
1

CS303e Course Introduction

Mike Scott

scottm@cs.utexas.edu
www.cs.utexas.edu/~scottm/cs303e

1

Chapman: I didn't expect a kind of Spanish Inquisition.
Cardinal Ximinez[Palin]: NOBODY expects the Spanish
Inquisition! Our chief weapon is surprise...surprise and
fear...fear and surprise.... Our two weapons are fear and
surprise...and ruthless efficiency.... Our three weapons are
fear, surprise, and ruthless efficiency...and an almost fanatical
devotion to the Pope.... Our four...no... Amongst our
weapons.... Amongst our weaponry...are such diverse
elements as fear, surprise....

Agenda
Overview of:
this course
the elements of computing program

Course logistics including:
how to get help
the schedule
tips for success

3

Who Am I
Lecturer in CS
department since 2000
Undergrad Stanford,
MSCS RPI
US Navy for 8 years,
submarines
2 years Round Rock
High School

CS303e

My Path to CS

CS303e 4

Intro to Programming
Learn to design and implement computer
programs to solve problems.
I assume you have NEVER written
a single line of code

CS303e 5

1. output, fstrings

2. identifiers

3. errors (syntax, runtime, logic)

4. reserved words

5. variables, operators, computations

6. constants

7. built in math functions

8. conditional execution

9. boolean logic

10. iteration, repetition

11. programmer defined functions

12. Strings

13. lists

14. lists of lists (matrices)

15. files

16. exceptions

17. dictionaries

18. objects and classes (programmer
defined data types)

19. recursion

20. sorting and searching

Programing and CS

A tool for doing the cool stuff in CS
You can't create a self driving vehicle
without the software to control the vehicle

CS303e 6

Programming

complex by
end of the class

CS303e 7 8

Startup

start-up page
http://www.cs.utexas.edu/~scottm/

cs303e/handouts/startup.htm

CS303e

Book

Course Overview 9

book is required
- we follow it quite
closely
programming
assignments, limited to
features from the book
up to a given chapter
suggested exercises

Graded Course Components
Programming projects

13 projects, 10 or 20 points : 210 points

Exams
Midterm, In class Wednesday, July 3, 11:30 am 1:30 pm
400 points
Final, Thursday, August 1, 7 - 10 pm 400 points

Extra credit
CS background survey on Canvas. 10 points
course survey completion, 10 points
210 + 400 + 400 + 10 + 10 = 1030

Programming Assignments capped at 200 pts

No points added! Grades based on 1000 points, not 1030
Final point total = min(200, sum of points on programs +
background survey completion + instructor end of course
survey) + midterm exam score + final exam score

Letter Grades
Final grade determined by final point total
>= 925 -> A
900 - 924 -> A-
875 - 899 -> B+
825 - 874 -> B
800 - 824 -> B-
775 - 799 -> C+
725 - 774 -> C
700 - 724 -> C-
675 - 699 -> D+
625 - 674 -> D
600 - 624 -> D-
<= 599 -> F

In Class Exercises - Grade Bump
Recall: Final point total = min(200, sum of points on
programs + background survey completion + instructor
end of course survey) + midterm exam score + final exam
score
Each lecture shall have an in-class programming exercise. 21
total. Completing these may help you get bumped to the next
higher grade if you are close to a cutoff.
1 point added for every 2 exercises completed with
reasonable effort

rounded up

For example, you end up with 893 points per the formula
above. You complete 14 or more of the 21 in class
exercises with a reasonable attempt. You grade shall be
bumped from B+ to A-.

CS303e 12

Assignments
Start out simple but get more challenging
Individual do your own work
Programs checked automatically with
plagiarism detection software, MOSS
Turn in the right thing - correct name, correct
format or you will lose points / slip days
Slip days

8 for term, max 1 per assignment

Graded on correctness and program hygiene
(style, best practices), typical 60% / 40% split

13CS303e

Getting Help

Post to Ed (link on Canvas).
can make anonymous to other students
can post to instructors only
do not post more than 2 lines of code on a
public post

Help Hours
check schedule
Most help hours in person in GDC 3.202
A few help hours via Zoom, check the Canvas
course page and the Zoom tab for links

CS303e 14

15

Succeeding in the Course

Randy Pausch,
CS Professor at CMU said:

"When I got tenure a year
early at Virginia, other
Assistant Professors would come up to me and say, 'You
got tenure early!?!?! What's your secret?!?!?' and I
would tell them, 'Call me in my office at 10pm on Friday
night and I'll tell you.' "

shortcut is the long way, which is basically two words:
work hard

Succeeding in the Course - Meta

Randy Pausch
Ask questions!!!
lecture, Piazza, help hours

Captain Symons
Mistakes are okay.
That is how we learn.
Trying to be perfect means
not taking risks.
no risks, no learning

CS303e 16

17

Succeeding in the Course - Concrete
Whole course is cumulative!
Material builds on itself

failure to understand a concept leads to bigger

do the readings
come to class
start on assignments early
get help from the teaching staff when you get stuck on
an assignment
participate on the class discussion group
ask questions and get help when needed
DO MORE PRACTICE PROBLEMS -> Book, CodingBat,
Professor Bulko's Site

Succeeding in the Course

Cannot succeed via memorization.
The things I expect you to do are not rote.

programming is a skill
you cannot memorize your way through the
material and the course

Learn by doing.
If you are brand new to programming or
have limited experience I strongly
recommend you do lots and lots of
practice problems.

CS303e 18

CS303E: Elements of Computers and Programming
Python

Mike Scott
Department of Computer Science

University of Texas at Austin

Adapted from Dr. Bill Young's Slides

Last updated: May 23, 2023

CS303E Slideset 1: 2 Python

Some Thoughts about Programming

The only way to learn a new programming language is by writing
programs in it. B. Kernighan and D. Ritchie

"Computers are good at following instructions, but not at reading
your mind." D. Knuth

"Programming is not a spectator sport." - Bill Young

Program:

n. A magic spell cast over a computer allowing it to turn
input into error messages.

tr. v. To engage in a pastime similar to banging head
against a wall, but with fewer opportunities for reward.

CS303E Slideset 1: 3 Python

What is Python?

Python is a high-level programming language developed by
Guido van Rossum in the Netherlands in the late 1980s. It
was released in 1991.

Python has twice
received recognition
as the language with
the largest growth
in popularity for the
year (2007, 2010).

named after the
British comedy
troupe Monty
Python.

CS303E Slideset 1: 4 Python

What is Python?

Python is a simple but powerful language. It has
features that make it an excellent first programming language.

Easy and intuitive mode of interacting with the system.
Clean syntax that is concise. You can say/do a lot with
few words.
Design is compact. You can carry the most
important language constructs in your head.

There is a very powerful library of useful functions
available.

You can be productive quite quickly. You will be spending more
time solving problems and writing code, and less time grappling
with the idiosyncrasies of the language.

CS303E Slideset 1: 5 Python

What is Python?

Python is a general purpose programming language.
That means you can use Python to write code for any
programming tasks.

Python was used to write code

for: the Google search engine

mission critical projects at NASA
programs for exchanging financial transactions at
the NY Stock Exchange

the grading scripts for this class

CS303E Slideset 1: 6 Python

What is Python?

Python can be an object-oriented programming language.
Object-oriented programming is a powerful approach to
developing reusable software. More on that later!

Python is interpreted, which means that Python
code is translated and executed one statement at a
time.

This is different from other languages such as C which are
compiled, the code is converted to machine code and
then the program can be run after the compilation is
finished.

CS303E Slideset 1: 7 Python

The Interpreter

Actually, Python is always translated into byte code, a lower level
representation.

The byte code is then interpreted by the Python Virtual Machine.

CS303E Slideset 1: 8 Python

Getting Python

To install Python on your personal computer / laptop, you can
download it for free at: www.python.org/downloads

There are two major versions: Python 2 and Python 3.
Python 3 is newer and is not backward compatible with
Python 2. Make sure running Python 3.8.

available for Windows, Mac OS, Linux.
If you have a Mac, it may already be pre-installed.
It should already be available on most computers on campus.
It comes with an editor and user interface called IDLE.
I strongly recommend downloading and installing the
PyCharm, Educational version, IDE.

CS303E Slideset 1: 9 Python

A Simple Python Program: Interactive Mode

This illustrates using Python in interactive mode from the
command line. Your command to start Python may be different.

Here you see the prompt for the OS/command loop for the
Python interpreter read, eval, print loop.

CS303E Slideset 1: 10 Python

A Simple Python Program: Script Mode

the program as be more likely to write it. Enter
the following text using a text editor into a file called, say,
MyFirstProgram.py. This is called script mode.

In file my_first_program.py:

CS303E Slideset 1: 11 Python

A Simple Python Program

This submits the program in file my_first_program.py to
the Python interpreter to execute.

This is better, because you have a file containing your program and
you can fix errors and resubmit without retyping a bunch of stuff.

CS303E Slideset 1: 12 Python

Aside: About Print

If you do a computation and want to display the result use the
print function.
You can print multiple values with one print statement:

Notice that if you re computing an expression in interactive mode,
it will display the value without an explicit print.

Python will figure out the type of the value and print it
appropriately. This is very handy when learning the basics
of computations in Python.

CS303E Slideset 1: 13 Python

Another aside: Binary Numbers, Base 2 Numbers

The vast majority of computer systems use
digital storage
Some physical phenomena that is interpreted
to be a 0 or 1

abstraction, pretending something is different,
simpler, than it really is

also known as binary representations
1 bit -> 1 binary digit, a 0 or a 1
1 byte -> 8 bits
binary numbers, base 2 numbers

CS303E Slideset 1: 14 Python

Base 2 Numbers

537210
= (5 * 1,000) + (3 * 100) + (7 * 10) + (2 * 1)
= (5 * 103)+ (3 * 102)+ (7 * 101)+ (2 * 100)
Why do we use base 10? 10 fingers?
Choice of base is somewhat arbitrary
In computing we also use base 2, base 8, and
base 16 depending on the situation
In base 10, 10 digits, 0 - 9
In base 2, 2 digits, 0 and 1

CS303E Slideset 1: 15 Python

Base 2 Numbers

10110112
= (1 * 64) + (0 * 32) + (1 * 16) + (1 * 8) +
(0 * 4) + (1 * 2) + (1 * 1) = 91
= (1 * 26) + (0 * 25) + (1 * 24) + (1 * 23) +
(0 * 22) + (1 * 21) + (1 * 20) = 91
Negative numbers and real numbers are
typically stored in a non-obvious way
If the computer systems only stores 0s and 1s
how do we get digital images, characters,
colors, sound,
Encoding

CS303E Slideset 1: 16 Python

Encoding

Encoding is a system or standard that dictates
what "thing" is representing by what number
Example ASCII or UTF-8
This number represents this character
First 128 numbers of ASCII and UTF-8 same
32 -> space character
65 -> capital A
97 -> lower case a
48 -> digit 0

CS303E Slideset 1: 17 Python

Computer Memory

Recall, 1 bit -> a single 0 or 1
1 byte = 8 bits
A typical laptop or desktop circa 2023

as main memory.
1 Gigabyte -> 1 billion bytes

The programs that are running store their
instructions and data (typically) in the RAM

Terabytes (trillions of bytes) in secondary
storage. Long term storage of data, files
Typically spinning disks or solid state drives.

CS303E Slideset 1: 18 Python

The Framework of a Simple Python Program

Define your program in file
Filename.py:

def main () :

Python s t a t e m e n t
Python s t a t e m e n t
Python s t a t e m e n t

. . .
Python s t a t e m e n t
Python s t a t e m e n t
Python s t a t e m e n t

main ()

To run it:

> python file_name.py

Defining a function called main.

These are the instructions that make up
your program. Indent all of them the
same amount (usually 4 spaces).

This says to execute the function main.

This submits your program in
file_name.py to the Python
interpreter.

CS303E Slideset 1: 19 Python

Aside: Running Python From a File

Typically, if your program is in file hello.py, you can run your
program by typing at the command line:

> python hello.py

You can also create a stand alone script. On a Unix / Linux
machine you can create a script called hello.py containing the
first line below (assuming where your Python
implementation lives):

! / l us r / bi n/ pyt hon3
The line above may vary based on your system
pr i nt ('Hello World!')

CS303E Slideset 1: 20 Python

Program Documentation

Documentation refers to comments included within a source code
file that explain what the code does.

Include a file header: a summary at the beginning of each file
explaining what the file contains, what the code does, and
what key feature or techniques appear.
You shall always include your name, email, grader, and
a brief description of the program.

File: <NAME OF FILE>
Description: <A DESCRIPTION OF YOUR PROGRAM>
Assignment Number: <Assignment Number, 1 - 13>
#
Name: <YOUR NAME>
EID: <YOUR EID>
Email: <YOUR EMAIL>
Grader: <YOUR GRADER'S NAME Carolyn OR Emma or Ahmad>
#
On my honor, <YOUR NAME>, this programming assignment is my own work
and I have not provided this code to any other student.

CS303E Slideset 1: 21 Python

Program Documentation

Comments shall also be interspersed in your code:
Before each function or class definition (i.e., program
subdivision);
Before each major code block that performs a significant task;
Before or next to any line of code that may be hard to
understand.

sum = 0
s um t he i nt e ge r s [s t ar t . . . end]
f or i i n r ange (s t ar t , e nd + 1) :

sum += i

CS303E Slideset 1: 22 Python

Over Comment

Comments are useful so that you and others can understand your
code. Useless comments just clutter things up:

x = 1
y = 2

as s ign 1 to x
as s ign 2 to y

CS303E Slideset 1: 23 Python

Programming Style
Every language has
its own unique
syntax and style.
This is a C
program.

Good programmers
follow certain
conventions to
make programs
clear and easy to
read, understand,
debug, and
maintain. We have
conventions in
303e. Check the
assignment page.

i nc l ude < s t di o. h>

/ * p r i n t t a b l e o f Fa h re n h ei t to C e l s i u s
[C = 5/ 9(F - 32)] f or f ahr = 0 , 20 , . . . ,

300 * /

mai n()
{

i nt f ahr , c e l s i us ;
i nt l owe r , uppe r , s t e p;

lower = 0 ; / * low l i m i t of t a b l e * /
upper = 3 0 0 ; / * high l i m i t o f t a b l e * /
s t e p = 2 0 ; / * s t e p s i z e * /
f a h r = l o w e r ;
whi l e (f ahr <= uppe r) {

c e l s i us = 5 * (f ahr - 32) / 9;
pr i nt f (" %d\t %d\n" , f ahr , c e l s i us) ;
f ahr = f ahr + s t e p;

}
}

CS303E Slideset 1: 24 Python

Programming Style

Some important Python programming conventions:
Follow variable and function naming conventions.
Use meaningful variable/function names.
Document your code effectively.
Each level indented the same (4 spaces).
Use blank lines to separate segments of code inside functions.
2 blank lines before the first line of function (the function header) and
after the last line of code of the function

We ll learn more elements of style as we go.

Check the assignments page for more details.

CS303E Slideset 1: 25 Python

Errors:
Syntax
Remember: n. A magic spell cast over a computer allowing it
to turn input into error

We will encounter three types of errors when developing
our Python program.

syntax errors: these are ill-formed Python and caught by the interpreter
prior to executing your code.

>>> 3 = x
Fi l e " <s t di n >" , l i ne 1

Synt axEr r or : c an t as s i gn t o
l i t e r al
These are typically the easiest to find and fix.

CS303E Slideset 1: 26 Python

Errors: Runtime

runtime errors: you try something illegal while your code is
executing

>>> x = 0
>>> y = 3
>>> y / x
Tr ac e bac k (mos t r ec e nt c al l l as t) :

Fi l e " <s t di n >" , l i ne 1 , i n < modul e >
Ze r oDi vi s i onEr r or : di vi s i on by zer o

CS303E Slideset 1: 27 Python

Almost Certainly Our Fault!

At some point we all say: My program is obviously right. The
interpreter / Python must be incorrect / flaky / and i t hates me.

"As soon as we started programming, we found out
to our surprise that it wasn't as easy to get programs
right as we had thought. Debugging had to be
discovered. I can remember the exact instant when
I realized that a large part of my life from
then on was going to be spent in finding
mistakes in my own programs."

-Sir Maurice V Wilkes

CS303E Slideset 1: 28 Python

Errors: Logic

logic errors: C a l c u l a t e 6 ! (6 * 5 * 4 * 3 * 2 * 1)
your program runs but returns an incorrect result.

>>> prod = 0
>>> f o r x in r a n g e (1 , 6) :
. . . prod *= x
>>> pr i nt (pr od)
0

This program is syntactically fine and runs without error. But it
probably do what the programmer intended; it always
returns 0 no matter the values in range. How would you fix it?

Logic errors are typically the hardest errors to find and fix.

CS303E Slideset 1: 29 Python

Try It!

only way to learn a new programming language is by writing
programs in B. Kernighan and D. Ritchie

Python is wonderfully accessible. If you
wonder whether something works or is legal,
just try it out.

Programming is not a spectator sport!
Write programs! Do exercises!

CS303E: Elements of Computers and Programming
Simple Python

Mike Scott
Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: June 5, 2023

CS303E Slideset 2: 2CS303E Slideset 2: 2 Simple Python

"Once a person has understood
the way variables are used in

programming, they have
understood the quintessence of

programming."

CS303E Slideset 2: 3CS303E Slideset 2: 3 Simple Python

Simple Program: Body Mass Index

Body Mass Index or BMI is a quick calculation based
on height and mass (weight) used by medical
professionals to broadly categorize people .
Formula:

Quick tool to get a rough estimate if someone is
underweight, normal weight, overweight, or obese
Write an interactive program that gets the name,
height, and weight of a user and calculates BMI.

CS303E Slideset 2: 4CS303E Slideset 2: 4 Simple Python

Assignment Statements

An assignment in Python has form:

This means that variable is assigned value. i.e., after the
assignment, variable "contains" value.

The equals sign is NOT algebraic equality.
It causes an action! The on the right is evaluated
and the result is assigned to the variable on the left.

>>> x = 1 7 . 2
>>> y = -39
>>> z = x * y - 2
>>> p r i n t (z)
- 6 7 2 . 8

<variable> = <expression>

CS303E Slideset 2: 5CS303E Slideset 2: 5 Simple Python

Variables
A variable is a named memory location (in the RAM typically)
used to store values. explain shortly how to name variables.

Unlike some programming languages, Python variables do not have
fixed data types.

/ / Ccode
i n t x = 1 7 ;
x = 5 . 3 ;

/ / v a r i a b l e x has type i n t
/ / i l l e g a l

Python code
x = 17 # x g e t s i n t value 17
x = 5 . 3 # x g e t s f l o a t value 5 . 3

A variable in Python actually holds a pointer to a class object,
rather than the object itself.
A variable exists at a particular Each memory
location (4 or 8 bytes typically circa 2021) has an address or
location. A number that specifies that location in memory

CS303E Slideset 2: 6CS303E Slideset 2: 6 Simple Python

What's a Pointer?
Also called references, but pointers and references
have differences that are beyond the scope of this
class.
A variable exists at a particular Each
memory location (4 or 8 bytes typically circa
2021) has an address or location. A number that
specifies that location in memory.

Just like the address of a house or
building on a street

So a variable is just a name in our program for a
spot in the RAM that stores a value.
But Python (for reasons we don't want to talk
about now) has a bit of " bureaucracy" when a
variable is bound to a value

x = 12
let's assume the variable x is at memory
location 121237

121237
121238
121239
121240

121240

12

CS303E Slideset 2: 7CS303E Slideset 2: 7 Simple Python

Types in Python

Is it correct to say that there are no types in Python?

Yesand no. It is best to say that Python is "dynamically typed."
Variables in Python are untyped, but values have associated data
types (actually classes). In some cases, you can convert one type to
another.

Most programming languages assign types to both variables and
values. This has its advantages and disadvantages.

What do you think the advantages are of requiring variables to
declare the data type of a variable?

CS303E Slideset 2: 8CS303E Slideset 2: 8 Simple Python

Variables and Assignments

You can create a new variable in Python by assigning it a value.
You have to declare variables' types, as in many other
programming languages.

>>> x = 3 # creates x, assigns int
>>> print(x)
3
>>> x = " abc" # re - assigns x a string
>>> print(x)
abc
>>> x = 3.14 # re - assigns x a float
>>> print(x)
3.14
>>> y = 6 # creates y, assigns int
>>> x * y # uses x and y
18.84

CS303E Slideset 2: 9CS303E Slideset 2: 9 Simple Python

Meaning of a Variable

x = 17
y = x + 3
z = w

Defines and i n i t i a l i z e s x
Defines y and i n i t ia l i z e s y
Runtime error i f w undefined

This code defines three variables x, y and z. Notice that on the left
hand side of an assignment the variable is created (if it
already exist), and given a value.

On the right hand side of an assignment is an expression.
When the assignment statement is run the expression shall be
evaluated and the resulting value will be bound to the variable
on the left hand side.

CS303E Slideset 2: 10CS303E Slideset 2: 10 Simple Python

Naming Variables

Below are (most of) the rules for naming variables:
Variable names must begin with a letter or underscore (_)
character.
After that, use any number of letters, underscores, or digits.
Case matters: "score" is a different variable than "Score."

You use reserved words; these have a special meaning to
Python and cannot be variable names.

CS303E Slideset 2: 11CS303E Slideset 2: 11 Simple Python

Python Keywords
Variables
Python Reserved Words.
Also known as Keywords.

and, as, assert, break, class, continue, def, del,
elif, else, except, False, finally, for, from,
global, if, import, in, is, lambda, nonlocal,
None, not, or, pass, raise, return, True, try,
while, with, yield

IDLE, PyCharm, and other IDEs display reserved
words in a different color to help you recognize
them.

CS303E Slideset 2: 12CS303E Slideset 2: 12 Simple Python

Not Reserved, but avoid using names of common functions

A function is a subprogram.
Python has many built in functions we will use.
Function names like print are not reserved
words. But using them as variable names is a
very bad idea because it redefines them.

CS303E Slideset 2: 13CS303E Slideset 2: 13 Simple Python

Naming Variables

>>> ___ = 10
>>> _123 = 11
>>> ab_cd = 12
>>> ab|c = 13

not standard but l e g a l
a l s o not standard
f i n e
i l l e g a l c h a r a c t e r

Fi l e " < s t di n >" , l i ne 1
Synt axEr r or : c an t as s i gn t o ope r at or

a s s e r t i s r e s er v ed>>> a s s e r t = 14
Fi l e " < s t di n >" , l i ne 1

a s s e r t = 14

Synt axEr r or : i nva l i d s ynt ax
>>> max_val ue = 100
>>> p r i n t = 8

good
l e ga l but i l l - advi s e d

>>> pr i nt (" abc ") # we ve r e de f i ne d pr i nt
Trac eback (most r e c e n t c a l l l a s t) :

Fi l e " < s t di n > " , l i ne 1 , i n < modul e >
Type Er r or : i nt obj e c t i s not c a l l abl e

CS303E Slideset 2: 14CS303E Slideset 2: 14 Simple Python

Naming Variables

Inaddition to the rules, there are also some conventions that
programmers follow and we expect you to follow in CS303e:

Variable names shall begin with a lowercase letter.
Choose meaningful names that describe how the variable is
used. This helps with program readibility.

Use maxrather than m.
Use num_columns rather than c.

Use underscores to separate multiple words

loop variables are often i, j, etc.

f o r i in r a n g e (1 , 2 0) :
p r i n t (i)

rather than:
f o r some_value in r a n g e (1 , 2 0) :

p r i n t (s o m e _ v a l u e)

CS303E Slideset 2: 15CS303E Slideset 2: 15 Simple Python

Common Python Data Types

CS303E Slideset 2: 16CS303E Slideset 2: 16 Simple Python

What is a Data Type?

A data type is a categorization of values.

Data Type Description Example
int integer. An immutable number of

unlimited magnitude
42

float A real number. An immutable floating
point number, system defined precision

3.1415927

str string. An immutable sequence of
characters

'Wikipedia'

bool boolean. An immutable truth value True, False
tuple Immutable sequence of mixed types. (4.0, 'UT', True)
list Mutable sequence of mixed types. [12, 3, 12, 7, 6]
set Mutable, unordered collection, no

duplicates
{12, 6, 3}

dict dictionary a.k.a. maps, A mutable group of
(key, value pairs)

{'k1': 2.5, 'k2': 5}

Others we likely won't use in 303e:
complex, bytes, frozenset

CS303E Slideset 2: 17CS303E Slideset 2: 17 Simple Python

The type Function

>>> x = 17
>>> t ype (x)
< c l as s i nt >
>>> y = - 2 0 . 9
>>> t ype (y)
< c l as s f l oat >
>>> t ype (w)
Tr a c e bac k (mos t r e c e nt c al l l as t) :

Fi l e " <s t di n >" , l i ne 1 , i n < modul e >
Na me Er r or : name w i s not de f i ne d
>>> l s t = [1 , 2 , 3]
>>> t ype (l s t)
< c l as s l i s t >
>>> t ype (20)
< c l as s i nt >
>>> t ype ((2 , 2. 3))
< c l as s t upl e >
>>> t ype (abc)
< c l as s s t r >
>>> t ype ({ 1 , 2 , 3})
< c l as s s e t >
>>> t ype (pr i nt)
< c l as s bui l t i n_f unc t i on_or _me t hod >

Class is another
name for data type.
Data type is a
categorization
or classification
"What kind of thing
is the value this
variable refers to?"

CS303E Slideset 2: 18CS303E Slideset 2: 18 Simple Python

Three Common Data Types

Three data types we will use in many of our early Python programs are:
int: signed integers (whole numbers)

Computations are exact and of unlimited size
Examples: 4, -17, 0

float: signed real numbers (numbers with decimal points) Large
range, but fixed precision
Computations are approximate, not exact Examples:
3.2, -9.0, 3.5e7

str: represents text (a string)
We use it for input and output see
more uses later Examples: "Hello, World!",

These are all immutable. The value cannot be altered.

CS303E Slideset 2: 19CS303E Slideset 2: 19 Simple Python

Immutable

It may appear some
values are mutable

they are not
rather variables
are mutable and
can be bound
(refer to)
different values

Note, how the id of x
(similar to its address)
has changed

CS303E Slideset 2: 20CS303E Slideset 2: 20 Simple Python

x 37

x = 37

x = x + 10
substitute in the value x is referring to
x = 37 + 10
evaluate the expression
x = 47

x
37

47

CS303E Slideset 2: 21CS303E Slideset 2: 21 Simple Python

Mutable vs. Immutable

An immutable value is one that cannot be changed by the
programmer after you create it; e.g., numbers, strings, etc.

A mutable values is one that can be changed; e.g., sets, lists, etc.

CS303E Slideset 2: 22CS303E Slideset 2: 22 Simple Python

What Immutable Means

An immutable object is one that cannot be changed by
the programmer after you create it;
e.g., numbers, strings, etc.

It also means that there is typically only onecopy of the
object in memory.

Whenever the system encounters a new reference to 17, say, it
creates a pointer (references) to the already stored value 17.

Every reference to 17 is actually a pointer to the
only copy of 17 in memory. Ditto for "abc".

If you do something to the object that yields a new value
(e.g., uppercase a string), actually creating a
new object, not changing the existing one.

CS303E Slideset 2: 23CS303E Slideset 2: 23 Simple Python

Immutability

x holds a p o i n t e r to th e o b j e c t 17
so does y
x and y poin t to th e same o b j e c t

th e unique id a s s o c i a t e d with 17

>>> x = 17
>>> y = 17
>>> x i s y
True
>>> i d(x)
10915008
>>> i d(y)
10915008
>>> s1 = " a b c " # c r e a t e s a new s t r i n g
>>> s 2 = " ab" + " c " # c r ea t e s a ne w s t r i ng (?)

a c t ua l l y i t doe s n t !

uppercase s2

t h i s i s a new s t r i n g

>>> s1 i s s2
True
>>> i d(s 1)
140197 430946704
>>> i d(s 2)
14 01974 3094670 4
>>> s 3 = s 2 . uppe r ()
>>> pr i nt (s 3)
ABC
>>> i d(s 3)
140197 408294088

CS303E Slideset 2: 24CS303E Slideset 2: 24 Simple Python

Take a Break

CS303E Slideset 2: 25CS303E Slideset 2: 25 Simple Python

How is Data Stored?

Fundamental fact: all data in the computer is stored as a series
of bits (0s and 1s) in the memory.

true whether storing
numbers, letters, documents,
pictures, movies, sounds, programs,
etc. Everything!

A key problem in designing any
computing system or application is
deciding how to represent the data
we care about as a sequence of bits.

Review from chapter 1

CS303E Slideset 2: 26CS303E Slideset 2: 26 Simple Python

How is Data Stored: Digital Images

For example, images can be stored digitally in any of the following
formats (among others):

JPEG: Joint Photographic Experts Group
PNG: Portable Network Graphics
GIF: Graphics Interchange Format
TIFF: Tagged Image File
PDF: Portable Document Format
EPS: Encapsulated Postscript

Most of the time, we needto know how data is stored in the
memory. The computer will take care of that for us.

Standards?

CS303E Slideset 2: 27CS303E Slideset 2: 27 Simple Python

How is Data Stored?

The memory can be thought of as a big array of bytes, where a
byte is a sequence of 8 bits. Each memory address has an address
(0..maximum address) and contents (8 bits).

...

...
10000
10001
10002
10003

...

...

Encoding for character 3
Encoding for character 0
Encoding for character 3
Encoding for character E

A byte is the smallest unit of storage a programmer can address.
We say that the memory is byte-addressable.
Contemporary computer systems may have addressability of 4 or 8
bytes instead of single bytes,

00110011

5

00110011
01000101

00110000

CS303E Slideset 2: 28CS303E Slideset 2: 28 Simple Python

Representation Example: ASCII
The standard way to represent characters in memory is ASCII. The
following is part of the ASCII (American Standard Code for
Information Interchange) representation:

The standard ASCII table defines 128 character codes (from 0 to
127), of which, the first 32 are control codes (non-printable), and
the remaining 96 character codes are printing characters.

CS303E Slideset 2: 29CS303E Slideset 2: 29 Simple Python

How is Data Stored

Characters or small numbers can be stored in one byte.
If data be stored in a single byte (e.g., a large
number), it must be split across a number of adjacent
bytes in memory.

The way data is encoded in bytes varies
depending on: the data type

the specifics of the computer

Most of the time, we needto know how data is stored
in the memory. The computer will take care of that for us.

CS303E Slideset 2: 30CS303E Slideset 2: 30 Simple Python

Formats of Data Types

It would be nice to look at the character string
"25" and do arithmetic with it.

However, the int 25 (a number) is represented in
binary in the computer by: 00011001. Why?

And the string "25" (two characters) is represented by:
00110010 00110101. Why?

f loat numbers are represented in an even more
complicated way, since you have to account for an
exponent. (Think "scientific notation.") So the number
25.0 (or 2.5 101) is represented in yet a third way.

CS303E Slideset 2: 31CS303E Slideset 2: 31 Simple Python

Data Type Conversion - Using Built in Functions

Python provides functions to explicitly convert numbers from
one type to another:

f loa t (< number, variable, string >)
int (<number, variable, string >)
s t r (<number, variable >)

Note: in t truncates, meaning it throws away the decimal
point and anything that comes after it. If you need to round
to the nearest whole number, use:

round (<number or variable >)

CS303E Slideset 2: 32CS303E Slideset 2: 32 Simple Python

Conversion Examples

t r u n c a t e s

round to even

round to even

f l oat (17)
1 7 . 0
>>> s t r (17)

17
>>> i nt (1 7. 7 5)
17
>>> s t r (17 . 7 5)

17 . 75
>>> i nt (" 17 ")
17
>>> f l oat (" 17 ")
1 7 . 0
>>> r ound(1 7. 1)
17
>>> r ound(1 7. 6)
18
r ound(17. 5)
18
>>> r ound(1 8. 5)
18

CS303E Slideset 2: 33CS303E Slideset 2: 33 Simple Python

Conversion Examples

If you have a string that you want to (try to) interpret as a
number, you can use eval.

eval (" 17 + 3")

>>> eval (" 17 ")
17
>>>
20
>>> eval (17 + 3)
Tr ac e bac k (mos t r ec e nt c al l l as t) :

Fi l e " <s t di n >" , l i ne 1 , i n < modul e >
Type Er r or : eval () ar g 1 mus t be a s t r i ng ,

bytes or code o b j e c t

What was wrong with the last example?

CS303E Slideset 2: 34CS303E Slideset 2: 34 Simple Python

Be Cautious Using eval

Using the function eval is considered dangerous, especially
when applied to user input.

eval passes its argument to the Python interpreter, and a
malicious (or careless) user could input a command string
that could:

delete all of your files,
take over your machine, or
some other horrible thing.

Use i n t () or f loa t () is you want to convert a string
input into one of these types.

CS303E Slideset 2: 35CS303E Slideset 2: 35 Simple Python

Arithmetic Operations

Here are some useful operations you can perform on numeric data
types.

Name Meaning Example Result
+ Addition 34 + 1 35
- Subtraction 34.0 - 0.1 33.9
* Multiplication 300 * 30 9000
/ Float division 1 / 2 0.5
// floor division 1 // 2 0
** Exponentiation 4 ** 0.5 2.0

% Remainder 20 % 3 2

(x % y) is often referred to as "x mod y"

CS303E Slideset 2: 36CS303E Slideset 2: 36 Simple Python

Integer Division

Floor Division specified
with the // operator

floor on
a number line
Discards the
remainder from the
division operation.

CS303E Slideset 2: 37CS303E Slideset 2: 37 Simple Python

Modulo Operator

% is the Modulo
operator
x % y evaluates to the
remainder of x // y
"The floor division and
modulo operators are
connected by the
following identity:"

x == (x // y) * y + (x % y)

CS303E Slideset 2: 38CS303E Slideset 2: 38 Simple Python

Simple Program: Body Mass Index

Body Mass Index or BMI is a quick calculation based
on height and mass (weight) used by medical
professionals to broadly categorize people .
Formula:

Quick tool to get a rough estimate if someone is
underweight, normal weight, overweight, or obese
Write an interactive program that gets the name,
height, and weight of a user and calculates BMI.

CS303E Slideset 2: 39CS303E Slideset 2: 39 Simple Python

Simple Input

Obtain input from the user by calling a built in
Python function named input.
Just like we can send information (arguments) to
print, we can send information (again, arguments)
to input.

The argument is a prompt that will be displayed.
Trying reading a height and weight from the user
and calculating BMI.
What happens?

More built in functions to convert from String data
type to int or float data type. int(), float()

CS303E Slideset 2: 40CS303E Slideset 2: 40 Simple Python

Simple Program: Pythagorean Triples
In file pythagoreanTriple.py:
" " " The s i des of a r i ght t r i angl e s at i s f y t he r e l a t i on:

a * * 2 + b* * 2 = c * * 2 .
Te st whether th e t h r e e i n t e g e r s in v a r i a b l e s a , b , c
f or m a pyt ha gor e an t r i pl e , i . e . , s a t i s f y t hi s r e l a t i on.

" " "

a = 3
b = 4
c = 5
ans = (a * * 2 + b* * 2 == c * * 2)
pr i nt (" a : " , a , " b: " , b, " c : " , c , \

" i s " i f ans e l s e " i s not " , \
" a pyt ha gor e a n t r i pl e ")

> pyt hon pyt hagor e anTr i pl e . py
a : 3 b : 4 c : 5 i s a pythagorean t r i p l e

Note, print can take multiple values.
Default separator is a space,
default end is a newline

CS303E Slideset 2: 41CS303E Slideset 2: 41 Simple Python

Augmented Assignment Operators

Python (like C) provides a shorthand syntax for
some common assignments:

i += j functionally the same as i = i + j
i -= j functionally the same as i = i - j
i *= j functionally the same as i = i * j
i /= j functionally the same as i = i / j
i //= j functionally the same as i = i // j
i %= j functionally the same as i = i % j

i **= j functionally the same as i = i ** j

functionally same as x = x * 3 . 7
>>> x = 2 . 4
>>> x *= 3 . 7
>>> pr i nt (x)
8 . 8 8

CS303E Slideset 2: 42CS303E Slideset 2: 42 Simple Python

Mixed-Type Expressions

Most arithmetic operations behave as you would expect for
numeric data types.

Combining two floats results in a float.
Combining two ints results in an int (except for /).
Use // for integer division.
Dividing two ints gives a float. E.g., 2 / 5 yields 2.5.
Combining a float with an int usually yields a float.

Python will figure out what the result will be and return a value of
the appropriate data type.

CS303E Slideset 2: 43CS303E Slideset 2: 43 Simple Python

Mixed Type Expressions

>>> 5 * 3 - 4 * 6 # (5 * 3) - (4 * 6)
-9
>>> 4.2 * 3 - 1.2
11 .400000000000002 # approximate result
>>> 5 / / 2 + 4 # integer division
6
>>> 5 / 2 + 4 # float division
6.5

CS303E Slideset 2: 44CS303E Slideset 2: 44 Simple Python

Special Assignment Statements

Simultaneous assignments:

m, n = 2 , 3

means the same as:

m = 2
n = 3

With the caveat that these
happen at the same time.

What does the following do?

i , j = j , i

Multiple assignments:

i = j = k = 1

means the same as:

k = 1
j = k
i = j

Note that these happen right to
left.

CS303E Slideset 2: 45CS303E Slideset 2: 45 Simple Python

Advice on Programming

Think before you code!
Think before you code!
Think before you code!

jump right into writing code.
Think about the overall process of solving your problem;
write it down.
Refine each part into subtasks.
Subtasks may require further refinement.
Code and test each subtask before you proceed.
Add print statements to view intermediate results.

CS303E Slideset 2: 46CS303E Slideset 2: 46 Simple Python

Advice on Programming

Software development is typically done via an iterative process.
do well to follow it, except on the simplest programs.

CS303E Slideset 3: 1 Conditionals and Boolean Logic

CS303E: Elements of Computers and Programming
Conditionals and Boolean Logic

Mike Scott
Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: May 31, 2023

CS303E Slideset 3: 2 Conditionals and Boolean Logic

Booleans

So far been considering straight line code, meaning
executing one statement after another.

a.k.a

But often in programming, you need to ask a question, and do
different things based on the answer.

Boolean values are a useful
way to refer to the answer to a
yes/no question.

The Boolean literal values are
the values: True, False.
A Boolean expression
evaluates to a Boolean value.

CS303E Slideset 3: 3 Conditionals and Boolean Logic

Using Booleans

>>> import math
>>> b = (30. 0 < mat h. s qr t (1024))
>>> p r i n t (b)
True

s ta tement
boolean expres s i on

>>> x = 1
>>> x < 0
F a l s e
>>> x >= - 2 # boolean expres s i on
True
>>> b = (x == 0) # s ta tement c on ta i n i n g

boolean expres s i on
>>> pr i nt (b)
F a l s e

Booleans are implemented in the bool class.

CS303E Slideset 3: 4 Conditionals and Boolean Logic

Booleans

Internally, Python uses 0 to represent False and anything not 0 to
represent True. You can convert from Boolean to int using the
in t function and from in t to Boolean using the bool function.

CS303E Slideset 3: 5 Conditionals and Boolean Logic

Boolean Context

In a Boolean context one that expects a Boolean value False,
0, " " (the empty string), and Noneall is considered False and
any other value is considered True.
>>> bool (" xyz ")
True
>>> bool (0 . 0)
F a l s e
>>> b o o l (" ")
F a l s e
>>> i f 4 : p r i n t (" xyz ") # boolean c o n t e x t
xyz
>>> i f 4. 2: pr i nt (" xyz ")
xyz
>>> i f " ab" : pr i nt (" xyz ")
xyz

This may be confusion but can be very useful in some programming situations.

CS303E Slideset 3: 6 Conditionals and Boolean Logic

Comparison Operators

The following comparison (or relational) operators are
useful for comparing numeric values:

Operator Meaning Example
< Less than x < 0
<= Less than or equal x <= 0
> Greater than x > 0
>= Greater than or equal x >= 0
== Equal to x == 0

!= Not equal to x != 0

Each of these returns a Boolean value, True or False.

What happened
on that last line?

CS303E Slideset 3: 7 Conditionals and Boolean Logic

Caution

Be very careful using == when comparing floats, because float
arithmetic is approximate.

What happene d?
>>> (1 . 1 * 3 == 3 . 3)
F a l s e
>>> 1 . 1 * 3
3 . 3000000000000003

The problem: converting decimal 1.1 to binary yields a repeating binary
expansion: 1.000110011 . . . = 1.00011. That means it be
represented exactly in a fixed size binary representation.

Thought for the day. Some rational numbers are repeating
10 = 0.13

CS303E Slideset 3: 8 Conditionals and Boolean Logic

One Way If Statements

often useful to be able to perform an action only if some
conditions is true.

General form:
i f boolean-expression:

statement(s)
Note the colon after the
boolean-expression.
All of the statements
controlled by the if must
be indented the same
amount.

i f y ! = 0 :
z = (x / y)

CS303E Slideset 3: 9 Conditionals and Boolean Logic

If Statement Example
In file if_example.py:

Would i f x : have worked instead of i f (x ! = 0) :

CS303E Slideset 3: 10 Conditionals and Boolean Logic

Two-way If-else Statements

A two-way If-else statement executes one of two actions,
depending on the value of a Boolean expression.

General form:
i f boolean-expression:

true-case-statement(s)
e l s e :

false-case-statement(s)

Note the colons after the boolean-expression and after the else.
All of the statements in both if and else branches should be
indented the same amount.

CS303E Slideset 3: 11 Conditionals and Boolean Logic

If-else Statement: Example

In file compute_circle_area.py:

CS303E Slideset 3: 12 Conditionals and Boolean Logic

Multiway if-elif-else Statements

If you have multiple options, you can use if-elif-else statements.

General Form:

i f boolean-expression1:
statement(s)

e l i f boolean-expression2:
statement(s)

e l i f boolean-expression3:
. . .

e l s e : # optional
statement(s)

You can have any number of e l i f branches with their conditions.
The else branch is optional.

CS303E Slideset 3: 13 Conditionals and Boolean Logic

Sample Program: Calculate US Federal Income Tax

Simplified US
Federal Income Tax
Table

Source:
https://www.nerdwa
llet.com/article/taxes
/federal-income-tax-
brackets

CS303E Slideset 3: 14 Conditionals and Boolean Logic

income_tax.py

CS303E Slideset 3: 15 Conditionals and Boolean Logic

Break

Maybe take a break?

CS303E Slideset 3: 16 Conditionals and Boolean Logic

Logical Operators

Python has logical operators (and, or, not) that can be used to
make compound Boolean expressions.

not : logical negation
and : logical conjunction

or : logical disjunction

Operators and and or are always evaluated using short circuit
evaluation.

(x % 100 == 0) and not (x % 400 == 0)

CS303E Slideset 3: 17 Conditionals and Boolean Logic

Truth Tables

And: (A and B) is True
whenever both A is True and B is
True.

A B A and B
False False False
False True False
True False False

True True True

Or: (A or B) is True whenever
either A is True or B is True.

A B A or B
False False False
False True True
True False True

True True True

Not: not A
is True whenever A is False.

A not A
False True
True False

Remember that really
means not False, the empty

string, 0, or

CS303E Slideset 3: 18 Conditionals and Boolean Logic

Short Circuit Evaluation

Notice that (A and B) is False, if A is False; it matter what B is.
So no need to evaluate B, if A is False!

Also, (A or B) is True, if A is True; it matter what B is.
So no need to evaluate B, if A is True!

>>> x = 13
>>> y = 0
>>> l egal = (y == 0 or x / y > 0)
>>> p r i n t (l e g a l)
True

Python evaluate B if evaluating A is sufficient to determine
the value of the expression. important sometimes.
This is called short circuiting the evaluation.
Stopping early when answer it know.

CS303E Slideset 3: 19 Conditionals and Boolean Logic

Boolean Operators

In a Boolean context, Python always return True or False,
just something equivalent. going on in the following?

e q u i v a l e n t to F a l s e

c oerced to F a l s e

e q u i v a l e n t to F a l s e

c oerced to F a l s e
same as n o t (F a l s e)

same as n o t (True)

e q u i v a l e n t to F a l s e
same as F a l s e or True
e q u i v a l e n t to True
c oerced to True

>>> " " and 14

>>> b o o l (" " and 1 4)
F a l s e
>>> 0 and " abc "
0
>>> bool (0 and " abc ")
F a l s e
>>> not (0 . 0)
True
>>> not (1 00 0)
F a l s e
>>> 14 and " "

>>> 0 or " abc "
abc

>>> bool (0 or abc)
True

CS303E Slideset 3: 20 Conditionals and Boolean Logic

Leap Years

a concise way to do a Leap Year computation:

Note the use of outer parenthesis on the assignment to is_leap_year
to avoid the use of the continuation character, "\".

CS303E Slideset 3: 21 Conditionals and Boolean Logic

Leap Years Revisited

>pyt hon LeapYe ar 2 . py
Enter a y e a r : 2000
Year 2000 i s a leap y e a r.
>pyt hon LeapYe ar 2 . py
Enter a y e a r : 1900
Year 1900 i s not a l eap y e a r.
>pyt hon LeapYe ar 2 . py
Enter a y e a r : 2004
Year 2004 i s a leap y e a r.
>pyt hon LeapYe ar 2 . py
Enter a y e a r : 2005
Year 2005 i s not a l eap y e a r.

CS303E Slideset 3: 22 Conditionals and Boolean Logic

Conditional Expressions

A Python conditional expression returns one of two values based
on a condition.

Consider the following code:

S et p a r i t y according to num
i f (num% 2 == 0) :

par i t y = " even"
e l s e :

par i t y = " odd"

This sets variable parity to one of two values, or

An alternative is:

par i t y = " e ve n" i f (num % 2 == 0) e l s e " odd"

CS303E Slideset 3: 23 Conditionals and Boolean Logic

Conditional Expression

General form:

expr-1 i f boolean-expr else expr-2

It means to return expr-1 if boolean-expr evaluates to True,
and to return expr-2 otherwise.

f i nd maximum of x and y
max = x i f (x >= y) el s e y

CS303E Slideset 3: 24 Conditionals and Boolean Logic

Conditional Expression

Use of conditional expressions can simplify your code.

In file test_sort.py:

CS303E Slideset 3: 25 Conditionals and Boolean Logic

Operator Precedence

Arithmetic expressions in Python attempt to match widely
used mathematical rules of precedence. Thus,

3 + 4 * (5 + 2)

is interpreted as representing:

(3 + (4 * (5 + 2))) .

That is, we perform the operation within parenthesis first, then the
multiplication, and finally the addition.

To make this happen we precedence rules are enforced.

CS303E Slideset 3: 26 Conditionals and Boolean Logic

Precedence

The following are the precedence rules for Python, with items
higher in the chart having higher precedence.

Operator
+ , -

Meaning
Unary plus, minus, like - 3, +12

* *
not
* , / , / / , %

+ , -
< , <=, > , >=
==, ! =
and
or

Exponentiation
logical negation
Multiplication, division,
integer division, modulus
Binary plus, minus
Comparison
Equal, not equal
Conjunction
Disjunction

CS303E Slideset 3: 27 Conditionals and Boolean Logic

Precedence Examples

and 3 - 10 < 0

>>> - 3 * 4
-12
>>> - 3 + - 4
- 7
>>> 3 + 2 * * 4
19
>>> 4 + 6 < 11
True
>>> 4 < 5 <= 17 # n o t i c e s p e c i a l syntax

t h i s s ur pr i s e d me!

True
>>> 4 + 5 < 2 + 7
F a l s e
>>> 4 + (5 < 2) + 7
11

Most of the time, the precedence follows what you would expect.
CS303E Slideset 3: 28 Conditionals and Boolean Logic

Precedence

Operators on the same line have equal precedence.

Operator
+ , -

Meaning
Binary plus, minus

* , / , / / , % Multiplication, division,
integer division, remainder

Evaluate them left to right.

All binary operators are left associative. Example: x + y - z + w
means ((x + y) - z) + w.

Note that assignment is right associative.

x = y = z = 1 # a ss i gn z f i r s t

CS303E Slideset 3: 29 Conditionals and Boolean Logic

Use Parentheses to Override Precedence

Use parenthesis to override precedence or to
make the evaluation clearer.

an e x p r e s s i o n

what prec edence w i l l do

o v e r r i d e prec edenc e

not p a r t i c u l a r l y c l e a r

b e t t e r

>>> 10 - 8 + 5
7
>>> (10 - 8) + 5
7
>>> 10 - (8 + 5)
- 3
>>> 5 - 3 * 4 / 2
- 1 . 0
>>> 5 - ((3 * 4) / 2)
- 1 . 0

Work to make your code easy to read!

CS303E: Elements of Computers and Programming
Repitition with Loops

Mike Scott
Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: May 30, 2024

CS303E Slideset 4: 2 Loops

Repetitive Activity

Often we need to do some (program) activity numerous times:

Using Loops

So we might as well use cleverness to do it.
what loops are for.

It have to be the exact same thing over and over.

And this is how we really harness the power of a computer that
can perform tens of billions (or more) computations per second!

CS303E Slideset 4: 4 Loops

While Loop

The majority of programming
languages include syntax to repeat
operations.

while loop is one option. General form:

while condition:
statement(s)

Meaning: as long as the condition is
true when checked, execute the
statements.

As with conditionals (if/elif/else), all of
the statements in the body of the
loop must be indented the
same amount.

CS303E Slideset 4: 5 Loops

While Loop
In file not_throw_airplanes.py:

What would happen if we forgot the i += 1?

CS303E Slideset 4: 6 Loops

While Loop Example: Test Primality

An integer is prime if it is greater
than 1 and has no positive integer
divisors except 1 and itself.

To test whether an arbitrary integer n
is prime, see if any number in
[2 . . . n-1], divides it with no remainder

You do that in straight line code without knowing n in
advance. Why not?

Even then it would be really tedious if n is very large.

CS303E Slideset 4: 7 Loops

is_prime_1 Loop Example

is_prime_1.py

CS303E Slideset 4: 8 Loops

is_prime_1 Loop
Example

It works, though pretty inefficient. If a number is prime, we
test every possible divisor in [2 . . . n-1].

We actually need the special test for 2.
Think about why that is.

If n is not prime, it will have a divisor less than or equal to n.

no need to test any even divisor except 2.

The second example took ~24 seconds to complete on my laptop.

CS303E Slideset 4: 9 Loops

A Better Version: is_prime_2.py

CS303E Slideset 4: 10 Loops

The Better is_prime_2 Version

is_prime_1 does 176,970,202 divisions to discover
that 176_970_203 is prime.

is_prime_2 does 13,302.

Took much less than a second to complete.

Computer scientists and software developers spend a
lot of time trying to improve the efficiency of their
programs and algorithms.

Measurably reduce the number of computations.

CS303E Slideset 4: 11 Loops

Example While Loop: Approximate Square Root

You could approximate the square root of
a positive integer as follows: square_root.py

CS303E Slideset 4: 12 Loops

Running the Example

Notice that the last one quite right. The square root of 100 is
exactly 10.0. Foiled again by the approximate nature of floating
point numbers and floating point arithmetic.

CS303E Slideset 4: 13 Loops

More efficient way of calculating square root?

Newton's method for approximating square roots adapted
from the Dr. Math website
The goal is to find the square root of a number. Let's call it num
1. Choose a rough approximation of the square root of num, call it
approx.

How to choose?
2. Divide num by approx and then average the quotient with approx,

in other words we want to evaluate the
expression ((num/approx) + approx) / 2

3. How close are we? In programming we would store the result of the
expression back into the variable approx.
4. How do you know if you have the right answer?

CS303E Slideset 4: 14 Loops

For Loop

In a for loop, you typically know how many times
execute.

General form:
for < var> in < sequence>:

<statement(s)>

Meaning: assign each element of
sequence in turn to var and execute
the statements.

As usual, all of the statements in
the body must be indented the
same amount.

CS303E Slideset 4: 15 Loops

a Sequence?

A Python sequence holds multiple items stored one after another.

>>> seq = [2 , 3, 5 , 7 , 11 , 13] # a l i s t

The range function is a good way to generate a sequence.

range(a, b) : denotes the sequence a , a+1, . . . , b-1.
range(b) : is the same as range(0, b).

range(a, b , c) : generates a , a+c, a+2c, , , where
is the last value < b.

CS303E Slideset 4: 16 Loops

Range Examples

>>> f or i i n r ange (3 , 6) : pr i nt (i , end=" ")
. . .
3 4 5
>>> f or i i n r ange (3) : pr i nt (i , end=" ")
. . .
0 1 2
>>> for i in range (0 , 11 , 3) : p r i n t (i , end =" ")

. . .
0 3 6 9
>>> for i in range (11 , 0 , - 3) : p r i n t (i , end =" ")
. . .
11 8 5 2
>>>

CS303E Slideset 4: 17 Loops

For Loop Example

Suppose you want to print a table of the powers of

a given base up to basen. In file powers_of.py:

CS303E Slideset 4: 18 Loops

For Loop Example

CS303E Slideset 4: 19 Loops

Nested Loops

The body of while loops and for loops contain
any kind of statements, including other loops.

Suppose we want to compute and print out the BMI value
for heights from 4' 6" (4 feet, 6 inches = 54 inches) to 6' 10"
(82 inches) going up by 2 inches each time
AND weights from 85 to 350 pounds, going up by 5 pounds?

We could then take that data and create a visual graph for
quick look up.

It is arbitrary whether the is height or weight

CS303E Slideset 4: 20 Loops

Print BMI for various heights and weights

CS303E Slideset 6: 1CS303E Slideset 6: 1 Functions

CS303E: Elements of Computers and Programming
Functions

Mike Scott
Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: June 21, 2023

CS303E Slideset 6: 2 Functions

Functions

We have used several built in functions already:
print(), input(), int(), float(), range()

List of Python built in functions

CS303E Slideset 6: 3 Functions

Modules - More Functions

In addition to the standard built in functions.
standard Python includes many modules

Modules are Python scripts (programs) that contain,
typically, related functions that we can reuse in many
Python programs and scripts

When you download Python, you download the
standard modules.
Most of these modules are beyond the scope of
this course.
Two that we will use are the math module
mathematical operations which don't have defined
operators and the random module, with functions to
generate pseudo random numbers.

CS303E Slideset 6: 4 Functions

Math Module FunctionsFunction Description Example

fabs(x) Returns the absolute value of the argument. fabs(-2) is 2

ceil(x) Rounds x up to its nearest integer and ceil(2.1) is 3

 returns this integer. ceil(-2.1) is -2

floor(x) Rounds x down to its nearest integer and floor(2.1) is 2

 returns this integer. floor(-2.1) is -3

exp(x) Returns the exponential function of x (e^x). exp(1) is 2.71828

log(x) Returns the natural logarithm of x. log(2.71828) is 1.0

log(x, base) Returns the logarithm of x for the specified log10(10, 10) is 1

 base.

sqrt(x) Returns the square root of x. sqrt(4.0) is 2

sin(x) Returns the sine of x. x represents an angle sin(3.14159 / 2) is 1

 in radians. sin(3.14159) is 0

asin(x) Returns the angle in radians for the inverse asin(1.0) is 1.57

 of sine. asin(0.5) is 0.523599

cos(x) Returns the cosine of x. x represents an cos(3.14159 / 2) is 0

 angle in radians. cos(3.14159) is -1

acos(x) Returns the angle in radians for the inverse acos(1.0) is 0

 of cosine. acos(0.5) is 1.0472

tan(x) Returns the tangent of x. x represents an tan(3.14159 / 4) is 1

 angle in radians. tan(0.0) is 0

fmod(x, y) Returns the remainder of x/y as double. fmod(2.4, 1.3) is 1.1

degrees(x) Converts angle x from radians to degrees degrees(1.57) is 90

radians(x) Converts angle x from degrees to radians radians(90) is 1.57

CS303E Slideset 6: 5 Functions

Importing Modules

To use non standard functions, ones that are part of
a module, we call the function with the name of the
module, a period spoken "dot", and the name of the
function. math.sqrt(1000)

must also import the module

In a program or script, imports at the top of the file.
CS303E Slideset 6: 6 Functions

The random Module

Several useful functions are defined in the
random module:
randint(a, b): generate a random
integer between a and b, inclusively.
randrange(a, b): generate a random
integer between a and b-1, inclusively.
random(): generate a float in the
range [0 . . . 1).
How would we simulate flipping a coin with
two sides?

CS303E Slideset 6: 7 Functions

Examples of Calls to random Functions

CS303E Slideset 6: 8 Functions

Importing Modules

Typing the name of the module every time
can be tedious

A lot of programming languages and IDEs have
features to reduce the amount of typing we have to do

Can import specific or all functions from a module:

Any downside to always importing all?

The * is a
wildcard,
meaning
all.

CS303E Slideset 6: 9 Functions

Three Common Data Types

Three data types we will use in many of our early Python programs are:
int: signed integers (whole numbers)

Computations are exact and of unlimited size
Examples: 4, -17, 0

float: signed real numbers (numbers with decimal points) Large
range, but fixed precision
Computations are approximate, not exact Examples:
3.2, -9.0, 3.5e7

str: represents text (a string)
We use it for input and output see
more uses later Examples: "Hello, World!",

These are all immutable. The value cannot be altered.

CS303E Slideset 6: 10 Functions

Immutable

It may appear some
values are mutable

they are not
rather variables
are mutable and
can be bound
(refer to)
different values

Note, how the id of x
(similar to its address)
has changed

CS303E Slideset 6: 11 Functions

x 37

x = 37

x = x + 10
substitute in the value x is referring to
x = 37 + 10
evaluate the expression
x = 47

x
37

47
CS303E Slideset 6: 12 Functions

Mutable vs. Immutable

An immutable value is one that cannot be changed by the
programmer after you create it; e.g., numbers, strings, etc.

A mutable values is one that can be changed; e.g., sets, lists, etc.

CS303E Slideset 6: 13 Functions

What Immutable Means

An immutable object is one that cannot be changed by
the programmer after you create it;
e.g., numbers, strings, etc.

It also means that there is typically only onecopy of the
object in memory.

Whenever the system encounters a newreference to 17, say, it
creates a pointer (references) to the already stored value 17.

Every reference to 17 is actually a pointer to the
only copy of 17 in memory. Ditto for "abc".

If you do something to the object that yields a new value
(e.g., uppercase a string), actually creating a
new object, not changing the existing one.

CS303E Slideset 6: 14 Functions

Function

seen lots of system-defined functions;
now time to define our own., like main.

General form:

def functionName(l i s t of parameters) :
#

header statement(s) # body

Meaning: a function definition defines a block of code that
performs a specific task. It can reference any of the variables
in the list of parameters. It may or may not return a value.

The parameters are formal parameters;
they hold arguments (refer to the same values) passed

to the function later when the function is

CS303E Slideset 6: 15 Functions

Functions

CS303E Slideset 6: 16 Functions

Calling a Function

CS303E Slideset 6: 17 Functions

Function Example
Suppose you want to sum the integers 1 to n.

In file function_examples.py:

Notice this defines a function to perform the task, but won't
perform the task until the function is called from else where.
We still have to call/invoke the function with specific arguments.

CS303E Slideset 6: 18 Functions

Some Observations

def sum_to_n(n)
. . . .

f u n c t i o n header
f u n c t i o n body

Here n is a formal parameter. It is used in the definition as a place
holder for an actual parameter (e.g., 10 or 1000) in
any specific call.

sum_to_n(n) returns an in t value, meaning that a call to sum_to_n
can be used anyplace an int expression can be used.

Note, with functions the argument is the input.
We occasionally ask the user for input in the function.

CS303E Slideset 6: 19 Functions

Functional Abstraction

Once we ve defined sum_to_n,wecan use it almost
as if were a primitive in the language without
worry about the details of the definition.

We needto know what it does,
but don t care anymore how it does it!

This is called information hiding
and / or functional abstraction.

And that is POWERFUL!

CS303E Slideset 6: 20 Functions

Another Way to Add Integers 1 to N

Suppose later we discover that we could have coded
sumToNmore efficiently (as discovered by the 8-year old
C.F. Gauss in 1785):

Becausewedefined sum_to_n asa function, wecan just swap in
this definition without changing any other code. If done
the implementation in-line, have had to go find every
instance and change it.

CS303E Slideset 6: 21 Functions

Return Statements
When you execute a return statement, you return to the calling
environment. Your functions may or may not explicitly return a value.

General forms:

return
return expression

A return that return a value actually
returns the constant None. .

Every function has an implicit return at the end.

CS303E Slideset 6: 22 Functions

Some More Function Examples

Suppose we want to multiply the integers from 1 to n:

Convert Fahrenheit to Celsius AND Celsius to Fahrenheit :

CS303E Slideset 6: 23 Functions

Fahr to Celsius Table
In slideset 1, weshowed the C version of a program to print a
table of Fahrenheit to Celsius values. a Python version:

In file fahr_to_celsius_table.py:

CS303E Slideset 6: 24 Functions

Running the Temperature Program

Exercise: Do a similar problem converting Celsius to Fahrenheit.

CS303E Slideset 6: 25 Functions

A Bigger Example: Print First 100 Primes

Suppose you want to print out a table of the first 100 primes, 10
per line.

You could sit down and write
this program from scratch,
without using functions. But it
would be a complicated mess
(see section 5.8).

Better to use functional
abstraction: find parts of the
algorithm that can be coded
separately and as
functions.

CS303E Slideset 6: 26 Functions

Print First 100 Primes: Algorithm

some Python-like pseudocode to print 100 primes:

def print100Primes():
primeCount = 0
num= 0
while (primeCount < 100) :

i f already printed 10 on the current l i n e) :
go to a new line

nextPrime = (the next prime > num)
print nextPrime on the current l ine
num= nextPrime
primeCount += 1

Note that most of this is just straightforward Python
programming! The only part is how to find the next prime.
So make that a function.

CS303E Slideset 6: 27 Functions

Top Down Development

So let s assume we can define a function:

in such a way that it returns the first prime
larger than num.

Is that even possible?

Is there always a prime larger than num?

Yes! There are an infinite number of primes. So if we keep testing
successive numbers starting at num+ 1, eventually find the next
prime. That may not be the most efficient way!

CS303E Slideset 6: 28 Functions

Value of Functional Abstraction

Notice following a and
approach: Reduce the

solution of our bigger problem into one
or more subproblems which we can
tackle independently.

also an instance of
We want to think about

how to find the next prime, while
worrying about printing 100 primes.
Put that off! Think about one thing at
a time.

CS303E Slideset 6: 29 Functions

Next Step

Now solve the original problem, assuming we can write get_next_prime(n)

In file function_examples.py:

CS303E Slideset 6: 30 Functions

Looking Ahead

what the output should look like.

Of course, we do this if we really defined
get_next_prime. So see what that looks like.

CS303E Slideset 6: 31 Functions

How to Find the Next Prime

The next prime (> num) can be found as indicated in the
following pseudocode:

def get_next_prime(num) :
i f num< 2 :

return 2 as the answer
e l s e :

guess = num+ 1
while (guess i s not prime)

guess += 1
return guess as the answer

Again we solved one problem by assuming the solution to another
problem: deciding whether a number is prime.

Can you think of ways to improve this algorithm?

CS303E Slideset 6: 32 Functions

the Implementation

Note that assuming we can write:

This works (assuming we have defined is_prime), but
got an inefficiency. How can we make it more efficient?

CS303E Slideset 6: 33 Functions

Find Next Prime: A Better Version

When looking for the next prime, we t have to test every
number, just the odd numbers (after 2).

Now all that remains is to write is_prime.
CS303E Slideset 6: 34 Functions

Is a Number Prime?

We already solved a version of this in a previous lecture.
rewrite that code as a Boolean-valued function:

CS303E Slideset 6: 35 Functions

Sidetrack - Boolean "Zen"

Did you notice this line of code in the
is_prime method?

prime is a boolean that holds the value True
of False, so we simply return than value in
that variable

avoid the following:
it is unnecessarily
verbose

CS303E Slideset 6: 36 Functions

One More Example

Suppose we want to find and print k primes, starting from a given number:

In file function_examples.py:

Notice that we can use functions defined such as
get_next_prime and is_prime (almost) as if they were
Python primitives.

CS303E Slideset 6: 37 Functions

Positional Arguments

This function has four formal parameters:

Any call to this function should have exactly four actual
arguments, which are matched to the corresponding
formal parameters:

This is called using positional arguments.

CS303E Slideset 6: 38 Functions

Keyword Arguments

It is also possible to use the formal parameters as keywords.

These two calls are equivalent:

CS303E Slideset 6: 39 Functions

Keyword Arguments

You can list the keyword arguments in any order,
but all must still be specified.

CS303E Slideset 6: 40 Functions

Keyword Arguments

And even possible to mix keyword arguments with
positional arguments.

The positional arguments must come first followed by the keyword.

CS303E Slideset 6: 41 Functions

Default Parameters

Do any of the built in functions we have been using have
default arguments?

You can also specify default arguments for a function. If you
specify a corresponding actual argument, the default is used.

CS303E Slideset 6: 42 Functions

Using Defaults

You can mix default and non-default
arguments, but must define the non-
default arguments first.

CS303E Slideset 6: 43 Functions

Passing by Reference

All values in Python are objects, including numbers, strings, etc.

When you pass an argument to a function, actually passing
a reference to the object, not the object itself.

There are two kinds of objects in Python:
mutable: you can change them in your program.

immutable: you change them in your program.

If you pass a reference to a mutable object, it can be changed by
your function. If you passareference to an immutable object, it

be changed by your function.

CS303E Slideset 6: 44 Functions

What is a Data Type?

A data type is a categorization of values.

Data Type Description Example
int integer. An immutable number of

unlimited magnitude
42

float A real number. An immutable floating
point number, system defined precision

3.1415927

str string. An immutable sequence of
characters

'Wikipedia'

bool boolean. An immutable truth value True, False
tuple Immutable sequence of mixed types. (4.0, 'UT', True)
list Mutable sequence of mixed types. [12, 3, 12, 7, 6]
set Mutable, unordered collection, no

duplicates
[12, 6, 3]

dict dictionary a.k.a. maps, A mutable group of
(key, value pairs)

{'k1': 2.5, 'k2': 5}

Others we likely won't use in 303e:
complex, bytes, frozenset

CS303E Slideset 6: 45 Functions

Passing an Immutable Object

Consider the following code:

CS303E Slideset 6: 46 Functions

Passing Immutable and Mutable Objects - Output

Notice that the immutable integer parameter to increment_x
was unchanged, while the mutable list parameter to
reverse_list was changed.

Variables are mutable. They can be made to refer to different
objects (values), but some objects (values) such as ints, floats, and
Strings in Python are immutable.

CS303E Slideset 6: 47 Functions

Scope of Variables

Variables defined in a Python program have an associated
scope, meaning the portion of the program in which they
are defined.

A global variable is defined outside of a function and is
visible after it is defined. Use of global variables is
generally considered bad programming practice.
Not allowed per our 303e program hygiene guidelines.

A local variable is defined within a function and is visible
from the definition until the end of the function.

A local definition overrides a global definition.

CS303E Slideset 6: 48 Functions

Overriding

A local definition (locally) overrides the global definition.

x = 1 # x is global

def func ():
x = 2 # this x is local
print(x) # will print 2

func ()
print(x) # will print 1

Running the program:

> python funcy . py
2

1

CS303E Slideset 6: 49 Functions

Returning Multiple Values - Useful

The Python return statement can also return multiple values. In
fact it returns a tuple of values.

de f mul t i pl e Val ue s (x , y) :
r e t ur n x + 1 , y + 1

pr i nt (" Val ue s r e t ur ne d ar e : " , mul t i pl e Val ue s (4 , 5. 2))

x1 , x2 = m u l t i p l e Values (4 , 5 . 2)
pr i nt (" x1 : " , x1 , " \t x2 : " , x2)

Val ues r e t ur ned ar e : (5 , 6 . 2)
x1 : 5 x2 : 6 . 2

You can operate on this using tuple functions, which we ll cover
later in the semester, or assign them to variables.

CS303E: Elements of Computers and Programming
Files

Mike Scott
Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: June 23, 2022

CS303E Slideset 6: 2 Files

Value of Files

Files are a persistent way to store programs, input
data, and output data.

Files are stored in the memory of
your computer in an area allocated
to the file system, which is typically
arranged into a hierarchy of
directories (aka folders).

The path to a particular file
details where the file is stored
within this hierarchy.

CS303E Slideset 6: 3 Files

Relative Pathnames

A path to a file may be absolute or relative.

If you just use the name of the file, assuming that
it is in the current working directory.

pwd -> print working directory
ls -l -> list the contents of the current
directory in long form (with details)

CS303E Slideset 6: 4 Files

Relative Pathnames

cat -> from concatenate, synonym for append
(in this case to standard output)

src/ means look for the file in the directory
named src

CS303E Slideset 6: 5 Files

File Paths

On Windows, a file path might be:

C:\Users\scottm\314\src\calculate_texas.py

On Linux or MacOS, it might be:

/home/scottm/314/src/calculate_texas.py

Python passes filenames around as strings, which causes
some problems for Windows systems, partly because
Windows uses the '\' in filepaths.
Recall that backslash is an escape character, and including it
in a string may require escaping it.

CS303E Slideset 6: 6 Files

Raw Strings

There is a way in Python to treat a string as a raw string,
meaning that escaped characters are treated just as any
other characters.

>>> pr i nt (' abc \ndef ')
abc
def
>>> pr i nt (r ' abc \ndef ')
abc \ndef

Prefix the string with an 'r'. You may or may not need to
do the for Windows pathnames including '\'

CS303E Slideset 6: 7 Files

Python - Show the Current Working Directory

In CS303e when we open a file we will
generally assume it is in the same directory as
the running Python program.

When doing homework, how do you know what that is
so you can put your data files in the same directory?

import os
print(os.getcwd())

Of course your output will be different.

CS303E Slideset 6: 8 Files

Working with Files in Python

Python provides a simple, elegant interface to
storing and retrieving data in files.

Functions for dealing with files:

open : establish a connection to the file and associate
a local file handle with a physical file.

close : terminate the connection to the file.

Opening a File

Before your program can access the data in a file, it is necessary
to open it. This returns a file object, also called a 'handle,' that
you can use within your program to access the file.

It also informs the system how you intend for your program to
interact with the file, the 'mode.'

CS303E Slideset 6: 10 Files

Example of Opening a File

General Form:

fileVariable = open(filename, mode)

What do you think the 42 and 29 (an int returned by the write
function) represent above?

Notice we are calling a function (method) on a variable.
outfile.write

CS303E Slideset 6: 11 Files

Opening a File: Modes

Permissible modes for files:

Mode Description

'r' Open for reading.
'w' Open for writing. If the file already exists the

old contents are overwritten.
'a' Open for appending data to the end of the file.
'rb' Open for reading binary data.

'wb' Open for writing binary data.

You also have to have necessary permissions from the
operating system to access the files.

This semester we be using the binary modes.

In other words we are going to read from files assuming it is
encoded as text. In binary we would read the raw 0s and 1s.

CS303E Slideset 6: 12 Files

Closing the File

General form:

f i le_variable . close ()

All files are closed by the OS when your program terminates. Still,
it is very important to close any file you open in Python.

the file will be locked from access by any other program while
you have it open;
items you write to the file may be held in internal buffers
rather than written to the physical file;
if you have a file open for writing, you read it until you
close it, and re-open for reading;

just good programming practice.

CS303E Slideset 6: 13 Files

Using the with statement

Although not in the textbook, the preferred way of opening a
file is with the with statement. (Another Python keyword)

CS303E Slideset 6: 14 Files

Reading/Writing a File

There are various Python functions for reading data
from or writing data to a file, given the file object in
variable fn.
Function
fn.read()

Description
Return entire remaining contents of file as a string.

fn.read(k) Return next k characters from the file as a string.
fn.readl ine() Returns the next line as a string.
fn.readl ines() Returns all remaining lines in the file as a list of strings.
fn .w ri te(s tr) Writes the string to the file.

These functions advance an internal file pointer (like a
cursor in a word processing document or a program editor)
that indicates where in the file reading/writing.
open sets the file pointer or cursor at the beginning of
the file.

CS303E Slideset 6: 15 Files

Testing File Existence

Sometimes you need to know whether a file exists,
otherwise you may overwrite an existing file.
Use the i s f i l e function from the os.path module.

Here the filepath given is relative to the current directory.

CS303E Slideset 6: 16 Files

Example: Read Lines from File

CS303E Slideset 6: 17 Files

Example: Read Lines from File

CS303E Slideset 6: 18 Files

Example: Write File
Let's write out the flip of 10,000 coins to a file, H for heads,
T for tails. 50 results per line separated by a space.

One major difference is that print inserts a newline at the
end of each line, unless you ask it not to. write does not
do that.

CS303E Slideset 6: 19 Files

Part of Resulting File - Coin Flip Results

Note, the line numbers are NOT part of the
file. They are shown by the text editor I used.

CS303E Slideset 6: 20 Files

Aside: Redirecting Output

another way to get the output of a program into a file.

When your file does a print, it sends the output to
standard out, which is typically the terminal.

You can redirect the output to a file, using > filename on
Linux systems. Anything that would have been printed on the
screen goes into a file instead.

Notice that this happens at the OS level, not at the Python level.
Programmers know how to do things multiple ways!

Can even redirect standard output inside of a Python program.
This is part of how the auto grader works. Redirecting your program's
standard output so we can compare it to what we expect the output
to be.

CS303E Slideset 6: 21 Files

Aside: Redirecting Output

CS303E Slideset 6: 22 Files

Example: Reading and Writing File

i mpor t os . pat h

def copy_file () :
' ' ' Copy c ont e nt s f r om f i l e 1 t o f i l e 2 . ' ' '
Ask user f o r f i l e n a m e s
f 1 = i nput (' Sour c e f i l e name : ') . s t r i p()
f 2 = i nput (' Tar ge t f i l e na me : ') . s t r i p()
Check i f t a r g e t f i l e e x i s t s .
i f os . pat h. i s f i l e (f 2) :

p r i n t (f 2 + ' a l r ead y e x i s t s ')
r e t u r n

Open f i l e s f o r input and output
i nf i l e = ope n(f 1 , ' r ')
out f i l e = ope n(f 2 , ' w')
Copy from input to output a l i n e a t a time
f or l i ne i n i nf i l e :

out f i l e . wr i t e (l i ne)
Close both f i l e s
i nf i l e . c l os e ()
out f i l e . c l os e ()

copy_file()

Notice the use of a
for loop to read all
the lines in the file.

CS303E Slideset 6: 23 Files

Example: Reading and Writing File
One cannot simultaneously read and write a file in Python.
However, you can write a file, close it, and re-open it for reading.

CS303E Slideset 6: 24 Files

Reading and Writing File

CS303E Slideset 6: 25 Files

Append Mode

Opening a file in append mode 'a', means that writing a value to
the file appends it at the end of the file.

It does not overwrite the
previous content of the file.

You might use this to maintain
a log file of transactions on an
account.

New transactions are added at
the end, but all transactions
are recorded.

CS303E: Elements of Computers and Programming
Lists

Mike Scott
Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: June 28, 2023

CS303E Slideset 7: 2 Lists

Lists

The l i s t class is a very useful tool in Python.

Both lists and strings are sequence types in Python, so
share many similar methods. Unlike strings, lists are
mutable.

If you change a list, it create a new copy; it
changes the actual contents of the list.

CS303E Slideset 7: 3 Lists

Value of Lists

Suppose you have 30 different test grades to average.You could
use30 variables: grade1, grade2, ..., grade30. Or you could use
one list with 30 elements: grades[0], grades[1], ..., grades[29].

CS303E Slideset 7: 4 Lists

Indexing and Slicing

With Lists you can get sublists using slicing

CS303E Slideset 7: 5 Lists

List Slicing

List slicing format: list[start : end]

Span is a list containing copies of elements
from start up to, but not including, end

If start not specified, 0 is used for start index
If end not specified, len(list) is used for end

index

Slicing expressions can include a step value
and negative indexes relative to end of list

CS303E Slideset 7: 6 Lists

Creating Lists

Lists can be created with the l i s t class constructor or using
special syntax.

>>> l i s t ()
[]
>>> l i s t ([1 , 2 , 3])

c r e a t e e mpt y l i s t , wi t h c ons t r uc t or

c r e a t e l i s t [1 , 2 , 3]
[1 , 2 , 3]
>>> l i s t ([" red " , 3 , 2 . 5]) # c r e a t e heterogeneou s l i s t

c r e a t e l i s t , no e x p l i c i t c o n s t r u c t o r

not an a c t u a l l i s t

c r e a t e l i s t us ing range

c r e a t e c h a r a c t e r l i s t from s t r i n g

[r ed , 3 , 2 . 5]
>>> [" r ed" , 3 , 2 . 5]
[r ed , 3 , 2 . 5]
>>> r ange (4)
r ange (0 , 4)
>>> l i s t (r ange (4))
[0 , 1 , 2 , 3]
>>> l i s t (" abc d")

CS303E Slideset 7: 7 Lists

Lists vs. Arrays
Many programming languages have an array type.

Arrays are:

homogeneous (all elements
are of the same type)

fixed size

permit very fast access time

Python lists are:

heterogeneous(can contain
elements of different types)

variable size

permit fast access time

Lists and arrays are examples of data structures. A very simple definition of
a data structure is a variable that stores other variables.
CS313e explores many standard data structures.

CS303E Slideset 7: 8 Lists

Sequence Operations

Lists are sequences and inherit various functions
from sequences.

Function
x in s

Description
x is in sequence s

x not in s
s1 + s2
s * n
s [i]
s [i : j]
len(s)
min(s)
max(s)
sum(s)
for loop
< , <= , > , >=
==, ! =

x is not in sequences
concatenates two sequences
repeat sequence s n times
ith element of sequence (0-based)
slice of sequence sfrom i to j-1
number of elements in s
minimum element of s
maximum element of s
sum of elements in s
traverse elements of sequence
compares two sequences
compares two sequences

CS303E Slideset 7: 9 Lists

Calling Functions on Lists

>>> l 1 = [1 , 2 , 3 , 4 , 5]
>>> l e n(l 1)
5
>>> mi n(l 1)
1
>>> max (l 1)
5
>>> s um(l 1)

assumes e lements a re comparable

assumes e lements are comparable

assumes summing makes s en s e
15
>>> l 2 = [1 , 2 , " r ed"]
>>> s um(l 2)
Tr a c e bac k (mos t r e c e nt c al l l as t) :

Fi l e " < s t di n > " , l i ne 1 , i n < modul e >
Type E r r o r : unsupported operand type (s) f o r + : i n t and s t r

>>> mi n(l 2)
Tr a c e bac k (mos t r e c e nt c al l l as t) :

Fi l e " < s t di n > " , l i ne 1 , i n < modul e >
Type E r r o r : not supported between i n s t a n c e s o f s t r and

i nt
>>>

CS303E Slideset 7: 10 Lists

Using Functions

We could rewrite the grades_examples function as follows:

CS303E Slideset 7: 11 Lists

Traversing Elements with a For Loop

General Form:
for u in l i s t :

body

In file test.py :

not r e a l l y a l i s t

not r e a l l y a l i s t

f or u i n r ange (3) :
pr i nt (u, end= " ")

pr i nt ()

f or u i n [2 , 3 , 5 , 7] :
pr i nt (u, end= " ")

pr i nt ()

f or u i n r ange (15 , 1 , - 3) :
pr i nt (u, end= " ")

pr i nt ()

> pyt hon t e s t . py
0 1 2
2 3 5 7
15 12 9 6 3

CS303E Slideset 7: 12 Lists

Comparing Lists

Compare lists using the operators: > , >=, < , <=, ==, !=. Uses
lexicographic ordering: Compare the first elements of the two lists;
if they match, compare the secondelements, and soon. The
elements must be of comparable classes.

>>> l i s t 1 = [" r ed" , 3 , " gr e e n"]
>>> l i s t 2 = [" r ed" , 3 , " gr e y"]
>>> l i s t 1 < l i s t 2
True
>>> l i s t 3 = [" r ed" , 5 , " gr e e n"]
>>> l i s t 3 > l i s t 1
True
>>> l i s t 4 = [5 , " r e d" , " gr e e n"]
>>> l i s t 3 < l i s t 4
Tr a c e bac k (mos t r e c e nt c al l l as t) :

Fi l e " < s t di n >" , l i ne 1 , i n < modul e >
Type E r r o r : not supported between i n s t a n c e s o f s t r and

i nt
>>> [" r e d" , 5 , " gr e e n"] == [5 , " r ed" , " gr e e n"]
F a l s e

CS303E Slideset 7: 13 Lists

List Comprehension
List comprehension gives a compact syntax for
building lists.
>>> r ange (4)
r ange (0 , 4)
>>> [x f or x i n r ange (4)]

not a c t u a l l y a l i s t

c r e a t e l i s t from range
[0 , 1 , 2 , 3]
>>> [x * * 2 f or x i n r ange (4)]
[0 , 1 , 4 , 9]
>>> l s t = [2 , 3 , 5 , 7 , 11 , 13]
>>> [x * * 3 f o r x in l s t]
[8 , 27 , 125 , 343 , 1331 , 219 7]
>>> [x f o r x in l s t i f x > 2]
[3 , 5 , 7 , 11 , 13]
>>> [s [0] f o r s in [" red " , " green " , " b lue "] i f s <= " green "]

>>> from Is Pr im e3 import *
>>> [x f or x i n r ange (1 00) i f i s Pr i me (x)]
[2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 ,

59 , 61 , 67 , 71 , 73 , 79 , 83 , 89 , 97]

CS303E Slideset 7: 14 Lists

List Comprehension with Files
List comprehension gives a compact syntax for
building lists, even from files.

CS303E Slideset 7: 15 Lists

List Comprehension with Files

List comprehension gives a compact syntax for
building lists, even from files.

CS303E Slideset 7: 16 Lists

List Comprehension with Files

List comprehension gives a compact syntax for
building lists, even from files.

CS303E Slideset 7: 17 Lists

Take a Break

CS303E Slideset 7: 18 Lists

More List Methods

These are methods from class l i s t .
Since lists are mutable, these actually change t .

Method
t.append(x)

Description
add x to the end of t

t .count(x)
t .extend(l1)
t . index(x)
t . i n s e r t (i , x)
t .pop()
t .pop(i)
t.remove(x)
t .reverse ()
t . s o r t ()

number of times x appears in t
append elements of l1 to t
index of first occurence of x in t
insert x into t at position i
remove and return the last element of t
remove and return the ith element of t
remove the first occurence of x from t
reverse the elements of t
order the elements of t

CS303E Slideset 7: 19 Lists

List Examples

>>> l1 = [1 , 2 , 3]
>>> l1 . append (4) # add 4 to the end of l1
>>> l1 # note : changes l1
[1 , 2 , 3 , 4]
>>> l1 . count (4) # count occurrences of 4 in l1
1
>>> l2 = [5 , 6 , 7]
>>> l1 . extend (l2) # add elements of l2 to l1
>>> l1
[1 , 2 , 3 , 4 , 5 , 6 , 7]
>>> l1 . index (5) # where does 5 occur in l1 ?
4
>>> l1 . insert (0 , 0) # add 0 at the start of l1
>>> l1 # note new value of l1
[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7]
>>> l1 . insert (3 , # l i s ts are heterogenous
>>> l1
[0 , 1 , 2 , a , 3 , 4 , 5 , 6 , 7]
>>> l1 . remove # what goes in can come out
>>> l1
[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7]

CS303E Slideset 7: 20 Lists

List Examples
>>> l1 . pop () # remove and return last element
7
>>> l1
[0 , 1 , 2 , 3 , 4 , 5 , 6]
>>> l1 . reverse () # reverse order of elements
>>> l1
[6 , 5 , 4 , 3 , 2 , 1 , 0]
>>> l1 . sort () # elements must be comparable
>>> l1
[0 , 1 , 2 , 3 , 4 , 5 , 6]
>>> l2 = [4 , 1.3 , " dog "]
>>> l 2 . s o r t () # e lements must be comparable
Trac eback (most r e c e n t c a l l l a s t) :

Fi l e " < s t di n >" , l i ne 1 , i n < modul e >
Type E r r o r : not supported between i n s t a n c e s o f s t r and

f l o a t
remove 'dog'

i n t and f l o a t ar e comparable

>>> l 2 . pop()
dog

>>> l 2
[4 , 1 . 3]
>>> l 2 . s or t ()
>>> l 2
[1 . 3 , 4]

CS303E Slideset 7: 21 Lists

Random Shuffle

A useful method on lists is random.shuffle()
from the random module.

>>> l i s t 1 = [x f or x i n r ange (9)]
>>> l i s t 1
[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8]
>>> r andom. s huf f l e (l i s t 1)
>>> l i s t 1
[7 , 4 , 0 , 8 , 1 , 6 , 5 , 2 , 3]
>>> r andom. s huf f l e (l i s t 1)
>>> l i s t 1
[4 , 1 , 5 , 0 , 7 , 8 , 3 , 2 , 6]
>>> r andom. s huf f l e (l i s t 1)
>>> l i s t 1
[7 , 5 , 2 , 6 , 0 , 4 , 3 , 1 , 8]

CS303E Slideset 7: 22 Lists

Processing CSV Lines

Supposegrades for aclasswere stored in a list of csv strings, such
as:

s t udent_ d at a = [' Alice , 90 , 75 ' ,
' Robert , 8 , 77 ' ,
' C h a r l i e , 60 , 80 ']

Here the fields are: Name, Midterm grade, Final Exam grade.

Compute the average for each student and print a table of results.

CS303E Slideset 7: 23 Lists

Processing CSV Lines from List

CS303E Slideset 7: 24 Lists

Processing CSV Lines

CS303E Slideset 7: 25 Lists

Copying Lists

Suppose you want to make a copy of a list. The following work!

CS303E Slideset 7: 26 Lists

Copying Lists

But, many ways of making a copy of a list.

CS303E Slideset 7: 27 Lists

Passing Lists to Functions

Like any other mutable object, when you passalist to afunction,
really passing a reference (pointer) to the object in memory.

def a l t e r (l s t) :
l s t . pop()

de f mai n() :
l s t = [1 , 2, 3 , 4]
pr i nt (" Bef or e c al l : " , l s t)
a l t e r (l s t)
pr i nt (" Af t er c al l : " , l s t)

mai n()

> pyt hon Li s t Ar g. py
Be f or e c al l : [1 , 2 , 3 , 4]
Af t er c al l : [1 , 2 , 3]

CS303E Slideset 7: 28 Lists

Take a Break

CS303E Slideset 7: 29 Lists

Example Problems

To get good at working with lists, we must practice!
CodingBat: https://codingbat.com/python

List1: first_last6, same_first_last, max_end3
List2: count_even, big_diff, has_22

given list of ints or floats, is it sorted in descending order?
get last index of a given value in list
given two lists of ints, return a list that contains the
difference between corresponding elements

change to be the max
are all the elements of a given list unique? In other words,
no duplicate values in the list
given a list of ints place all even values before all odd
values

CS303E: Elements of Computers and Programming
Lists of Lists

Mike Scott
Department of Computer Science

University of Texas at Austin

Last updated: May 30, 2024

CS303E Slideset 7: 2 List of Lists

Creating list of lists

Can create list of lists in Python
table = [[1, 2], [3, 6], [7,-3], [5, 6]]

Access an element with 2 subscripts.
By convention first subscript is row and the
second is the column

1 2
3 6
7 -3
5 6

0
1
2
3

0 1

index of row

index of column

access element with
2 subscripts:
table[2][0] -> 7

CS303E Slideset 7: 3 List of Lists

Creating list of lists

Can also use list comprehension
table2 = [[0] * 12] * 10
A list of lists with 10 rows and 12 columns
per row.

flips = [['H' if random.random() <= 0.5 else 'T'
for x in range(12)] for x in range(10)]

A table with 10 rows and 12 columns per row.
Each elements is a random coin flip.

CS303E Slideset 7: 4 List of Lists

List of Lists Problems

Write a function that returns the index
of the row of a list of lists of ints has the
largest sum. In the case of a tie return
the index closest to 0.

Write a function that returns the index
of the column of a list of lists of ints has
the largest sum. In the case of a tie
return the index closest to 0.

CS303E Slideset 7: 5 List of Lists

Example of using a list of lists

Conway's Game of Life
a cellular automaton designed by John
Conway, a mathematician
not really a game
a simulation
takes place on a 2d grid
each element of the grid is occupied
or empty by a simple organism, but not
any known organism

CS303E Slideset 7: 6 List of Lists

Simulation

http://www.cuug.ab.ca/dewara/life/life.html

Select pattern from menu
Select region in large area with
mouse by pressing the control key
and left click at the same time
Select the paste button

CS303E Slideset 7: 7 List of Lists

Generation 0

0 1 2 3 4 5

0

1

2

3

. * . * . *

* . * * * *

. . * * . *

. * * * . *

* indicates occupied, . indicates empty

CS303E Slideset 7: 8 List of Lists

Or

0 1 2 3 4 5

0

1

2

3

CS303E Slideset 7: 9 List of Lists

Generation 1

0 1 2 3 4 5

0

1

2

3

. * . * . *

. *

. *

. * . * . .

* indicates occupied, . indicates empty

CS303E Slideset 7: 10 List of Lists

Or , Generation 1

0 1 2 3 4 5

0

1

2

3

CS303E Slideset 7: 11 List of Lists

Rules of the "Game"

If a cell is occupied in this generation.
it survives if it has 2 or 3 neighbors in this generation
it dies if it has 0 or 1 neighbors in this generation
it dies if it has 4 or more neighbors in this generation

If a cell is unoccupied in this generation.
there is a birth if it has exactly 3 neighboring cells that are
occupied in this generation

Neighboring cells are up, down, left, right,
and diagonal. In general a cell has 8
neighboring cells

CS303E Slideset 7: 12 List of Lists

Case study

Design and implement a complete
Python program to automate Conway's
Game of Life

text based
user input for size of world
wrapped or bounded?
border or not?
high level design first,
then implement solution
test, test, test, test

Copyright © 2018 Pearson Education, Inc.

7.9 and Chapter 8

Tuples
and
More About
Strings

Copyright © 2018 Pearson Education, Inc.

Tuples
Tuple: an immutable sequence

Once it is created it cannot be changed
Format: tuple_name = (item1, item2)

Notice the use of () instead of []

Tuples have operations similar to lists
Subscript indexing for retrieving elements
Methods such as index

Built in functions such as len, min, max

Slicing expressions
The in, +, and * operators

Copyright © 2018 Pearson Education, Inc.

Tuples (cont d.)

Tuples do not support the methods:
append

remove

insert

reverse

sort

Why not? They are immutable.

Copyright © 2018 Pearson Education, Inc.

Tuples (cont d.)

Advantages for using tuples over lists:
Processing tuples is faster than processing
lists

Tuples can be safer (immutable)

Some operations in Python require use of
tuples

list() function: converts tuple to list

tuple() function: converts list to tuple

Fun fact, a function that returns 2 or
more values returns them in a tuple

Copyright © 2018 Pearson Education, Inc.

Basic String Operations

Many types of programs perform
operations on strings

In Python, many tools for examining
and manipulating strings

Strings are sequences, so many of the tools
that work with sequences (such as ranges,
lists, and tuples) also can be used
with strings

Copyright © 2018 Pearson Education, Inc.

Accessing the Individual
Characters in a String

To access an individual character in a
string:

Use a for loop
Format: for character in string:

Useful when need to iterate over the whole string,
such as to count the occurrences of a specific
character

Each character is simply a string of length 1

Use indexing
Each character has an index specifying its position
in the string, starting at 0
Format: character = my_string[i]

Copyright © 2018 Pearson Education, Inc. Copyright © 2018 Pearson Education, Inc.

Accessing the Individual

ch = my_string[6]

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Copyright © 2018 Pearson Education, Inc.

Accessing the Individual

IndexError exception will occur if:
You try to use an index that is out of range for
the string

Likely to happen when loop iterates beyond the
end of the string

use the len(string) function to
obtain the length of a string

Useful to prevent loops from iterating beyond
the end of a string

Copyright © 2018 Pearson Education, Inc.

Accessing the Individual
Characters in a String

How to access the individual elements
of the string using a for loop and the
range function?

name = 'Olivia A.'
for in range(len(name)):

print(name[i],
type(name[i])

Or
for ch in string_var:
if we don t care about position

Copyright © 2018 Pearson Education, Inc.

String Concatenation

Concatenation: appending one string to
the end of another string

Use the + operator to produce a string that is
a combination of its operands
The augmented assignment operator += can
also be used to concatenate strings

The operand on the left side of the += operator
must be an existing variable; otherwise, an
exception is raised

Copyright © 2018 Pearson Education, Inc.

Strings Are Immutable

Strings are immutable
Once they are created, they cannot be changed

string, but rather creates a new string and assigns the
new string to the previously used variable

Cannot use an expression of the form
string[index] = new_character

Statement of this type will raise an exception

Copyright © 2018 Pearson Education, Inc.

Strings Are Immutable,
Variables Are Not

Copyright © 2018 Pearson Education, Inc.

String Slicing

Slice: span of items taken from a
sequence, known as substring

Slicing format: string[start : end]
Expression will return a string containing a copy of
the characters from start up to, but not including,
end

If start not specified, 0 is used for start index

If end not specified, len(string) is used for end
index

Slicing expressions can include a step value
and negative indexes relative to end of string

Copyright © 2018 Pearson Education, Inc.

Testing, Searching, and
Manipulating Strings

You can use the in operator to
determine whether one string is
contained in another string

General format: string1 in string2
string1 and string2 can be string literals or
variables referencing strings

Similarly you can use the not in
operator to determine whether one
string is not contained in another string

Copyright © 2018 Pearson Education, Inc.

String Methods

Strings in Python have many types of
methods, divided into different types of
operations

General format:
mystring.method(arguments)

Some methods test a string for
specific characteristics

Generally Boolean methods, that return True
if a condition exists, and False otherwise

Copyright © 2018 Pearson Education, Inc.

String Methods (cont d.)

Implement a function that prompts the user for an int
and error checks it. Keep prompting until they enter an int

Copyright © 2018 Pearson Education, Inc.

String Methods (cont d.)

Some methods create and return a
modified version of the string

Simulate strings as mutable objects

String comparisons are case-sensitive
Uppercase characters are distinguished from
lowercase characters
lower and upper methods can be used for
making case-insensitive string comparisons

Copyright © 2018 Pearson Education, Inc.

String Methods (cont d.)

Copyright © 2018 Pearson Education, Inc.

Programs commonly need to search for
substrings

Several methods to accomplish this:
endswith(substring): checks if the string
ends with substring

Returns True or False

startswith(substring): checks if the
string starts with substring

Returns True or False

Copyright © 2018 Pearson Education, Inc.

String Methods (cont d.)

Several methods to accomplish this

find(substring): searches for
substring within the string

Returns lowest index of the substring, or if the
substring is not contained in the string, returns -1

replace(substring, new_string):
Returns a copy of the string where every
occurrence of substring is replaced with
new_string

Copyright © 2018 Pearson Education, Inc.

String Methods (cont d.)

Copyright © 2018 Pearson Education, Inc.

The Repetition Operator

Repetition operator: makes multiple
copies of a string and joins them
together

The * symbol is a repetition operator when
applied to a string and an integer

String is left operand; number is right

General format: string_to_copy * n

Variable references a new string which
contains multiple copies of the original string

Copyright © 2018 Pearson Education, Inc.

Splitting a String

split method: returns a list containing
the words in the string

By default, uses space as separator

Can specify a different separator by passing it
as an argument to the split method

Also referred to as parsing a string.

Copyright © 2018 Pearson Education, Inc.

chr and ord Functions
Recall, the vast majority of
computer systems store data in
a binary form, 0's and 1's

We have encoding schemes to
specify what a given sequence
of 0's and 1's represents, such
as characters, colors, sound

In Python, the built in chr and
ord functions can be used to
see the encoding for strings of
length 1

Copyright © 2018 Pearson Education, Inc.

C H A P T E R 9

Dictionaries
and Sets

Copyright © 2018 Pearson Education, Inc.

Topics

Dictionaries

Sets

Serializing Objects

Copyright © 2018 Pearson Education, Inc.

DNA Count
DNA Deoxyribonucleic acid

"The polymer carries genetic instructions for the
development, functioning, growth and
reproduction of all known organisms and many
viruses. "

Part of the building blocks of DNA are 4
nitrogen containing nucleobases

cytosine [C], guanine [G], adenine [A]
or thymine [T]

Copyright © 2018 Pearson Education, Inc.

DNA Data

Massive amounts of work to catalog
and decode DNA in organisms has
been done.
https://www.kaggle.com/datasets/nageshsingh/dna-
sequence-dataset?select=dog.txt

ATGCCACAGCTAGATACATCCACCTGATTTATTATA
ATCTTTTCAATATTTCTCACCCTCTTCATCCTATTTC
AACTAAAAATTTCAAATCACTACTACCCAGAAAAC
CCGATAACCAAATCTGCTAAAATTGCTGGTCAACA
TAATCCTTGAGAAAACAAATGAACGAAAATCTATTC
GCTTCTTTCGCTGCCCCCTCAATAA

Copyright © 2018 Pearson Education, Inc.

DNA Counts

Write a function that given a string that
represents a portion of DNA returns the
frequency of the four nucleobases

cytosine [C], guanine [G], adenine [A]
or thymine [T]

Copyright © 2018 Pearson Education, Inc.

Dictionaries
Dictionary: data structure that stores a
collection of key-value pairs

Each element consists of a key and a value
Often referred to as mapping of key to value

Key must be an immutable object

A real world dictionary, the words are the keys and the
definitions are the values

Given the word you can find the value quickly

To retrieve a specific value, use the key associated
with it

Format for creating a dictionary with given values
dictionary = {key1:val1, key2:val2}

Copyright © 2018 Pearson Education, Inc.

Visualization of Dictionary

https://docs.swift.org/swift-book/LanguageGuide/CollectionTypes.html

Copyright © 2018 Pearson Education, Inc.

Retrieving a Value from a Dictionary

Prior to Python 3.7 the keys in a dictionary are in
no discernible order from the client's perspective

Python 3.7 and later, dictionaries maintain keys in
insertion order

General format for retrieving value from
dictionary: dictionary[key]

If key in the dictionary, associated value is returned,
otherwise, KeyError exception is raised

Test whether a key is in a dictionary using the in
and not in operators

Helps prevent KeyError exceptions

Copyright © 2018 Pearson Education, Inc.

Adding Elements to an
Existing Dictionary

Dictionaries are mutable objects

To add a new key-value pair:
dictionary[key] = value

If key exists in the dictionary, the value
associated with it will be changed

if the key doesn't exist this adds the key-value
pair to the dictionary

Copyright © 2018 Pearson Education, Inc.

Deleting Elements From an
Existing Dictionary

To remove a key-value pair:
d.pop(key)

If key is not in the dictionary, KeyError
exception is raised
OR del dictionary[key]

Copyright © 2018 Pearson Education, Inc.

Getting the Number of Elements
and Mixing Data Types

len function: used to obtain number of
key-value pairs in a dictionary

Keys must be immutable objects, but
associated values can be any type of
object

One dictionary can include keys of several
different immutable types. Heterogeneous.

Values stored in a single dictionary can
be of different types

Copyright © 2018 Pearson Education, Inc.

Creating an Empty Dictionary and
Using for Loop to Iterate Over a

Dictionary
To create an empty dictionary:

Use {}

Use built-in function dict()

Elements can be added to the dictionary as
program executes

Use a for loop to iterate over a
dictionary

General format: for key in dictionary:

Copyright © 2018 Pearson Education, Inc.

Some Dictionary Methods

clear method: deletes all the elements
in a dictionary, leaving it empty

Format: dictionary.clear()

get method: gets a value associated
with specified key from the dictionary

Format: dictionary.get(key, default)
default is returned if key is not found

Alternative to [] operator
Cannot raise KeyError exception

Copyright © 2018 Pearson Education, Inc.

Some Dictionary Methods

items method: returns all the
dictionaries keys and associated
values

Format: dictionary.items()

Returned as a dictionary view
Each element in dictionary view is a tuple which
contains a key and its associated value
Use a for loop to iterate over the tuples in the
sequence

Can use a variable which receives a tuple, or can
use two variables which receive key and value

Copyright © 2018 Pearson Education, Inc.

Some Dictionary Methods

keys method: returns all the
dictionaries keys as a sequence

Format: dictionary.keys()

pop method: returns value associated
with specified key and removes that
key-value pair from the dictionary

Format: dictionary.pop(key, default)
default is returned if key is not found

Copyright © 2018 Pearson Education, Inc.

Some Dictionary Methods
(cont d.)

popitem method: returns a randomly
selected key-value pair and removes
that key-value pair from the dictionary

Format: dictionary.popitem()

Key-value pair returned as a tuple

values method: returns all the
dictionaries values as a sequence

Format: dictionary.values()

Use a for loop to iterate over the values

Copyright © 2018 Pearson Education, Inc.

Some Dictionary Methods

Copyright © 2018 Pearson Education, Inc.

Dictionary Example

Use a dictionary to determine which
"word" occurs the most in a text.

What will be the keys?

What will be the values?

Copyright © 2018 Pearson Education, Inc.

Sets
Set: object that stores a collection of data
in same way as mathematical set

Set is unordered, from the client's perspective

Elements can be of different data types

A Set

37

12.25

'Python'

['Python', 73, 'CS', 37]

Copyright © 2018 Pearson Education, Inc.

Creating a Set
set function: used to create a set

Simple set creation
set1 = {12, 'Python', 37, 73}

For empty set, call set()

For non-empty set, call set(argument) where
argument is an object that contains iterable
elements

e.g., argument can be a list, string, or tuple

If argument is a string, each character becomes a set
element

For set of strings, pass them to the function as a list

If argument contains duplicates, only one of the
duplicates will appear in the set

Copyright © 2018 Pearson Education, Inc.

Creating Data Types
List:
data = [7, 37, 5, 37, 12, 37.5]

List of lists:
table = [[1, 2], [3, 7], [19, 73]]

String:
name = 'Python Language'

Tuple:
tup1 = (37, 'Python', 73, 12, 12)

Dictionary:
freq_map = {'Python': 3, 'Java': 7}

Set:
lang_set= {'Python', 'Java', 'C++'}

Copyright © 2018 Pearson Education, Inc.

Sets are Unordered

Unlike the keys of a dictionary (which
are a set, no duplicates), the elements
in a Python set are unordered from the
client's perspective.

Copyright © 2018 Pearson Education, Inc.

Getting the Number of and
Adding Elements

len function: returns the number of
elements in the set

Sets are mutable objects
add method: adds an element to a set

What if set already contains that element?

update method: adds a group of
elements to a set

Argument must be a sequence containing
iterable elements, and each of the elements is
added to the set

Copyright © 2018 Pearson Education, Inc.

Deleting Elements From a Set

remove and discard methods: remove
the specified item from the set

The item that should be removed is passed to
both methods as an argument

Behave differently when the specified item is
not found in the set

remove method raises a KeyError exception

discard method does not raise an exception

clear method: clears all the elements
of the set

Copyright © 2018 Pearson Education, Inc.

Using the for Loop, in, and
not in Operators With a Set
A for loop can be used to iterate over
elements in a set

General format: for item in set:

The loop iterates once for each element in
the set

The in operator can be used to test
whether a value exists in a set

Similarly, the not in operator can be used to
test whether a value does not exist in a set

Copyright © 2018 Pearson Education, Inc.

Finding the Union of Sets

Union of two sets: a set that
contains all the elements of both
sets

To find the union of two sets:
Use the union method

Format: set1.union(set2)

Use the | operator
Format: set1 | set2

Both techniques return a new set
which contains the union of both sets

Copyright © 2018 Pearson Education, Inc.

Finding the Intersection of Sets
Intersection of two sets: a set that
contains only the elements found
in both sets

To find the intersection of two
sets:

Use the intersection method
Format: set1.intersection(set2)

Use the & operator
Format: set1 & set2

Both techniques return a new set
which contains the intersection of
both sets

Copyright © 2018 Pearson Education, Inc.

Finding the Difference of Sets

Difference of two sets: a set
that contains the elements
that appear in the first set but
do not appear in the second
set

To find the difference of two
sets:

Use the difference method
Format: set1.difference(set2)

Use the - operator
Format: set1 - set2

set2

set1

Copyright © 2018 Pearson Education, Inc.

Finding the Symmetric
Difference of Sets

Symmetric difference of two
sets: a set that contains the
elements that are not shared by
the two sets

To find the symmetric difference
of two sets:

Use the symmetric_difference
method

Format:
set1.symmetric_difference(set2)

Use the ^ operator
Format: set1 ^ set2

Copyright © 2018 Pearson Education, Inc.

Finding Subsets and
Supersets

Set A is subset of set B if all the
elements in set A are included in set B

To determine whether set A is subset of
set B

Use the issubset method
Format: setA.issubset(setB)

Use the <= operator
Format: setA <= setB

Copyright © 2018 Pearson Education, Inc.

Finding Subsets and
Supersets (cont d.)

Set A is superset of set B if it contains
all the elements of set B

To determine whether set A is superset
of set B

Use the issuperset method
Format: setA.issuperset(setB)

Use the >= operator
Format: setA >= setB

Copyright © 2018 Pearson Education, Inc.

Serializing Objects

Serialize an object: convert the object
to a stream of bytes that can easily be
stored in a file

Pickling: serializing an object

Copyright © 2018 Pearson Education, Inc.

To pickle an object:
Import the pickle module

Open a file for binary writing, 'wb' option
Call the pickle.dump function

Format: pickle.dump(object, file)

Close the file

You can pickle multiple objects to one
file prior to closing the file

Copyright © 2018 Pearson Education, Inc.

Serializing Objects (cont d.)

Unpickling: retrieving pickled object

To unpickle an object:
Import the pickle module

Open a file for binary writing, 'rb'
Call the pickle.load function

Format: pickle.load(file)

Close the file

You can unpickle multiple objects from
the file

Copyright © 2015 Pearson Education, Inc.

C H A P T E R 10

Classes and
Object-
Oriented
Programming

Copyright © 2015 Pearson Education, Inc.

Procedural Programming

Procedures: synonym for functions and
sub-routines

Procedural programming: writing
programs made of functions that
perform specific tasks

Functions typically operate on data items that
are separate from the functions

Data items commonly passed from one
function to another

Focus: On the algorithm and steps. Create
functions that operate on the program s data

Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming
Object-oriented programming: focuses on
creating classes and objects

Model the problem on the data involved first,
not the big steps.

Class: A programmer defined data type

Object: entity that contains data and
functions

Data is known as data attributes and functions are
known as methods

Methods perform operations on the data attributes

Encapsulation: combining data and code into
a single object

Copyright © 2015 Pearson Education, Inc.

Object Oriented Programming
Recall a CPU only knows how to perform
on the order of 100 operations

High level languages such as Python allow
us to, seemingly, create new operations
by defining new functions

Object oriented languages allow
programmers to create new data types in
addition to the ones built into the language

int, float, string, list, tuple, file, dictionary, set

Copyright © 2015 Pearson Education, Inc.
5

Object Oriented Design
Example - Monopoly

If we had to start
from scratch what
new data types would

we need to create?

Data Types Needed:

Copyright © 2015 Pearson Education, Inc.

Object Orientation
The basic idea of object oriented programming (OOP) is

to view your problem as a collection of objects, each of
which has certain state and can perform certain actions.

Each object has:

some data that it maintains characterizing its current
state;

a set of actions (methods) that it can perform.

A programmer interacts with an object by calling its
methods; this is called method invocation. That should be
the only way that another programmer interacts with an
object.

Significant object-oriented languages include Python,
Java, C++, C#, Perl, JavaScript, Objective C, and
others.

Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming

Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming

Data hiding: object s data attributes are
hidden from code outside the object

Access restricted to the object s methods
Protects from accidental corruption

Outside code does not need to know internal
structure of the object

Object reusability: the same object can
be used in different programs

Example: 3D image object can be used for
architecture and game programming

Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming
(cont d.)

Copyright © 2015 Pearson Education, Inc.

An Everyday Example of an
Object

Data attributes: define the state of an
object

Example: clock object would have second,
minute, and hour data attributes

Public methods: allow external code to
manipulate the object

Example: set_time, set_alarm_time

Private methods
workings

Copyright © 2015 Pearson Education, Inc.

Classes

Class: code that specifies the data
attributes and methods of a particular
type of object

Similar to a blueprint of a house or a cookie
cutter

Instance: an object created from a
class

Similar to a specific house built according to
the blueprint or a specific cookie

There can be many instances of one class

Copyright © 2015 Pearson Education, Inc.

Classes

Copyright © 2015 Pearson Education, Inc.

Classes

Copyright © 2015 Pearson Education, Inc.

Simple Example
Class Definition for Playing cards
Playing cards have:
A Rank
A Suit

Define a
PlayingCard
class and then
create objects of
type PlayingCard
to form a deck
or a hand
of cards.

Copyright © 2015 Pearson Education, Inc.

A Concrete Example
Imagine that trying to do some

simple arithmetic. You need a Calculator
application, programmed in an OO manner.
It will have:

Some data: the current value of its
accumulator (the value stored and
displayed on the screen).
History of ops?
Memory?

Some methods: things that you can ask
of the calculator to do:

add a number to the accumulator, subtract a
number, multiply by a number, divide by a
number, zero out the accumulator value, etc.

Copyright © 2015 Pearson Education, Inc.

Calculator Specification
In Python, you implement a particular type of object (soda

machine, calculator, etc.) with a class.
Let s define a class for our simple interactive calculator.
Data: the current value of the accumulator.
Maybe a history of operations? Memory spots, aka variables?

Methods: any of the following.
clear: zero the accumulator
print: display the accumulator value
add k: add k to the accumulator
sub k: subtract k from the accumulator
mult k: multiply accumulator by k
div k: divide accumulator by k

Copyright © 2015 Pearson Education, Inc.

Yet Another Example

Example: A soda machine has:
Data: products inside,
change available, amount
previously deposited, etc.
Methods: accept a coin,
select a product, dispense a
soda, provide change after
purchase, return money
deposited, etc.
Assignment 13

Copyright © 2015 Pearson Education, Inc.

Class Definitions
Class definition: set of statements that

Format: begin with class ClassName:
Class names typically start with uppercase letter and
internal words are capitalized, aka CamelCase

Method definition like other Python
function definitions

self parameter: required in every method in the class
references the specific object that the method is working
on - The object the method is working on. The object
that called the method
name = 'Olivia'
name.upper() # name is the argument to self

Copyright © 2015 Pearson Education, Inc.

Initializer method: automatically executed
when an instance of the class is created

self parameter to the object that was just
created.
Format: def __init__ (self):

That's two underscores before and after init.

Typically the first method in a class definition.

Copyright © 2015 Pearson Education, Inc.

Class Definitions (cont d.)

Copyright © 2015 Pearson Education, Inc.

Class Definitions (cont d.)

To create a new instance of a class call
the initializer method

Format: my_instance = ClassName()

To call any of the class methods using
the created instance, use dot notation

Format: my_instance.method()

Because the self parameter references the
specific instance of the object, the method will
affect this instance

Reference to self is passed automatically

Copyright © 2015 Pearson Education, Inc.

Hiding Attributes and Storing
Classes in Modules

variables) should be difficult to access
To make sure of this, place two underscores (__) in
front of attribute name

Example: __current_minute

Classes can be stored in modules
Filename for module must end in .py

Module can be imported to programs that use the
class

Copyright © 2015 Pearson Education, Inc.

The Circle Class - in Circle.py

Copyright © 2015 Pearson Education, Inc.

The Circle Class - in Circle.py

Copyright © 2015 Pearson Education, Inc.

Client Code of Circle Class

Recall, variables prefixed with the
double underscore (_ _) are hidden
from clients.

Careful, easy to create logic errors
Copyright © 2015 Pearson Education, Inc.

Logic Error in Client Code
Clients can add attributes (internal
data, internal variables) to objects

Flexible? Yes. Dangerous? You bet!

Copyright © 2015 Pearson Education, Inc.

The BankAccount Class
More About Classes

Class methods can have multiple
parameters in addition to self

For __init__, parameters needed to create
an instance of the class

Example: a BankAccount object is created with a
balance

When called, the initializer method receives a value to be
assigned to a __balance attribute

For other methods, parameters may be
needed to perform required task

Example: deposit method amount to be deposited

Copyright © 2015 Pearson Education, Inc.

The __str__ method

Object s state: the values of the object s
attribute at a given moment
__str__ method: return a string version
of the object, typically the state of its
internal data

Automatically called when the object is
passed as an argument to the
print function

Automatically called when the object is
passed as an argument to the str function

Copyright © 2015 Pearson Education, Inc.

Working With Instances

Instance attribute: belongs to a specific
instance of a class

Created when a method uses the self
parameter to create an attribute

Can be local to a method, but continues to
exist after that method completes

If many instances of a class are
created, each would has its own set of
attributes

Copyright © 2015 Pearson Education, Inc.

Copyright © 2015 Pearson Education, Inc.

Accessor and Mutator Methods

are private and provide methods to
access and change them

Accessor methods: return a value from

Safe way for code outside the class to retrieve
the value of attributes

Mutator methods: store or change the
value of a data attribute

You DO NOT have to have mutator methods
for all (or any) internal attributes

Copyright © 2015 Pearson Education, Inc.

Passing Objects as
Arguments

Methods and functions often need to
accept objects as arguments

When you pass an object as an
argument, you are actually passing a
reference to the object

The receiving method or function has access
to the actual object

Methods of the object can be called within the
receiving function or method, and data attributes
may be changed using mutator methods

Copyright © 2015 Pearson Education, Inc.

Other methods
generally methods with the _ _name_ _
format are not meant to be called directly

Instead we define them and then the are
called with other operators

_ _init_ _ ClassName()
_ _len_ _ len()

_ _str_ _ str

_ _add_ _ + _ _eq_ _ ==

_ _lt_ _ < _ _le_ _ <=

_ _gt_ _ > _ _ge_ _ >=
Copyright © 2015 Pearson Education, Inc.

Displaying New Classes in
Data Structures

Output of
print. Great!

Output of
print of list. Yuck!

Copyright © 2015 Pearson Education, Inc.

_ _str_ _ and _ _ repr_ _

print calls the _ _str_ _ method on
objects sent to it

a data structure calls the _ _repr_ _
method on the objects inside it to

repr for representation

Like _ _str_ _ but should display the
object in a way that we could use to
rebuild the object

Copyright © 2015 Pearson Education, Inc.

_ _repr_ _ method for Circle

Copyright © 2015 Pearson Education, Inc.

Techniques for Designing
Classes

UML diagram: standard diagrams for
graphically depicting object-oriented
systems

Stands for Unified Modeling Language

General layout: box divided into three
sections:

Top section: name of the class

Middle section: list of data attributes

Bottom section: list of class methods

Copyright © 2015 Pearson Education, Inc.

Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a
Problem

When developing object oriented
program, first goal is to identify classes

Typically involves identifying the real-world
objects that are in the problem

Technique for identifying classes:
1. Get written description of the problem domain

2. Identify all nouns in the description, each of
which is a potential class

3. Refine the list to include only classes that are
relevant to the problem

Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a

1. Get written description of the problem
domain

May be written by you or by an expert

Should include any or all of the following:
Physical objects simulated by the program

The role played by a person

The result of a business event

Recordkeeping items

Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a
Problem (cont d.)

2. Identify all nouns in the description,
each of which is a potential class

Should include noun phrases and pronouns

Some nouns may appear twice

Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a

3. Refine the list to include only classes
that are relevant to the problem

Remove nouns that mean the same thing

Remove nouns that represent items that the
program does not need to be concerned with

Remove nouns that represent objects, not
classes

Remove nouns that represent simple values
that can be assigned to a variable

Copyright © 2015 Pearson Education, Inc.

Responsibilities
A classes responsibilities are:

The things the class is responsible for
knowing

attributes

The actions the class is responsible for doing

look at the problem domain
Deduce required information and actions

Copyright © 2015 Pearson Education, Inc.

Summary

This chapter covered:
Procedural vs. object-oriented programming

Classes and instances

Class definitions, including:
The self parameter

Data attributes and methods
__init__ and __str__ functions

Hiding attributes from code outside a class

Storing classes in modules

Designing classes

Copyright © 2018 Pearson Education, Inc.

C H A P T E R 12

Recursion

Copyright © 2018 Pearson Education, Inc.

An Interesting Problem
Write a method that determines how
much space is take up by the files in a
directory

A directory can contain files and
directories

How many directories does our code have
to examine?

How would you add up the space taken
up by the files in a single directory

Hint: don't worry about any sub directories at first

Copyright © 2018 Pearson Education, Inc.

Sample Directory Structure
scottm

cs303e

m1.txt m2.txt

hw

a1.htm a2.htm a3.htm a4.htm

AP

A.pdf
AB.pdf

Copyright © 2018 Pearson Education, Inc.

os.path
We used os.path to check if a path (location
of a file or directory) refers to a file that
exists

Lots of other useful methods:
os.path.isfile(path)

os.path.isdir(path)

os.path.getsize(path)
Return the size, in bytes, of path. Raise OSError if the
file does not exist or is inaccessible.

os.listdir(path='.')
Return a list containing the names of the entries in the
directory given by path.

Copyright © 2018 Pearson Education, Inc.

Implementation

Write a function that
given the name of a
directory returns the size
of the files in that
directory

directories in it
(subdirectories) return the
size of the files in those
subdirectories

Copyright © 2018 Pearson Education, Inc.

Introduction to Recursion

Recursive function: a function that
calls itself (with different arguments)

Recursive function must have a way to
control the number of times it repeats

Usually involves an if-else statement
which defines when the function should return
a value and when it should call itself

Depth of recursion: the number of
times a function calls itself

Copyright © 2018 Pearson Education, Inc.

def main():
message(5)

def message(x):
if x == 0:

print(x, 'last!')
else:

print(x)
message(x - 1)

Copyright © 2018 Pearson Education, Inc.

Introduction to Recursion

Copyright © 2018 Pearson Education, Inc.

Problem Solving with
Recursion

Recursion is a powerful tool for solving
repetitive problems

Recursion is never required to solve
a problem

Any problem that can be solved recursively
can be solved with a loop

Recursive algorithms may be less efficient than
iterative ones in the number of computations

Due to overhead of each function call

Copyright © 2018 Pearson Education, Inc.

Problem Solving with

Some repetitive problems are more
easily solved with recursion

General outline of recursive function:
If the problem can be solved now without
recursion, solve and return

Known as the base case

Otherwise, reduce problem to smaller
problem of the same structure and call the
function again to solve the smaller problem

Known as the recursive case

Copyright © 2018 Pearson Education, Inc.

Using Recursion to Calculate
the Factorial of a Number

In mathematics, the n! notation
represents the factorial of a number n

For n = 0, n! = 1

For n > 0, n n

The above definition lends itself to
recursive programming

n = 0 is the base case

n > 0 is the recursive case
factorial(n) = n x factorial(n-1)

Copyright © 2018 Pearson Education, Inc.

Copyright © 2018 Pearson Education, Inc. Copyright © 2018 Pearson Education, Inc.

Since each call to the recursive
function reduces the problem:

Eventually, it will get to the base case which
does not require recursion, and the recursion
will stop

Usually the problem is reduced by
making one or more parameters
smaller at each function call

Copyright © 2018 Pearson Education, Inc.

Direct and Indirect Recursion

Direct recursion: when a function
directly calls itself

All the examples shown so far were of direct
recursion

Indirect recursion: when function A
calls function B, which in turn calls
function A

also known as mutual recursion

Copyright © 2018 Pearson Education, Inc.

Examples of Recursive
Algorithms

Summing a range of list elements with
recursion

Function receives a list containing range of
elements to be summed, index of starting item
in the range, and index of ending item in the
range

Base case:
if start index > end index return 0

Recursive case:
return current_number + sum(list, start+1, end)

Copyright © 2018 Pearson Education, Inc.

Examples of Recursive

Copyright © 2018 Pearson Education, Inc.

The Fibonacci Series

Fibonacci series: has two base cases
if n = 0 then Fib(n) = 0

if n = 1 then Fib(n) = 1

if n > 1 then Fib(n) = Fib(n-1) + Fib(n-2)

Corresponding function code:

Copyright © 2018 Pearson Education, Inc.

Finding the Greatest Common
Divisor

Calculation of the greatest common divisor (GCD) of
two positive integers

If x can be evenly divided by y, then

gcd(x,y) = y

Otherwise, gcd(x,y) = gcd(y, remainder of x/y)

Corresponding function code:

Copyright © 2018 Pearson Education, Inc.

The Towers of Hanoi

Mathematical game commonly used to
illustrate the power of recursion

Uses three pegs and a set of discs in
decreasing sizes

Goal of the game: move the discs from
leftmost peg to rightmost peg

Only one disc can be moved at a time

A disc cannot be placed on top of a smaller disc

All discs must be on a peg except while being
moved

Copyright © 2018 Pearson Education, Inc. Copyright © 2018 Pearson Education, Inc.

Copyright © 2018 Pearson Education, Inc.

Problem statement: move n discs from
peg 1 to peg 3 using peg 2 as a
temporary peg

Recursive solution:
If n == 1: Move disc from peg 1 to peg 3

Otherwise:
Move n-1 discs from peg 1 to peg 2, using peg 3

Move remaining disc from peg 1 to peg 3

Move n-1 discs from peg 2 to peg 3, using peg 1

Copyright © 2018 Pearson Education, Inc.

Copyright © 2018 Pearson Education, Inc.

Recursion versus Looping

Reasons not to use recursion:
Less efficient: entails function calling
overhead that is not necessary with a loop

Usually a solution using a loop is more
evident than a recursive solution

Some problems are more easily solved
with recursion than with a loop

Example: Factorial, where the mathematical
definition lends itself to recursion

Sorting and Searching Lists

"There's nothing in your head
the sorting hat can't see. So try
me on and I will tell you where
you ought to be."

-The Sorting Hat,
Harry Potter and
the Sorcerer's Stone

Searching

Given a list of ints find the index of the first
occurrence of a target int

Given the above list and a target of 27 the
method returns 2

What if not present?

What if more than one occurrence?

index 0 1 2 3 4 5

value 89 0 27 -5 42 11

2

Using List Methods

3

linear or sequential search

4

Implement code for linear search in Python,
give a list.

Binary Search

5 6

Searching in a Sorted List
If items are sorted then we can divide and
conquer
dividing your work in half with each step

generally a good thing

The Binary Search on List in Ascending order
Start at middle of list
is that the item?
If not is it less than or greater than the item?
less than, move to second half of list
greater than, move to first half of list
repeat until found or sub list size = 0

7

Binary Search
list

low item middle item high item

Is middle item what we are looking for? If not is it

more or less than the target item? (Assume lower)

list

low middle high
item item item

8

Implement Binary Search

2 3 5 7 11 13 17 19 23 29 31 37 41 4743 53

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

9

Trace When Key == 3
Trace When Key == 30

Variables of Interest?

Sorting

XKCD
http://xk
cd.com/
1185/

10

Sorting

A fundamental application for computers

Done to make finding data (searching) faster

Many different algorithms for sorting

One of the difficulties with sorting is working
with a fixed size storage container (array)

if resize, that is expensive (slow)

Trying to apply a human technique of sorting can
be difficult

try sorting a pile of papers and clearly write out
the algorithm you follow

11

List sort Method
List has
a sort method

Works with
mixed ints and
floats

Works with
Strings

Does not work
with strings and
numbers mixed

Can work with
other data types 12

13

Insertion Sort

Another of the Simple sort

The first item is sorted

Compare the second item to the first
if smaller swap

Third item, compare to item next to it
need to swap

after swap compare again

14

Insertion Sort in Practice
44 68 191 119 119 37 83 82 191 45 158 130 76 153 39 25

http://tinyurl.com/d8spm2l

animation of insertion sort algorithm

Timing Question

Determine how long it takes to sort an array
with 100,000 elements in random order using
insertion sort. When the number of elements
is increased to 200,000 how long will it take
to sort the array?

A. About the same

B. 1.5 times as long

C. 2 times as long

D. 4 times as long

E. 8 times as long 15

