FIFTH EDITION

starting out with >>> PYTH O N ®
)

CHAPTER 10

Classes and
Object-
Oriented
Programming

D TONY GADDIS

@ Pearson Copyright © 2015 Pearson Education, Inc.

Procedural Programming

* Procedures: synonym for functions and
sub-routines

» Procedural programming: writing
programs made of functions that
perform specific tasks

* Functions typically operate on data items that
are separate from the functions

» Data items commonly passed from one
function to another

* Focus: On the algorithm and steps. Create

functions that operate on the program’s data
@ Pearson Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming

* Object-oriented programming: focuses on
creating classes and objects

* Model the problem on the data involved first,
not the big steps.

» Class: A programmer defined data type

* Object: entity that contains data and
functions
» Data is known as data attributes and functions are
known as methods
» Methods perform operations on the data attributes
Encapsulation: combining data and code into
a single object

@ PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

Object Oriented Programming

» Recall a CPU only knows how to perform
on the order of 100 operations

* High level languages such as Python allow
us to, seemingly, create new operations
by defining new functions

» Object oriented languages allow
programmers to create new data types in
addition to the ones built into the language

* int, float, string, list, tuple, file, dictionary, set

@ PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

Object Oriented Design
Example - Monopoly

LA

1
)

If we had to start
from scratch what
new data types would

we need to create?

Data Types Needed:

v "

@ PearSOn Copyright © 2015 Pearson Education, Inc.

5

Object Orientation

» The basic idea of object oriented programming (OOP) is
to view your problem as a collection of objects, each of
which has certain state and can perform certain actions.

» Each object has:
+ some data that it maintains characterizing its current
state;
« a set of actions (methods) that it can perform.

+ A programmer interacts with an object by calling its
methods; this is called . That should be
the only way that another programmer interacts with an
object.

- Significant object-oriented languages include Python,
Java, C++, C#, Perl, JavaScript, Objective C, and

ers.
@HgarSOn Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming
(cont’d.)

Figure 10-1 An object contains data attributes and methods

Object

Data attributes

|
QQ
QQ

Methods that operate
on the data attributes

@ PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming
(cont’d.)

- Data hiding: object’s data attributes are
hidden from code outside the object
» Access restricted to the object’s methods

* Protects from accidental corruption

» QOutside code does not need to know internal
structure of the object

* Object reusability: the same object can
be used in different programs
« Example: 3D image object can be used for

architecture and game programming
@ PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming
(cont’d.)

Figure 10-2 Code outside the object interacts with the object’s methods

Object

Data attributes

<o <0 Q
outside the
object " _,@ @

Methods that operate
on the data attributes

@ Pearson Copyright © 2015 Pearson Education, Inc.

An Everyday Example of an
Object

« Data attributes: define the state of an
object
» Example: clock object would have second,
minute, and hour data attributes
* Public methods: allow external code to
manipulate the object
 Example: set time, set alarm time

« Private methods: used for object’s inner
workings

@ Pearson Copyright © 2015 Pearson Education, Inc.

Classes

» Class: code that specifies the data
attributes and methods of a particular
type of object

» Similar to a blueprint of a house or a cookie
cutter

» Instance: an object created from a
class

« Similar to a specific house built according to
the blueprint or a specific cookie

» There can be many instances of one class

@ PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

Classes

} A blueprint and houses built from the blueprint

Blueprint that describes a house

Howe Plan

Instances of the house described by the blueprint
A 7N\ VA AN
H BH &H B HEH B

EREIREREIRERE

@ Pear:

Classes

The cookie cutter metaphor

Cookie cutter

4 48 4

@ Pear Cookies

Simple Example

Class Definition for Playing cards
Playing cards have:

ARank Define a
Ao PlayingCard

‘//j \ \ \ class and then
create objects of

)

— .
ia | t+ « [[les |2+ |02+ | type PlayingCard
& o llas -r-*-r- oo 4 to f deck
L IR IR 1-1-;1 o vyl | % || wTeE | ¥ vl O form a dec
2o |Bo [faa|foa]|on]lllan]|len 2:: or a hand
PS IR
v v, of cards
v| »| L4 L4 Ll L4 »| »| .
v el wei|vel vl vl vl v
2w |[Fw |[few|See|[ee Zv'v ﬁv.v ‘v w
w v |[ve|[ve| vy <4
o3 s sad|aalllaal ol oad oaf
2o |3 o [[e 0[50 0[S0 0 Zo.o Se ¢ |20 0
« IR IR IR IO
@ BIRE IR IEEH KX KN IR KRS

A Concrete Example

« Imagine that you're trying to do some
simple arithmetic. You need a Calculator

application, programmed in an OO manner.

It will have:
+ Some data: the current value of its
» accumulator (the value stored and
displayed on the screen).
* History of ops?
* Memory?
+ Some methods: things that you can ask
of the calculator to do:
» add a number to the accumulator, subtract a

number, multiply by a number, divide by a
number, zero out the accumulator value, etc.

@ PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

£
£,]

Calculator Specification

« In Python, you implement a particular type of object (soda
machine, calculator, etc.) with a class.

 Let's define a class for our simple interactive calculator.
« Data: the current value of the accumulator.
Maybe a history of operations? Memory spots, aka variables?

* Methods: any of the following.

» clear: zero the accumulator

« print: display the accumulator value

+ add k: add k to the accumulator

« sub k: subtract k from the accumulator

« mult k: multiply accumulator by k

« div k: divide accumulator by k

@ PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

Yet Another Example

« Example: A soda machine has:
- Data: products inside,
change available, amount
previously deposited, etc.

+ Methods: accept a coin,
select a product, dispense a
soda, provide change after
purchase, return money
deposited, etc.

« Assignment 13

@ Pearson Copyright © 2015 Pearson Education, Inc.

Class Definitions

* Class definition: set of statements that
define a class’s methods and data attributes
* Format: begin with class ClassName:

» Class names typically start with uppercase letter and
internal words are capitalized, aka CamelCase

» Method definition like other Python
function definitions

» self parameter: required in every method in the class —
references the specific object that the method is working
on - The object the method is working on. The object
that called the method
name = 'Olivia’
name.upper() # name is the argument to self

@ Pearson Copyright © 2015 Pearson Education, Inc.

Class Definitions (cont’d.)

* Initializer method: automatically executed
when an instance of the class is created

* Initializes object’s data attributes and assigns
self parameter to the object that was just

created.
 Format: def init = (self):
* That's two underscores before and after init.

» Typically the first method in a class definition.

@ PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

Class Definitions (cont’d.)

Actions caused by the coin() expression
) \ I

A coin object

(’1“\ An object is created in memory
_/ from the coin class.

The coinclass's __init
method is called, and the self
parameter is set to the newly
created object

def __init_(self):
self.sideup = 'Heads'

N

7N
| M)

A coin object
After these steps take place,

a coin object will exist with its
sideup attribute set to 'Heads'.

sideup —m'Heads'

@ PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

Class Definitions (cont’d.)

* To create a new instance of a class call
the initializer method
* Format: my instance =

* To call any of the class methods using
the created instance, use dot notation
* Format: my instance.method/()
» Because the self parameter references the
specific instance of the object, the method will

affect this instance
* Reference to self is passed automatically

ClassName ()

@ Pearson Copyright © 2015 Pearson Education, Inc.

Hiding Attributes and Storing

Classes in Modules

» An object’s data attributes (aka the internal
variables) should be difficult to access
« To make sure of this, place two underscores () in
front of attribute name
* Example: current minute
» Classes can be stored in modules
 Filename for module must end in .py

* Module can be imported to programs that use the
class

@ Pearson Copyright © 2015 Pearson Education, Inc.

The Circle Class - in Circle.py

import math

class Circle:
"""Model a simple circle.

Each circle has a center point expressed as x and y coordinates
and a radius."""

def __init__(self, x=0, y=0, radius=0):
self.__Xx = X
self.__y =y
self.__radius = radius

def get_radius(self):
return self.__radius

def get_x(self):
return self.__x

def get_y(self):
return self.__y

The Circle Class - in Circle.py

def get_area(self):
return self.__radius *x 2 * math.pi

def get_perimeter(self):
return 2 * self.__radius * math.pi

def contains(self, other_circle):

distance = ((self.__x - other_circle.__x) %% 2

+ (self.__y - other_circle.__y) **% 2)
distance = math.sqrt(distance)
return distance + other_circle.__radius <= self.__radius

def __str__(self):
return ('x: ' + str(self.__x) + ', y: ' + str(self.__y)
+ ', radius: ' + str(self.__radius))

"""Return if other_circle is contained wholly in this Circle."""

@ PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

Client Code of Circle Class

¢l = Circle(l, 2, 4)

print(cl.__radius) # causes runtime error
print(cl.__x) # causes runtime error
cl.__pradius = 5

print(str(cl))

c2 = Circle(3, 1, 1)
print(cl.contains(c2))
print(c2.contains(cl))

» Recall, variables prefixed with the
double underscore (_) are hidden
from clients.

« Careful, easy to create logic errors

Pearson Copyright © 2015 Pearson Education, Inc.

Logic Error in Client Code

» Clients can add attributes (internal
data, internal variables) to objects

* Flexible? Yes. Dangerous? You bet!

c2 = Circle(3, 1, 1) # x, y, radius
c2.__x =12
print('c2.__x in client code', c2.__x)

print('c2.get_x(), in client code', c2.get_x())
print('Result of print(c2) in client code:"')
print(c2)

c2.__X 1n client code 12
c2.get_x(), in client code 3
@Px: 5, ¥5 1, P_adius: 1

The BankAccount Class —

More About Classes

» Class methods can have multiple
parameters in addition to self

- For init , parameters needed to create
an instance of the class

« Example: a BankAccount object is created with a
balance

* When called, the initializer method receives a value to be
assignedtoa balance attribute

* For other methods, parameters may be

needed to perform required task
* Example: deposit method amount to be deposited

@ PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

The

str method

* Object’s state: the values of the object’s
attribute at a given moment

« str method: return a string version
of the object, typically the state of its
internal data

« Automatically called when the object is

passed as an argument to the
print function

« Automatically called when the object is
passed as an argument to the str function

@ PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

Working With Instances

 Instance attribute: belongs to a specific
instance of a class

* Created when a method uses the self
parameter to create an attribute

* Can be local to a method, but continues to
exist after that method completes
 If many instances of a class are
created, each would has its own set of
attributes

@ Pearson Copyright © 2015 Pearson Education, Inc.

riables reference three coin objects

Figure 10-8 The coinl, coin2, and cein3 va

A Coin object

coinl ——»

__sideup — = 'Heads"

A Coin object

coinz —— =

__sideup — = 'Heads'

A Coin object

coind ——»

__sideup — = 'Heads"’

Figure 10-9 The objects after the toss method

A coin object

coinl 4-—| __sideup — = 'Tails ‘

A coin object

coin2 ——— | __ sideup — » 'Tails’ ‘

A coin object

coin3 ———»

__sideup — = 'Heads"

@ Pearson Copyright © 2015 Pearson Education, Inc.

Accessor and Mutator Methods

« Typically, all of a class’s data attributes
are private and provide methods to
access and change them

» Accessor methods: return a value from
a class’s attribute without changing it
« Safe way for code outside the class to retrieve
the value of attributes
« Mutator methods: store or change the
value of a data attribute

* You DO NOT have to have mutator methods
for all (or any) internal attributes

PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

Passing Objects as

Arguments

* Methods and functions often need to
accept objects as arguments

 When you pass an object as an
argument, you are actually passing a
reference to the object

» The receiving method or function has access
to the actual object

* Methods of the object can be called within the
receiving function or method, and data attributes
may be changed using mutator methods

@ PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

Other methods

» generally methods with the _ _name_ _
format are not meant to be called directly

* Instead we define them and then the are

called with other operators

__init_ _ ClassName()

_ _len_ _ len()

__str_ _ str

__add_ _ + __eq_ _ ==
It < _le_ _ <=
__gt__ > —-ge__ >=

@ Pearson Copyright © 2015 Pearson Education, Inc.

Displaying New Classes in
Data Structures

| Elrelel(5, 1, 1)
c2 = Circle(b5, 4, 3)
print(el, ©2)

datal = [g1, €2]

print(datal) Output of
print. Great!

X2 8; y¢ 1, Padius: 1 xX: 5, y: 4, radivs: 3
[<__main__.Circle object at Ox0OBBO1E56D308640>,
<__main__.Circle object at Ox000001E56D308670>]

\ Output of

print of list. Yuck!

@ Pearson Copyright © 2015 Pearson Education, Inc.

str. _and __repr_ _

e print calls the _ _str __method on
objects sent to it

* a data structure calls the _ _repr_ _
method on the objects inside it to

* repr for representation

* Like _ _str__ but should display the
object in a way that we could use to
rebuild the object

@ PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

repr _method for Circle

def __repr__(self):
result = ('Circle(x=' + str(self.__x) + ", y=" + str(self.__y)
+ ', radius=' + str(self.__radius) + ')")

return result

cl Circle(3, 1, 1)
c2 Circle(5, 4, 3)
print(el, ©2)

datal = [c1l, c2]
print(datal)

x: 3, y: 1, radius: 1 x: 5, y: 4, radius: 3
[Circle(x=3, y=1, radius=1), Circle(x=5, y=4, radius=3)]

@ PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

Techniques for Designing

Classes

* UML diagram: standard diagrams for
graphically depicting object-oriented
systems

» Stands for Unified Modeling Language

* General layout: box divided into three

sections:

» Top section: name of the class

» Middle section: list of data attributes
» Bottom section: list of class methods

@ Pearson Copyright © 2015 Pearson Education, Inc.

Figure 10-10 General layout of a UML diagram for a class

Class name goes here —

Data attributes are listed here —

Methods are listed here —

Figure 10-11 UML diagram for the coin class

Coin

__sideup

__init__{()
toss()
get_sideup()

@ Pearson Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a

Problem
 When developing object oriented

program, first goal is to identify classes

 Typically involves identifying the real-world
objects that are in the problem

» Technique for identifying classes:
1. Get written description of the problem domain

2. ldentify all nouns in the description, each of
which is a potential class

3. Refine the list to include only classes that are
relevant to the problem

@ PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a

Problem (cont’d.)

1. Get written description of the problem
domain
« May be written by you or by an expert
» Should include any or all of the following:
» Physical objects simulated by the program
» The role played by a person
* The result of a business event
* Recordkeeping items

@ PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a

Problem (cont’d.)

2. ldentify all nouns in the description,
each of which is a potential class
» Should include noun phrases and pronouns
« Some nouns may appear twice

@ Pearson Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a

Problem (cont’d.)

3. Refine the list to include only classes
that are relevant to the problem
« Remove nouns that mean the same thing

 Remove nouns that represent items that the
program does not need to be concerned with

* Remove nouns that represent objects, not
classes

* Remove nouns that represent simple values
that can be assigned to a variable

@ Pearson Copyright © 2015 Pearson Education, Inc.

Identifying a Class’s
Responsibilities
* A classes responsibilities are:

» The things the class is responsible for
knowing

* ldentifying these helps identify the class’s data
attributes

» The actions the class is responsible for doing
* ldentifying these helps identify the class’s methods
* To find out a class’s responsibilities
look at the problem domain

» Deduce required information and actions
@ PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

Summary

« This chapter covered:
* Procedural vs. object-oriented programming

Classes and instances
Class definitions, including:

* The self parameter

 Data attributes and methods

« init and str functions

 Hiding attributes from code outside a class
Storing classes in modules
Designing classes

@ PeaI'SO]'] Copyright © 2015 Pearson Education, Inc.

