
Copyright © 2018 Pearson Education, Inc.

C H A P T E R 12

Recursion

Copyright © 2018 Pearson Education, Inc.

An Interesting Problem
Write a method that determines how
much space is take up by the files in a
directory

A directory can contain files and
directories

How many directories does our code have
to examine?

How would you add up the space taken
up by the files in a single directory

Hint: don't worry about any sub directories at first

Copyright © 2018 Pearson Education, Inc.

Sample Directory Structure
scottm

cs303e

m1.txt m2.txt

hw

a1.htm a2.htm a3.htm a4.htm

AP

A.pdf
AB.pdf

Copyright © 2018 Pearson Education, Inc.

os.path
We used os.path to check if a path (location
of a file or directory) refers to a file that
exists

Lots of other useful methods:
os.path.isfile(path)

os.path.isdir(path)

os.path.getsize(path)
Return the size, in bytes, of path. Raise OSError if the
file does not exist or is inaccessible.

os.listdir(path='.')
Return a list containing the names of the entries in the
directory given by path.

Copyright © 2018 Pearson Education, Inc.

Implementation

Write a function that
given the name of a
directory returns the size
of the files in that
directory

directories in it
(subdirectories) return the
size of the files in those
subdirectories

Copyright © 2018 Pearson Education, Inc.

Introduction to Recursion

Recursive function: a function that
calls itself (with different arguments)

Recursive function must have a way to
control the number of times it repeats

Usually involves an if-else statement
which defines when the function should return
a value and when it should call itself

Depth of recursion: the number of
times a function calls itself

Copyright © 2018 Pearson Education, Inc.

def main():
message(5)

def message(x):
if x == 0:

print(x, 'last!')
else:

print(x)
message(x - 1)

Copyright © 2018 Pearson Education, Inc.

Introduction to Recursion

Copyright © 2018 Pearson Education, Inc.

Problem Solving with
Recursion

Recursion is a powerful tool for solving
repetitive problems

Recursion is never required to solve
a problem

Any problem that can be solved recursively
can be solved with a loop

Recursive algorithms may be less efficient than
iterative ones in the number of computations

Due to overhead of each function call

Copyright © 2018 Pearson Education, Inc.

Problem Solving with

Some repetitive problems are more
easily solved with recursion

General outline of recursive function:
If the problem can be solved now without
recursion, solve and return

Known as the base case

Otherwise, reduce problem to smaller
problem of the same structure and call the
function again to solve the smaller problem

Known as the recursive case

Copyright © 2018 Pearson Education, Inc.

Using Recursion to Calculate
the Factorial of a Number

In mathematics, the n! notation
represents the factorial of a number n

For n = 0, n! = 1

For n > 0, n n

The above definition lends itself to
recursive programming

n = 0 is the base case

n > 0 is the recursive case
factorial(n) = n x factorial(n-1)

Copyright © 2018 Pearson Education, Inc.

Copyright © 2018 Pearson Education, Inc. Copyright © 2018 Pearson Education, Inc.

Since each call to the recursive
function reduces the problem:

Eventually, it will get to the base case which
does not require recursion, and the recursion
will stop

Usually the problem is reduced by
making one or more parameters
smaller at each function call

Copyright © 2018 Pearson Education, Inc.

Direct and Indirect Recursion

Direct recursion: when a function
directly calls itself

All the examples shown so far were of direct
recursion

Indirect recursion: when function A
calls function B, which in turn calls
function A

also known as mutual recursion

Copyright © 2018 Pearson Education, Inc.

Examples of Recursive
Algorithms

Summing a range of list elements with
recursion

Function receives a list containing range of
elements to be summed, index of starting item
in the range, and index of ending item in the
range

Base case:
if start index > end index return 0

Recursive case:
return current_number + sum(list, start+1, end)

Copyright © 2018 Pearson Education, Inc.

Examples of Recursive

Copyright © 2018 Pearson Education, Inc.

The Fibonacci Series

Fibonacci series: has two base cases
if n = 0 then Fib(n) = 0

if n = 1 then Fib(n) = 1

if n > 1 then Fib(n) = Fib(n-1) + Fib(n-2)

Corresponding function code:

Copyright © 2018 Pearson Education, Inc.

Finding the Greatest Common
Divisor

Calculation of the greatest common divisor (GCD) of
two positive integers

If x can be evenly divided by y, then

gcd(x,y) = y

Otherwise, gcd(x,y) = gcd(y, remainder of x/y)

Corresponding function code:

Copyright © 2018 Pearson Education, Inc.

The Towers of Hanoi

Mathematical game commonly used to
illustrate the power of recursion

Uses three pegs and a set of discs in
decreasing sizes

Goal of the game: move the discs from
leftmost peg to rightmost peg

Only one disc can be moved at a time

A disc cannot be placed on top of a smaller disc

All discs must be on a peg except while being
moved

Copyright © 2018 Pearson Education, Inc. Copyright © 2018 Pearson Education, Inc.

Copyright © 2018 Pearson Education, Inc.

Problem statement: move n discs from
peg 1 to peg 3 using peg 2 as a
temporary peg

Recursive solution:
If n == 1: Move disc from peg 1 to peg 3

Otherwise:
Move n-1 discs from peg 1 to peg 2, using peg 3

Move remaining disc from peg 1 to peg 3

Move n-1 discs from peg 2 to peg 3, using peg 1

Copyright © 2018 Pearson Education, Inc.

Copyright © 2018 Pearson Education, Inc.

Recursion versus Looping

Reasons not to use recursion:
Less efficient: entails function calling
overhead that is not necessary with a loop

Usually a solution using a loop is more
evident than a recursive solution

Some problems are more easily solved
with recursion than with a loop

Example: Factorial, where the mathematical
definition lends itself to recursion

