Education, Inc

Getting the Number of Elements
and Mixing Data Types

« 1len function: used to obtain number of
key-value pairs in a dictionary

 Keys must be immutable objects, but
assoclated values can be any type of

object
* One dictionary can include keys of several
different immutable types. Heterogeneous.
* Values stored in a single dictionary can
be of different types

@ Pearson Copyright © 2018 Pearson Education, Inc.

Creating an Empty Dictionary and
Using for Loop to lterate Over a
Dictionary
 To create an empty dictionary:
e Use {}
o Use built-in function dict ()

* Elements can be added to the dictionary as
program executes

 Use a for loop to Iiterate over a

dictionary
 General format: for key in dictionary:

@ Pearson Copyright © 2018 Pearson Education, Inc.

Some Dictionary Methods

 clear method: deletes all the elements
In a dictionary, leaving it empty
e Format: dictionary.clear ()

« get method: gets a value associated

with specified key from the dictionary

e Format: dictionary.get (key, default)
« defaultis returned if key Is not found

« Alternative to [] operator
« Cannot raise KeyError exception

@ Pearson Copyright © 2018 Pearson Education, Inc.

Some Dictionary Methods
(cont’d.)

« items method: returns all the
dictionaries keys and associated
values
e Format: dictionary.items ()

* Returned as a dictionary view

« Each element in dictionary view is a tuple which
contains a key and its associated value

« Use a for loop to iterate over the tuples in the
seguence

« Can use a variable which receives a tuple, or can
use two variables which receive key and value

@ Pearson Copyright © 2018 Pearson Education, Inc.

Some Dictionary Methods
(cont’d.)

« keys method: returns all the
dictionaries keys as a sequence
e Format: dictionary.keys ()

« pop method: returns value associated
with specified key and removes that
key-value pair from the dictionary

e Format: dictionary.pop (key, default)
« defaultis returned if key Is not found

@ Pearson Copyright © 2018 Pearson Education, Inc.

Some Dictionary Methods
(cont’d.)

« popitem method: returns a randomly
selected key-value pair and removes
that key-value pair from the dictionary
* Format: dictionary.popitem{()

« Key-value pair returned as a tuple
 values method: returns all the

dictionaries values as a sequence
e Format: dictionary.values ()

« Use a for loop to iterate over the values

@ Pearson Copyright © 2018 Pearson Education, Inc.

Some Dictionary Methods
(cont’d.)

Table 9-1 Some of the dictionary methods

Method Description

clear Clears the contents of a dictionary.

get Gets the value associated with a specified key. If the key is not found, the method
does not raise an exception. Instead, it returns a default value.

items Returns all the keys in a dictionary and their associated values as a sequence of
tuples.

keys Returns all the keys in a dictionary as a sequence of tuples.

pop Returns the value associated with a specified key and removes that key-value pair

from the dictionary. If the key is not found, the method returns a default value.

popitem Returns a randomly selected key-value pair as a tuple from the dictionary and
removes that key-value pair from the dictionary.

values Returns all the values in the dictionary as a sequence of tuples.

@ Pearson Copyright © 2018 Pearson Education, Inc.

Dictionary Example

 Use a dictionary to determine which
"word" occurs the most in a text.

 What will be the keys?
« What will be the values?

@ Pearson Copyright © 2018 Pearson Education, Inc.

Sets

« Set: object that stores a collection of data
In same way as mathematical set

* [tems are unique, duplicates don’t' exist in a set
« Set is unordered, from the client's perspective
« Elements can be of different data types

37 'Python’

['Python', 73, 'CS', 37]
A Set

@ Pearson Copyright © 2018 Pearson Education, Inc.

Creating a Set

« set function: used to create a set

e Simple set creation
* setl = {12, 'Python', 37, 73}

* For empty set, call set ()

* For non-empty set, call set (argument) where
argument IS an object that contains iterable
elements

* e.g., argument can be a list, string, or tuple
 If argument is a string, each character becomes a set
element
* For set of strings, pass them to the function as a list

* If argument contains duplicates, only one of the
duplicates will appear in the set

Pearson Copyright © 2018 Pearson Education, Inc.

Creating Data Types
o List:
e data = [7, 37, 5, 37, 12, 37.5]
o List of lists:
e table = [[1, 21, [3, 71, [19, 7311
e String:
* name
* Tuple:
* tupl = (37, 'Python', 73, 12, 12)
* Dictionary:
* freq map = {'Python': 3, 'Java': 7}
¢ Set:

* lang set= {'Python', 'Java', 'C++'}
@ Pearson Copyright © 2018 Pearson Education, Inc.

'Python Language'

Sets are Unordered

* Unlike the keys of a dictionary (which
are a set, no duplicates), the elements
In a Python set are unordered from the

client's perspective.

>>> lang_set= {'Python', 'Java', 'C++',

... 12, ‘'Swift', 37, 12}

>>> lang_set

{'Java', 'Python', 37, 'C++', 'Swift',6 12}

@ Pearson Copyright © 2018 Pearson Education, Inc.

Getting the Number of and
Adding Elements

e 1len function: returns the number of
elements in the set

« Sets are mutable objects
 add method: adds an element to a set
 What if set already contains that element?

- update method: adds a group of
elements to a set

« Argument must be a sequence containing
iterable elements, and each of the elements iIs

added to the set

@ Pearson Copyright © 2018 Pearson Education, Inc.

Deleting Elements From a Set

« remove and discard methods: remove
the specified item from the set

* The item that should be removed is passed to
both methods as an argument

« Behave differently when the specified item is
not found Iin the set
« remove Mmethod raises a KeyError exception
« discard method does not raise an exception

« clear method: clears all the elements
of the set

@ Pearson Copyright © 2018 Pearson Education, Inc.

Using the for Loop, in, and
not in Operators With a Set

A for loop can be used to Iterate over
elements in a set
 General format: for item in set:

* The loop iterates once for each element In
the set

 The in operator can be used to test

whether a value exists In a set

« Similarly, the not in operator can be used to
test whether a value does not exist in a set

@ Pearson Copyright © 2018 Pearson Education, Inc.

Finding the Union of Sets

 Union of two sets: a set that
contains all the elements of both

sets

« To find the union of two sets:

e Use the union method
e Format: setl.union (set?2)

« Use the | operator
e Format: setl | set?

« Both techniques return a new set
which contains the union of both sets

@ Pearson Copyright © 2018 Pearson Education, Inc.

Finding the Intersection of Sets

* Intersection of two sets: a set that
contains only the elements found
INn both sets

 To find the intersection of two

sets:

e Use the intersection method
e Format: setl.intersection (set?2)

« Use the & operator
e Format: setl & set?2

« Both techniques return a new set
which contains the intersection of
both sets

Pearson Copyright © 2018 Pearson Education, Inc.

Finding the Difference of Sets

* Difference of two sets: a set

that contains the elements

that appear in the first set but set2
do not appear in the second

set

 To find the difference of two

sets:
e Use the difference method
e Format: setl.difference (set?2)

« Use the - operator

e Format: setl - set?2
@ Pearson Copyright © 2018 Pearson Education, Inc.

setl

Finding the Symmetric
Difference of Sets

« Symmetric difference of two
sets: a set that contains the
elements that are not shared by
the two sets

« To find the symmetric difference
of two sets:

* Usethe symmetric difference
method

 Format:
setl.symmetric difference (set?2)

« Use the ~ operator
e Format: setl » set?’2

@ Pearson Copyright © 2018 Pearson Education, Inc.

Finding Subsets and

Supersets

« Set A Is subset of set B If all the
elements In set A are included In set B

* To determine whether set A I1s subset of

set B

 Use the issubset method
e Format: setA.issubset (setB)

« Use the <= operator
* Format: setA <= setB

@ Pearson Copyright © 2018 Pearson Education, Inc.

Finding Subsets and

Supersets (cont’d.)

 Set A Is superset of set B If it contains
all the elements of set B

 To determine whether set A Is superset
of set B

* Use the issuperset method
e Format: setA.issuperset (setB)

« Use the >= operator
* Format: setA >= setB

@ Pearson Copyright © 2018 Pearson Education, Inc.

Serializing Objects

« Serialize an object: convert the object
to a stream of bytes that can easily be
stored in afile

* Pickling: serializing an object

@ Pearson Copyright © 2018 Pearson Education, Inc.

Serializing Objects (cont’d.)

* To pickle an object:
* Import the pickle module
* Open a file for binary writing, 'wb' option
« Call the pickle.dump function
e Format: pickle.dump (object, file)

e Close the file

* You can pickle multiple objects to one
file prior to closing the file

@ Pearson Copyright © 2018 Pearson Education, Inc.

Serializing Objects (cont’d.)

* Unpickling:

retrieving pickled object

 To unpickle an object:
* Import the pickle module
* Open a file for binary writing, 'rb’
« Call the pickle.load function
* Format: pickle.load (file)

e Close the fi

 YOU can un
the file

e

@ PeaI‘SOIl Copyright © 2018 Pearso

nickle multiple objects from

n Education, Inc.

starting out with >>> PYTH O N

FIFTH EDITION

CHAPTER 10

Classes and
Object-
Oriented
Programming

’,D TONY GADDIS

@ Pearson Copyright © 2015 Pearson Education, Inc.

Procedural Programming

* Procedures: synonym for functions and
sub-routines

 Procedural programming: writing
programs made of functions that

perform specific tasks

* Functions typically operate on data items that
are separate from the functions

« Data items commonly passed from one
function to another

* Focus: On the algorithm and steps. Create
functions that operate on the program’s data
@Pearson Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming

Object-oriented programming: focuses on

creating classes and objects

Model the problem on the data involved first,
not the big steps.

Class: A programmer defined data type

Object: entity that contains data and

functions

 Data is known as data attributes and functions are
known as methods
« Methods perform operations on the data attributes

Encapsulation: combining data and code into

a single object

@ PeaI‘SOIl Copyright © 2015 Pearson Education, Inc.

Object Oriented Programming

* Recall a CPU only knows how to perform
on the order of 100 operations

* High level languages such as Python allow
us to, seemingly, create new operations
by defining new functions

* Object oriented languages allow
programmers to create new data types in
addition to the ones built into the language

* int, float, string, list, tuple, file, dictionary, set

@ PeaI‘SOIl Copyright © 2015 Pearson Education, Inc.

Object Oriented Design

If we had to start
from scratch what
new data types would

we need to create?

Data Types Needed:
)

Object Orientation

- The basic idea of object oriented programming (OOP) is
to view your problem as a collection of objects, each of
which has certain state and can perform certain actions.

- Each object has:
- some data that it maintains characterizing its current
state;

« a set of actions (methods) that it can perform.

- A programmer interacts with an object by calling its
methods; this is called . That should be
the only way that another programmer interacts with an
object.

« Significant object-oriented languages include Python,
Java, C++, C#, Perl, JavaScript, Objective C, and

E,hers.
@ earsOn Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming
(cont’d.)

Figure 10-1 An object contains data attributes and methods

Object

Data attributes

|
Q Q
Q Q

Methods that operate
on the data attributes

@ Pearson Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming
(cont’d.)

 Data hiding: object’s data attributes are
hidden from code outside the object
« Access restricted to the object’'s methods

 Protects from accidental corruption

 Qutside code does not need to know internal
structure of the object

* Object reusability: the same object can
be used In different programs

« Example: 3D image object can be used for
architecture and game programming
@Peal‘son Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming
(cont’d.)

Figure 10-2 Code outside the object interacts with the object’s methods

Object

Data attributes

. —0) Q
outside the
object < *O @

Methods that operate
on the data attributes

@ Pearson Copyright © 2015 Pearson Education, Inc.

An Everyday Example of an
Object

 Data attributes: define the state of an
object
« Example: clock object would have second,
minute, and hour data attributes

« Public methods: allow external code to
manipulate the object
 Example: set time, set alarm time

* Private methods: used for object’s inner
workings

@ PeaI‘SOIl Copyright © 2015 Pearson Education, Inc.

Classes

« Class: code that specifies the data
attributes and methods of a particular
type of object
« Similar to a blueprint of a house or a cookie

cutter

* Instance: an object created from a
class

« Similar to a specific house built according to
the blueprint or a specific cookie

* There can be many instances of one class

@ PeaI‘SOIl Copyright © 2015 Pearson Education, Inc.

Classes

} A blueprint and houses built from the blueprint

Blueprint that describes a house

Heruse Flan

—1
Living Rogm

; Fedraam.

Instances of the house described by the blueprint

Classes

The cookie cutter metaphor

Cookie cutter

Cookies

Simple Example

Class Definition for Playing cards
Playing cards have:

A Rank Define a
alil PlayingCard

‘//j \ \ \ class and then
create objects of

4

w

ie |Fe |fes|fea]|fss|fles]fee]iss]| type PlayingCard
& -r- R IR RN R dad to f deck
o f| oy | el| e el e el #¥ef| 2oy LOTOIM a AEC
2o (2o |loaa|loa|les ZQ‘Q 20‘0 2:: or a hand
a a AR 25
Al o dl ool ool ool ool o¥sll & o Of cards.
v Y el eell vel vl el ve e e
2w |39 |lve|lvev (e Zv'v §v.v ve
o v [|[ve|lvv|ve vy
L I I I H IR HIE NI X IR XY
2 0 |30 [[fo o |50 0|50 0 3000 §0’0 16 ¢
o IR IR IR I
¢ S| ¢ G| @ || & e[| @ 03| ® 0| 6 03| ¢ o

A Concrete Example

- Imagine that you're trying to do some
simple arithmetic. You need a Calculator
application, programmed in an OO manner.
It will have:

the current value of its
« accumulator (the value stored and
displayed on the screen).
 History of ops?
« Memory?
things that you can ask
of the calculator to do:
« add a number to the accumulator, subtract a

number, multiply by a number, divide by a
number, zero out the accumulator value, etc.

@ Pearson Copyright © 2015 Pearson Education, Inc.

s

o
N -
3 -

Calculator Specification

« In Python, you implement a particular type of object (soda
machine, calculator, etc.) with a class.

« Let’s define a class for our simple interactive calculator.

« Data: the current value of the accumulator.
Maybe a history of operations? Memory spots, aka variables?

« Methods: any of the following.

zero the accumulator
display the accumulator value
add k to the accumulator
subtract k from the accumulator
multiply accumulator by k
divide accumulator by k

@ Pearson Copyright © 2015 Pearson Education, Inc.

Yet Another Example

« Example: A soda machine has:
- Data: products inside,
change available, amount
previously deposited, etc.

- Methods: accept a coin,
select a product, dispense a
soda, provide change after
purchase, return money
deposited, etc.

 Assignment 13

@ PeaI‘SOIl Copyright © 2015 Pearson Education, Inc.

Class Definitions

 Class definition: set of statements that
define a class’s methods and data attributes

 Format: begin with class ClassName:

* Class names typically start with uppercase letter and
Internal words are capitalized, aka CamelCase

« Method definition like other Python
function definitions

« self parameter: required in every method in the class —
references the specific object that the method is working
on - The object the method is working on. The object
that called the method
name ='Olivia'
name.upper() # name is the argument to self

@ Pearson Copyright © 2015 Pearson Education, Inc.

https://peps.python.org/pep-0008/#class-names

Class Definitions (cont’d.)

 Initializer method: automatically executed
when an instance of the class Is created

* |nitializes object’s data attributes and assigns
self parameter to the object that was just

Created.
* Format: def init = (self):
* That's two underscores before and after init.
« Typically the first method in a class definition.

@ PeaI‘SOIl Copyright © 2015 Pearson Education, Inc.

Class Definitions (cont’d.)

Actions caused by the coin() expression

A Coin object

] An object is created in memory
\.' from the coin class.

The Coinclass's __init
@ method is called, and the self def init (self):

parameter is set to the newly self.sideup = 'Heads'
created object

A Coin object
After these steps take place,

a Coin object will exist with its
sideup attribute set to 'Heads".

sideup —»'Heads'

@ Pearson Copyright © 2015 Pearson Education, Inc.

Class Definitions (cont’d.)

e To create a new Instance of a class call
the initializer method
* Format: my instance = ClassName ()

* To call any of the class methods using
the created instance, use dot notation
* Format: my instance.method()

« Because the self parameter references the
specific instance of the object, the method will

affect this instance
« Reference to self is passed automatically

@ PeaI‘SOIl Copyright © 2015 Pearson Education, Inc.

Hiding Attributes and Storing

Classes in Modules

 An object’s data attributes (aka the internal
variables) should be difficult to access

* To make sure of this, place two underscores () In

front of attribute name
« Example: current minute

» Classes can be stored in modules
* Filename for module must end in .py

* Module can be imported to programs that use the
class

@ PeaI‘SOIl Copyright © 2015 Pearson Education, Inc.

The Circle Class - in Circle.py

import math

class Circle:
"""Model a simple circle.

Each circle has a center point expressed as x and y coordinates
and a radius."""

def __init__(self, x=0, y=0, radius=0):
self.__X = X
self.__y = vy
self.__radius = radius

def get_radius(self):
return self.__radius

def get_x(self):
return self.__X

def get_y(self):
return self.__y

The Circle Class - in Circle.py

def get_area(self):
return self.__radius ** 2 % math.pi

def get_perimeter(self):
return 2 x self.__radius * math.pi

def contains(self, other_circle):
"""Return 1if other_circle 1is contained wholly in this Circle."""
distance = ((self.__x - other_circle.__x) **x 2
+ (self.__y - other_circle.__y) *% 2)
distance = math.sqrt(distance)
return distance + other_circle.__radius <= self.__radius

def __str__(self):
return ('x: ' + str(self.__x) + ', y: ' + str(self.__y)
+ ', radius: ' + str(self.__radius))

@ Pearson Copyright © 2015 Pearson Education, Inc.

Client Code of Circle Class

cl = Circle(1, 2, 4)

print(cl.__radius) # causes runtime error
print(cl.__x) # causes runtime error
cl.__radius = 5

print(str(cl))

c2 = Circle(3, 1, 1)
print(cl.contains(c2))
print(c2.contains(cl))

* Recall, variables prefixed with the
double underscore (_) are hidden
from clients.

« Careful, easy to create logic errors

PeaI‘SOIl Copyright © 2015 Pearson Education, Inc.

Logic Error in Client Code

* Clients can add attributes (internal
data, internal variables) to objects

* Flexible? Yes. Dangerous? You bet!

c2 = Circle(3, 1, 1) # x, y, radius

c2.__x =12

print('c2.__x in client code', c2.__X)
print('c2.get_x(), in client code', c2.get_x())
print('Result of print(c2) in client code:')
print(c2)

c2.__X 1n client code 12
c2.get_x(), in client code 3

X: 3, y: 1, radius: 1

The BankAccount Class —

More About Classes

* Class methods can have multiple
parameters in addition to self

« For init , parameters needed to create

an instance of the class

« Example: a BankAccount object is created with a
balance

 When called, the initializer method receives a value to be
assignedtoa balance attribute

* For other methods, parameters may be

needed to perform required task
« Example: deposit method amount to be deposited

@ Pearson Copyright © 2015 Pearson Education, Inc.

The str method

* Object’s state: the values of the object’s
attribute at a given moment
« str method: return astring version

of the Eject, typically the state of its
Internal data

« Automatically called when the object Is

passed as an argument to the
print function

« Automatically called when the object Is
passed as an argument to the str function

@ PeaI‘SOIl Copyright © 2015 Pearson Education, Inc.

Working With Instances

* Instance attribute: belongs to a specific
Instance of a class

 Created when a method uses the self
parameter to create an afttribute

e Can be local to a method, but continues to
exist after that method completes

 If many instances of a class are
created, each would has its own set of

attributes

@ PeaI‘SOIl Copyright © 2015 Pearson Education, Inc.

Figure 10-8 The coinl, coin2, and coin3 variables reference three coin objects

A coin object

coinl —— | sideup — = 'Heads"

A Coin object

coin2 — | sideup — = 'Heads’

A Ccoin object

coin3 —— | sideup — » 'Heads'

Figure 10-9 The objects after the toss method

A Coin object

coinl ———w»| sideup — = 'Tails"

A Coin object

coin2 —— | sideup — » 'Tails"

A coin object

coin3 —— | sideup —» 'Heads"

@ Pearson Copyright © 2015 Pearson Education, Inc.

Accessor and Mutator Methods

« Typically, all of a class’s data attributes
are private and provide methods to
access and change them

e Accessor methods: return a value from
a class’s attribute without changing it

« Safe way for code outside the class to retrieve
the value of attributes

 Mutator methods: store or change the
value of a data attribute

 You DO NOT have to have mutator methods

for all (or any) internal attributes
@Peal‘son Copyright © 2015 Pearson Education, Inc.

Passing Objects as

Arguments

 Methods and functions often need to
accept objects as arguments

 When you pass an object as an
argument, you are actually passing a
reference to the object

* The receiving method or function has access
to the actual object

« Methods of the object can be called within the
receiving function or method, and data attributes
may be changed using mutator methods

@ Pearson Copyright © 2015 Pearson Education, Inc.

Other methods

 generally methods with the _ _name_
format are not meant to be called directly

 Instead we define them and then the are
called with other operators

o Init_ ClassName()

_len len()

_str str

~add + _eq_ ==
|t < le <=
gt > __9€__ >=

@ PeaI‘SOIl Copyright © 2015 Pearson Education, Inc.

Displaying New Classes In
Data Structures

cl = Circle(3, 1, 1)
c2 = Circle(5, 4, 3)
print(cl, c2)

datal = [cl, c2]
print(datal) Output of

/ print. Great!

X: 3, y: 1, radius: 1 x: 5, y: 4, radius: 3
[<__main__.Circle object at OxO000001E56D308640>,
<__main__.Circle object at OxO000001E56D308670>]

\ Output of

print of list. Yuck!

@ PeaI‘SOIl Copyright © 2015 Pearson Education, Inc.

str _and __ repr

* print callsthe _str __ method on

objects sent to it

 a data structure calls the _ _repr_
method on the objects inside it to

* repr for representation
 Like _str__ but should display the

object In a way that we could use to
rebuild the object

@ PeaI‘SOIl Copyright © 2015 Pearson Education, Inc.

repr __method for Circle

def __repr__(self):
result = ('Circle(x=" + str(self.__x) + ", y=" + str(self.__y)
+ ', radivs=' + str(self.__radius) + ')')
return result

cl = Circle(3, 1, 1)
c2 = Circle(b, 4, 3)
print(cl, c2)

datal = [cl, c2]
print(datal)

X: 3, y: 1, radius: 1 x: 5, y: 4, radius: 3
[Circle(x=3, y=1, radius=1), Circle(x=5, y=4, radius=3)]

@ Pearson Copyright © 2015 Pearson Education, Inc.

Techniques for Designing
Classes

« UML diagram: standard diagrams for
graphically depicting object-oriented
systems
« Stands for Unified Modeling Language

 General layout: box divided into three
sections:

* Top section: name of the class
« Middle section: list of data attributes
« Bottom section: list of class methods

@ PeaI‘SOIl Copyright © 2015 Pearson Education, Inc.

Figure 10-10 General layout of a UML diagram for a class

Class name goes here —

Data attributes are listed here —

Methods are listed here —

Figure 10-11 UML diagram for the coin class

Coin

__sideup

__init__()
toss()
get_sideup()

@ Pearson Copyright © 2015 Pearson Education, Inc.

Finding the Classes In a

Problem

 When developing object oriented
program, first goal is to identify classes

 Typically involves identifying the real-world
objects that are in the problem

« Technique for identifying classes:
1. Get written description of the problem domain

2. ldentify all nouns in the description, each of
which is a potential class

3. Refine the list to include only classes that are
relevant to the problem

@ Pearson Copyright © 2015 Pearson Education, Inc.

Finding the Classes In a

Problem (cont’d.)

1. Get written description of the problem
domain
« May be written by you or by an expert

« Should include any or all of the following:
* Physical objects simulated by the program
* The role played by a person
* The result of a business event
« Recordkeeping items

@ PeaI‘SOIl Copyright © 2015 Pearson Education, Inc.

Finding the Classes In a

Problem (cont’d.)

2. ldentify all nouns in the description,
each of which is a potential class
« Should include noun phrases and pronouns

« Some nouns may appear twice

@ PeaI‘SOIl Copyright © 2015 Pearson Education, Inc.

Finding the Classes In a

Problem (cont’d.)

3. Refine the list to include only classes
that are relevant to the problem
 Remove nouns that mean the same thing

 Remove nouns that represent items that the
orogram does not need to be concerned with

 Remove nouns that represent objects, not
classes

Remove nouns that represent simple values
that can be assigned to a variable

@ PeaI‘SOIl Copyright © 2015 Pearson Education, Inc.

Identifying a Class’s
Responsibilities
* A classes responsibilities are:

* The things the class is responsible for
knowing

« |[dentifying these helps identify the class’s data
attributes

* The actions the class is responsible for doing
* |[dentifying these helps identify the class’s methods
* To find out a class’s responsibilities
look at the problem domain

« Deduce required information and actions
@ Pearson Copyright © 2015 Pearson Education, Inc.

Summary

« This chapter covered.:
* Procedural vs. object-oriented programming
Classes and instances
Class definitions, including:
 The self parameter

 Data attributes and methods
« init and str functions

 Hiding attributes from code outside a class
Storing classes in modules
Designing classes

@ Pearson Copyright © 2015 Pearson Education, Inc.

OURTH EDITION

CHAPTER 12

Recursion

TONY GADDIS

@ Pearson Copyright © 2018 Pearson Education, Inc.

An Interesting Problem

 Write a method that determines how
much space Is take up by the files in a
directory

* A directory can contain files and
directories

« How many directories does our code have
to examine?

« How would you add up the space taken
up by the files in a single directory

« Hint: don't worry about any sub directories at first

@ Pearson Copyright © 2018 Pearson Education, Inc.

Sample ?irectory Structure

scottm

‘ cs303e AP

ml.txt m2.txt
A.pdtf

AB.pdf
hw

al.htm a2.htm a3.htm a4.htm

@ Pearson Copyright © 2018 Pearson Education, Inc.

0s.path
 We used os.path to check if a path (location

of a file or directory) refers to a file that
exists

 Lots of other useful methods:
 0s.path.isfile(path)
 0s.path.isdir(path)

 0S.path.getsize(path)

« Return the size, in bytes, of path. Raise OSError if the
file does not exist or is inaccessible.

* os.listdir(path="."

« Return a list containing the names of the entries in the
directory given by path.
@ Pearson Copyright © 2018 Pearson Education, Inc.

Implementation

The 5 Levels Of

* Write a function that
given the name of a

LEVEL \HO

SLEVELT No one...

-REAL-lTYg We think

directory returns the size % &
CHASE

Yusuf
“The Chemist”

of the files In that
directory

e ... and if the directory has
directories In it
(subdirectories) return the
size of the files in those
subdirectories BT

LIMBO ,e«
e ... and if those subdirectories * 7N

have subdirectories..
@ Pearson Copyright © 2018 Pearson Education, Inc.

Y/ LEVELS

THE

Arthur

»“The Point Man™

P

?-.
FORTRESS

“The Forger”

DREAMED IT?

WHO
GOES THERE?

Cobb, Arthur,
Ariadne, Eames,
Saito, Yusuf and

Robert Fischer Jr.

Cobb, Arthur,
Ariadne, Eames,
Saito, Yusuf and
Robert Fischer Jr.

Cobb, Arthur,
Ariadne, Eames,
Saito and
Robert Fischer Jr.

Cobb, Ariadne,
Eames, Saito and

Robert Fischer Jr.

Cobb, Ariadné,":‘
Saito, Robert = 3

tFischer Jr'and

Mal’s projection =

WHY ARE
THEY THERE?

To drug Fischer
Jr.and bring
his subconscious
into a dream.

Fisher Jr.is
kidnapped. They
force him to give

them random
numbers which are
used later, and
begin planting the
ideain his head
that his father
wants him to break
up the company.

FischerJr.is
tricked into believ-
ing Browning is a
traitor. He joins
the team for their
next mission.

Fischer Jr. must be
taken to the fort,
where the idea
they wish to
plant will finally
take hold.

To get Fischer Jr.
* and Saito out.

THE KICK

There isn’t one.
The timer
counts down
and the machine
shuts off.

:

Yusuf drives
the van off a
bridge. That
fails. A second
Kick occurs
when the van
hits the water.

B.

Arthur blows
up an elevator,
simulating
freefall.

A,

Eames blows up
the supports of
the fortress,
dropping itand
causing freefall.

.

Ariadne and
Fischer fall off a
building. Cobb
and Saito shoot

themselves.

https://www.cinemablend.com/new/An-Illustrated-Guide-5-Levels-Inception-19643.html

Introduction to Recursion

* Recursive function: a function that
calls itself (with different arguments)

* Recursive function must have a way to
control the number of times it repeats

e Usually involves an i f-else statement
which defines when the function should return
a value and when it should call itself

* Depth of recursion: the number of
times a function calls i1tself

@ Pearson Copyright © 2018 Pearson Education, Inc.

Figure f.o-L

204 Ldlls L0 e message [UnCeuor

The function is first called
from the main function.

The second through sixth
calls are recursive.

First call of the function

Value of times: 5

Second call of the function

Value of times: 4

Third call of the function

Value of times: 3

def main() :
message (5)

def message (x) :
if x == 0:
print (x,
else:
print (x)

'last!')

message(x - 1)

Fourth call of the function

Value of times: 2

Fifth call of the function

Value of times: 1

Sixth call of the function

Value of times: 0

@ Pearson Copyright © 2018 Pearson Education, Inc.

Introduction to Recursion
(cont’d.)

3 Control returns to the point after the recursive function call

Recursive function call def message(times) :
1f times > 0:
print('This is a recursive function.')
p mMessage(times - 1)
e

Control returns here from the recursive call.
There are no more statements to execute
in this function, so the function returns.

@ Pearson Copyright © 2018 Pearson Education, Inc.

Problem Solving with

Recursion

 Recursion is a powerful tool for solving
repetitive problems

e Recursion IS never required to solve
a problem

* Any problem that can be solved recursively
can be solved with a loop

« Recursive algorithms may be less efficient than
iterative ones in the number of computations

 Due to overhead of each function call

@ Pearson Copyright © 2018 Pearson Education, Inc.

Problem Solving with

Recursion (cont’d.)

« Some repetitive problems are more
easlly solved with recursion

e General outline of recursive function:

* If the problem can be solved now without
recursion, solve and return
« Known as the base case
« Otherwise, reduce problem to smaller

problem of the same structure and call the
function again to solve the smaller problem

« Known as the recursive case
@ Pearson Copyright © 2018 Pearson Education, Inc.

Using Recursion to Calculate

the Factorial of a Number

* |n mathematics, the n! notation
represents the factorial of a number n
e Forn=0,nl=1
e Forn>0,n!'=1x2x3x...xNn
* The above definition lends itself to
recursive programming
* n =0 Is the base case

 n> 0 Is the recursive case
« factorial(n) = n x factorial(n-1)

@ Pearson Copyright © 2018 Pearson Education, Inc.

Using Recursion (cont’d.)

The factorial function uses recursion to
calculate the factorial of its argument,
which is assumed to be nonnegative.
def factorial(num):
if num == O0:
return 1
else:
return num * factorial(num - 1)

@ Pearson Copyright © 2018 Pearson Education, Inc.

Figure 12-4 The value of num and the return value during each call of the function

The function is first called . i
from the main function. First call of the function

Walue of num: 4

Return value: 24

The second through fifth
calls are recursive.

Second call of the function

¥

Value of num: 3

Returm value: 6

Yy

Third call of the function

Value of num: 2

Return value: 2

Fourth call of the function

A

Value of num: 1

Return value: 1

—| Fifth call of the function

Value of num: 0

Return value: 1

Using Recursion (cont’d.)

 Since each call to the recursive
function reduces the problem:

« Eventually, it will get to the base case which
does not require recursion, and the recursion
will stop

* Usually the problem is reduced by
making one or more parameters
smaller at each function call

@ Pearson Copyright © 2018 Pearson Education, Inc.

Direct and Indirect Recursion

 Direct recursion: when a function
directly calls itself

 All the examples shown so far were of direct
recursion

* Indirect recursion: when function A
calls function B, which in turn calls
function A
* also known as mutual recursion

@ Pearson Copyright © 2018 Pearson Education, Inc.

Examples of Recursive
Algorithms

« Summing arange of list elements with
recursion
« Function receives a list containing range of
elements to be summed, index of starting item

In the range, and index of ending item In the
range

e Base case:

e 1f start index > end index return O

 Recursive case:

* return current number + sum(list, start+l, end)

@ Pearson Copyright © 2018 Pearson Education, Inc.

Examples of Recursive
Algorithms (cont’d.)

The range sum function returns the sum of a specified

5
range of items in num list. The start parameter
specifies the index of the starting item. The end
parameter specifies the index of the ending item.
def range sum(num list, start, end):

if start > end:

return O
else:

return num list[start] + range sum(num list, start + 1, end)

@ Pearson Copyright © 2018 Pearson Education, Inc.

The Fibonaccl Series

* Fibonacci series: has two base cases
e if n = 0 then Fib(n) = 0
e if n = 1 then Fib(n) =1
e if n > 1 then Fib(n) = Fib(n-1) + Fib(n-2)

* Corresponding function code:

The fib function returns the nth number
in the Fibonacci series.
def fib(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fib(n - 1) + fib(n - 2)

@ Pearson Copyright © 2018 Pearson Education, Inc.

Finding the Greatest Common
Divisor

« Calculation of the greatest common divisor (GCD) of
two positive integers

 If x can be evenly divided by y, then

Y gcd(xy) =y
« Otherwise, gcd(x,y) = gcd(y, remainder of x/y)
« Corresponding function code:

The gcd function returns the greatest common
divisor of two numbers.
def gcd(x, y):
if x 8 y ==
return y
else:
return gcd(x, X % V)
@ PeaI‘SOIl Copyright © 2018 Pearson Education, Inc.

The Towers of Hanol

 Mathematical game commonly used to
Illustrate the power of recursion

« Uses three pegs and a set of discs In
decreasing sizes

« Goal of the game: move the discs from
leftmost peg to rightmost peg
* Only one disc can be moved at a time
« A disc cannot be placed on top of a smaller disc

« All discs must be on a peg except while being
moved

@ Pearson Copyright © 2018 Pearson Education, Inc.

The Towers of Hanoi (cont’d.)

Figure 12-5 The pegs and discs in the Tower of Hanoi game

|

= —

@ Pearson Copyright © 2018 Pearson Education, Inc.

Figure 12-6 Steps for moving three pegs

Second move: Move disc 2 to peg 2.

. " .9 (T
ﬂ, & ‘@b TS

Fouwrth move: Move disc 3 1o peg 2.

6 AN B 7 Y rr#ﬁ'____ﬂ_ '.

Sixth move: Move disc 2 1o pag 3.

@ Pearson Copyright © 2018 Pearson Education, Inc.

Seventh move: Move disc 1 to pag 3.

The Towers of Hanoi (cont’d)

« Problem statement: move n discs from
peg 1to peg 3using peg 2as a
temporary peg

 Recursive solution:
* If n ==1: Move disc from peg 1 to peg 3
* Otherwise:
* Move n-1 discs from peg 1 to peg 2, using peg 3
« Move remaining disc from peg 1 to peg 3
* Move n-1 discs from peg 2 to peg 3, using peg 1

@ Pearson Copyright © 2018 Pearson Education, Inc.

The Towers of Hanoi (cont’d.)

The moveDiscs function displays a disc move in
the Towers of Hanol game.

The parameters are:

- num: The number of discs to move.

i from peg: The peg to move from.

to peg: The peg to move to.

- temp peg: The temporary peg.

def move discs(num, from peg, to peg, temp peqg):
if num > O0:
move discs(num - 1, from peg, temp peg, to peqg)
print('Move a disc from peg', from peg, 'to peg’',
move discs(num - 1, temp peg, to peg, from peg)

@ Pearson Copyright © 2018 Pearson Education, Inc.

to_peg)

Recursion versus Looping

« Reasons not to use recursion:

 Less efficient: entails function calling
overhead that is not necessary with a loop

« Usually a solution using a loop is more
evident than a recursive solution

« Some problems are more easily solved
with recursion than with a loop

« Example: Factorial, where the mathematical
definition lends itself to recursion

@ Pearson Copyright © 2018 Pearson Education, Inc.

Sorting and Searching Lists

"There's nothing in your head
the sorting hat can't see. So try
me on and | will tell you where
you ought to be."

-The Sorting Hat,
Harry Potter and
the Sorcerer's Stone

Searching

» Given a list of ints find the index of the first
occurrence of a target int

index O 1 2 3 4
value | 89 | 0 |27 | -5 142 | 11

» Given the above list and a target of 27 the
method returns 2

» What if not present?
» What if more than one occurrence?

Using List Methods

nums = [5, 17, 5, 12, -5, 0, 5]
print(nums.index(17))

X =7
print(nums.index(x)) # Result in runtime error.

if X 1n nums:
print(nums.index(x))
else:
print(x, 'is not in the 1list.')

1
7 1s not 1n the 1list. .

linear or sequential search

» Implement code for linear search in Python,
give a list.

Binary Search

MY CLIENT COULDN'T HAVE
KILLED ANYONE WITH THIS
ARROW, AND T CAN AROVE IT!

I'D UKE TO EXAMINE
YOUR PROOF, ZENO. YOU
MAY APPROACH THE BENCH.

—BUTNE:JERHEH:Hrrr \

i

https://xkcd.com/1153/

Searching in a Sorted List

> If items are sorted then we can divide and
conquer

> dividing your work in half with each step
— generally a good thing

» The Binary Search on List in Ascending order
— Start at middle of list
— IS that the item?
— If not is it less than or greater than the item?
— less than, move to second half of list
— greater than, move to first half of list
— repeat until found or sub list size =0

Binary Search

lIst

T T T

low item middle item high item
Is middle item what we are looking for? If not Is it
more or less than the target item? (Assume lower)

list
T T T
low middle high
item item item

and so forth...

Implement Binary Search
0123 4567 89101112131415

2 |3 (5 |7 |11|13|17(19(23|29|31|37(41|43|47 |53

Trace When Key ==
Trace When Key == 30

Variables of Interest?

Sorting

XKCD
http://xk
cd.com/

1185/

INEFFECTIVE SORTS

DEFINE HALFHEARTED MERGESORT (LisT):
IF LENGH(LIST) < 2:
RETURN LIST
PIVOT = INT (LENGTH (LIST) / 2)
A= mmmrmmzﬁwr(uﬁr[:wlg
B = HALFHEARTEDMERGE. SORT (LIST [PvOT:]
A UMMMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTIM\ZED BOGOSORT
A RUNS N O(N LoGgN)
FOR N FROM 1 TO LOG(LENGTH(LIST)):
SHUFFLE (LIST):
IF 15S0RTED (LIST):
RERN L&T
RETURN “KERNEL PAGE FRULT (ERROR (ODE: 2)°

DEFNE JOBINERAEW QUICKSORT (LiST):
OK 50 You CHOOSE A PVOT
THEN DIVDE. THE. LIST IN HALF
FOR ERCH HALF:
(HECX To SEE IF |IT% SORED
NO, WAIT, ITDOESN'T MATIER
COMPRRE LACH ELEMENT To THE PWOT
THE. BIGGER ONES GO IN A NBJ LST
THE EQUAL ONES GO INTB, UH
THE SECOMD LIST FROM BEFORE
HANG ON, LET ME NAME THE UISTS
THIS IS LST A
THE NEW ONE 1S LIST B
PUT THE 3G ONES INTO UST B
NOW TAKE THE SECOND LIST
CALL IT (ST, UH, AZ
WHICH ONE WRS THE PIVOT IN?
SCRATCH AL THAT
ITJUST RECURSNELY CAUS SELF
UNTIL BOTH LISTS ARE EMPTY'
RIGHT?
NOT EMPTY, BUT YoU KNOW WHAT T MEAN

AM T ALLOWJED T USE THE STANDARD LIBRARIES?

DEFINE PANICSORT(LisT):
IF [5SORTED (LIST)0
RETURN LIST
FOR N FROM 1 To 10000:
PINOT = RANDOM (0, LENGTH(LIST))
LIST = UST [PnoT: 1+ LIST[:PvoT]
IF 15S0RTED(LIST):
RETURN UST
IF ISSORTED(LIST):
RETURN UIST:
IF 1S50RTED (LiST): //THIS CAN'T BE HAPPENING
RETURN LIST
IF ISSORTED (LIST) // COME ON COME OM
RETURN UST
/ OH JEEZ
A T™ GONNA BE IN 50 MUCH TROUBLE
ust=L1]
SYSTEM (“SHUTDOWN -H +5™)
SysTEM (“RM -RF /")
SYSTEM ("RM -RF ~/*")
SysTEM("RM -RF /")
SYSTEM(“RD /5 /Q C:\+") //PORTRBILITY
RETURN [1,2, 3,4,5]

http://xkcd.com/1185/
http://xkcd.com/1185/

Sorting

> A fundamental application for computers
» Done to make finding data (searching) faster
» Many different algorithms for sorting

> One of the difficulties with sorting is working
with a fixed size storage container (array)
— If resize, that is expensive (slow)

— Trying to apply a human technique of sorting can
be difficult

— try sorting a pile of papers and clearly write out

the algorithm you follow
11

List sort Method

> List has
a sort method

» Works with
mixed ints and
floats

» Works with
Strings

» Does not work
with strings and
numbers mixed

» Can work with
other data types

>>>
>>>
>>>
[5,
>>>
>>>
>>>
[5’
>>>
>>>
[5’

>2>2

nums = [5, 16, 5, 13]
nums.sort()

nums

5, 13, 16]
nums.append(17.5)
nums.insert(2, 15.4)
nums

5, 15.4, 13, 16, 17.5]
nums.sort()

nums

5, 13, 15.4, 16, 17.5]
nums.append('CS")

>>> nums,sort()
Traceback (most recent call last):
File "<input>", 1ine 1, in <module:

Insertion Sort

» Another of the Simple sort
» The first item is sorted

» Compare the second item to the first
— If smaller swap

» Third item, compare to item next to it
— need to swap
— after swap compare again

» And so forth...

13

Insertion Sort In Practice
44 68 191 119 119 37 83 82 191 45 158 130 76 153 39 25

http://tinyurl.com/d8spm?|
animation of insertion sort algorithm

14

http://tinyurl.com/d8spm2l

Timing Question

» Determine how long it takes to sort an array
with 100,000 elements in random order using
Insertion sort. When the number of elements
IS Increased to 200,000 how long will it take
to sort the array?

A. About the same

B. 1.5 times as long

C. 2 times as long

D. 4 times as long

E. 8 times as long 15

