
Copyright © 2015 Pearson Education, Inc.

C H A P T E R 10

Classes and
Object-
Oriented
Programming

Copyright © 2015 Pearson Education, Inc.

Procedural Programming

Procedures: synonym for functions and
sub-routines

Procedural programming: writing
programs made of functions that
perform specific tasks

Functions typically operate on data items that
are separate from the functions

Data items commonly passed from one
function to another

Focus: On the algorithm and steps. Create
functions that operate on the program s data

Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming
Object-oriented programming: focuses on
creating classes and objects

Model the problem on the data involved first,
not the big steps.

Class: A programmer defined data type

Object: entity that contains data and
functions

Data is known as data attributes and functions are
known as methods

Methods perform operations on the data attributes

Encapsulation: combining data and code into
a single object

Copyright © 2015 Pearson Education, Inc.

Object Oriented Programming
Recall a CPU only knows how to perform
on the order of 100 operations

High level languages such as Python allow
us to, seemingly, create new operations
by defining new functions

Object oriented languages allow
programmers to create new data types in
addition to the ones built into the language

int, float, string, list, tuple, file, dictionary, set

Copyright © 2015 Pearson Education, Inc.
5

Object Oriented Design
Example - Monopoly

If we had to start
from scratch what
new data types would

we need to create?

Data Types Needed:

Copyright © 2015 Pearson Education, Inc.

Object Orientation
The basic idea of object oriented programming (OOP) is

to view your problem as a collection of objects, each of
which has certain state and can perform certain actions.

Each object has:

some data that it maintains characterizing its current
state;

a set of actions (methods) that it can perform.

A programmer interacts with an object by calling its
methods; this is called method invocation. That should be
the only way that another programmer interacts with an
object.

Significant object-oriented languages include Python,
Java, C++, C#, Perl, JavaScript, Objective C, and
others.

Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming

Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming

Data hiding: object s data attributes are
hidden from code outside the object

Access restricted to the object s methods
Protects from accidental corruption

Outside code does not need to know internal
structure of the object

Object reusability: the same object can
be used in different programs

Example: 3D image object can be used for
architecture and game programming

Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming
(cont d.)

Copyright © 2015 Pearson Education, Inc.

An Everyday Example of an
Object

Data attributes: define the state of an
object

Example: clock object would have second,
minute, and hour data attributes

Public methods: allow external code to
manipulate the object

Example: set_time, set_alarm_time

Private methods
workings

Copyright © 2015 Pearson Education, Inc.

Classes

Class: code that specifies the data
attributes and methods of a particular
type of object

Similar to a blueprint of a house or a cookie
cutter

Instance: an object created from a
class

Similar to a specific house built according to
the blueprint or a specific cookie

There can be many instances of one class

Copyright © 2015 Pearson Education, Inc.

Classes

Copyright © 2015 Pearson Education, Inc.

Classes

Copyright © 2015 Pearson Education, Inc.

Simple Example
Class Definition for Playing cards
Playing cards have:
A Rank
A Suit

Define a
PlayingCard
class and then
create objects of
type PlayingCard
to form a deck
or a hand
of cards.

Copyright © 2015 Pearson Education, Inc.

A Concrete Example
Imagine that trying to do some

simple arithmetic. You need a Calculator
application, programmed in an OO manner.
It will have:

Some data: the current value of its
accumulator (the value stored and
displayed on the screen).
History of ops?
Memory?

Some methods: things that you can ask
of the calculator to do:

add a number to the accumulator, subtract a
number, multiply by a number, divide by a
number, zero out the accumulator value, etc.

Copyright © 2015 Pearson Education, Inc.

Calculator Specification
In Python, you implement a particular type of object (soda

machine, calculator, etc.) with a class.
Let s define a class for our simple interactive calculator.
Data: the current value of the accumulator.
Maybe a history of operations? Memory spots, aka variables?

Methods: any of the following.
clear: zero the accumulator
print: display the accumulator value
add k: add k to the accumulator
sub k: subtract k from the accumulator
mult k: multiply accumulator by k
div k: divide accumulator by k

Copyright © 2015 Pearson Education, Inc.

Yet Another Example

Example: A soda machine has:
Data: products inside,
change available, amount
previously deposited, etc.
Methods: accept a coin,
select a product, dispense a
soda, provide change after
purchase, return money
deposited, etc.
Assignment 13

Copyright © 2015 Pearson Education, Inc.

Class Definitions
Class definition: set of statements that

Format: begin with class ClassName:
Class names typically start with uppercase letter and
internal words are capitalized, aka CamelCase

Method definition like other Python
function definitions

self parameter: required in every method in the class
references the specific object that the method is working
on - The object the method is working on. The object
that called the method
name = 'Olivia'
name.upper() # name is the argument to self

Copyright © 2015 Pearson Education, Inc.

Initializer method: automatically executed
when an instance of the class is created

self parameter to the object that was just
created.
Format: def __init__ (self):

That's two underscores before and after init.

Typically the first method in a class definition.

Copyright © 2015 Pearson Education, Inc.

Class Definitions (cont d.)

Copyright © 2015 Pearson Education, Inc.

Class Definitions (cont d.)

To create a new instance of a class call
the initializer method

Format: my_instance = ClassName()

To call any of the class methods using
the created instance, use dot notation

Format: my_instance.method()

Because the self parameter references the
specific instance of the object, the method will
affect this instance

Reference to self is passed automatically

Copyright © 2015 Pearson Education, Inc.

Hiding Attributes and Storing
Classes in Modules

variables) should be difficult to access
To make sure of this, place two underscores (__) in
front of attribute name

Example: __current_minute

Classes can be stored in modules
Filename for module must end in .py

Module can be imported to programs that use the
class

Copyright © 2015 Pearson Education, Inc.

The Circle Class - in Circle.py

Copyright © 2015 Pearson Education, Inc.

The Circle Class - in Circle.py

Copyright © 2015 Pearson Education, Inc.

Client Code of Circle Class

Recall, variables prefixed with the
double underscore (_ _) are hidden
from clients.

Careful, easy to create logic errors
Copyright © 2015 Pearson Education, Inc.

Logic Error in Client Code
Clients can add attributes (internal
data, internal variables) to objects

Flexible? Yes. Dangerous? You bet!

Copyright © 2015 Pearson Education, Inc.

The BankAccount Class
More About Classes

Class methods can have multiple
parameters in addition to self

For __init__, parameters needed to create
an instance of the class

Example: a BankAccount object is created with a
balance

When called, the initializer method receives a value to be
assigned to a __balance attribute

For other methods, parameters may be
needed to perform required task

Example: deposit method amount to be deposited

Copyright © 2015 Pearson Education, Inc.

The __str__ method

Object s state: the values of the object s
attribute at a given moment
__str__ method: return a string version
of the object, typically the state of its
internal data

Automatically called when the object is
passed as an argument to the
print function

Automatically called when the object is
passed as an argument to the str function

Copyright © 2015 Pearson Education, Inc.

Working With Instances

Instance attribute: belongs to a specific
instance of a class

Created when a method uses the self
parameter to create an attribute

Can be local to a method, but continues to
exist after that method completes

If many instances of a class are
created, each would has its own set of
attributes

Copyright © 2015 Pearson Education, Inc.

Copyright © 2015 Pearson Education, Inc.

Accessor and Mutator Methods

are private and provide methods to
access and change them

Accessor methods: return a value from

Safe way for code outside the class to retrieve
the value of attributes

Mutator methods: store or change the
value of a data attribute

You DO NOT have to have mutator methods
for all (or any) internal attributes

Copyright © 2015 Pearson Education, Inc.

Passing Objects as
Arguments

Methods and functions often need to
accept objects as arguments

When you pass an object as an
argument, you are actually passing a
reference to the object

The receiving method or function has access
to the actual object

Methods of the object can be called within the
receiving function or method, and data attributes
may be changed using mutator methods

Copyright © 2015 Pearson Education, Inc.

Other methods
generally methods with the _ _name_ _
format are not meant to be called directly

Instead we define them and then the are
called with other operators

_ _init_ _ ClassName()
_ _len_ _ len()

_ _str_ _ str

_ _add_ _ + _ _eq_ _ ==

_ _lt_ _ < _ _le_ _ <=

_ _gt_ _ > _ _ge_ _ >=
Copyright © 2015 Pearson Education, Inc.

Displaying New Classes in
Data Structures

Output of
print. Great!

Output of
print of list. Yuck!

Copyright © 2015 Pearson Education, Inc.

_ _str_ _ and _ _ repr_ _

print calls the _ _str_ _ method on
objects sent to it

a data structure calls the _ _repr_ _
method on the objects inside it to

repr for representation

Like _ _str_ _ but should display the
object in a way that we could use to
rebuild the object

Copyright © 2015 Pearson Education, Inc.

_ _repr_ _ method for Circle

Copyright © 2015 Pearson Education, Inc.

Techniques for Designing
Classes

UML diagram: standard diagrams for
graphically depicting object-oriented
systems

Stands for Unified Modeling Language

General layout: box divided into three
sections:

Top section: name of the class

Middle section: list of data attributes

Bottom section: list of class methods

Copyright © 2015 Pearson Education, Inc.

Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a
Problem

When developing object oriented
program, first goal is to identify classes

Typically involves identifying the real-world
objects that are in the problem

Technique for identifying classes:
1. Get written description of the problem domain

2. Identify all nouns in the description, each of
which is a potential class

3. Refine the list to include only classes that are
relevant to the problem

Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a

1. Get written description of the problem
domain

May be written by you or by an expert

Should include any or all of the following:
Physical objects simulated by the program

The role played by a person

The result of a business event

Recordkeeping items

Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a
Problem (cont d.)

2. Identify all nouns in the description,
each of which is a potential class

Should include noun phrases and pronouns

Some nouns may appear twice

Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a

3. Refine the list to include only classes
that are relevant to the problem

Remove nouns that mean the same thing

Remove nouns that represent items that the
program does not need to be concerned with

Remove nouns that represent objects, not
classes

Remove nouns that represent simple values
that can be assigned to a variable

Copyright © 2015 Pearson Education, Inc.

Responsibilities
A classes responsibilities are:

The things the class is responsible for
knowing

attributes

The actions the class is responsible for doing

look at the problem domain
Deduce required information and actions

Copyright © 2015 Pearson Education, Inc.

Summary

This chapter covered:
Procedural vs. object-oriented programming

Classes and instances

Class definitions, including:
The self parameter

Data attributes and methods
__init__ and __str__ functions

Hiding attributes from code outside a class

Storing classes in modules

Designing classes

