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Booleans

So far we’ve been considering straight line code, meaning

executing one statement after another.

a.k.a. sequential flow of control

But often in programming, you need to ask a question, and do 

different things based on the answer.

Boolean values are a useful 

way to refer to the answer to a 

yes/no question.

The Boolean literal values are 

the values: True, False.

A Boolean expression

evaluates to a Boolean value.
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Using Booleans

>>> import math
>>> b = ( 30. 0 < mat h. s qr t ( 1024 ) )
>>> p r i n t ( b )  
True

# s ta tement
# boolean ex pr ess i on

>>> x = 1
>>> x < 0
F a l s e
>>> x >= - 2 # boolean express ion
True
>>> b = ( x == 0 ) # s ta tement  c o n t a i n i n g

# boolean ex pr ess i on
>>> pr i nt ( b)   
F a l s e

Booleans are implemented in the bool class.
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Booleans

Internally, Python uses 0 to represent False and anything not 0 to

represent True. You can convert from Boolean to int using the

in t function and from in t to Boolean using the bool function.
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Boolean Context

In a Boolean context—one that expects a Boolean value—False, 

0, " " (the empty string), and Noneall is considered False and

any other value is considered True.

>>> bool ( " xyz " )   
True
>>> bool ( 0 . 0)   
F a l s e
>>> b o o l ( " " )  
F a l s e
>>> i f 4 : p r i n t ( " xyz " ) # boolean c o n t e x t  
xyz
>>> i f 4. 2: pr i nt ( " xyz " )   
xyz
>>> i f " ab" : pr i nt ( " xyz " )   
xyz

This may be confusion but can be very useful in some programming situations.
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Comparison Operators

The following comparison (or relational) operators are

useful for comparing numeric values:

Operator Meaning Example

< Less than x < 0
<= Less than or equal x <= 0
> Greater than x > 0
>= Greater than or equal x >= 0
== Equal to x == 0

!= Not equal to x != 0

Each of these returns a Boolean value, True or False.

What happened 
on that last line?
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Caution

Be very careful using “==” when comparing floats, because float 

arithmetic is approximate.

#  What happe ne d?
>>> ( 1 . 1 * 3 == 3 . 3 )
F a l s e
>>> 1 . 1 * 3
3 . 3000000000000003

The problem: converting decimal 1.1 to binary yields a repeating binary 

expansion: 1.000110011 . . . = 1.00011. That means it can’t be

represented exactly in a fixed size binary representation.

Thought for the day. Some rational numbers are repeating 

decimals in one base, but not in others. 1/3 = 0.33333…10 =  0.13



CS303E Slideset 3: 8 Conditionals and Boolean Logic

One Way If Statements

It’s often useful to be able to perform an action only if some 

conditions is true.

General form:

i f boolean-expression: 
statement(s)

Note the colon after the 

boolean-expression.

All of the statements

controlled by the if must

be indented the same

amount.

i f y ! = 0 :
z = ( x / y )
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If Statement Example

In file if_example.py:

Would “ i f x :” have worked instead of “ i f ( x ! = 0 ) : ”?
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Two-way If-else Statements

A two-way If-else statement executes one of two actions, 

depending on the value of a Boolean expression.

General form:

i f boolean-expression: 
true-case-statement(s)

e l s e :
false-case-statement(s)

Note the colons after the boolean-expression and after the else. 

All of the statements in both if and else branches should be 

indented the same amount.
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If-else Statement: Example

In file compute_circle_area.py:
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Multiway if-elif-else Statements

If you have multiple options, you can use if-elif-else statements.

General Form:

i f  boolean-expression1: 
statement(s)

e l i f boolean-expression2: 
statement(s)

e l i f boolean-expression3:
. . .

e l s e : # optional 
statement(s)

You can have any number of e l i f branches with their conditions. 

The else branch is optional.
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Sample Program: Calculate US Federal Income Tax

Simplified US 
Federal Income Tax 
Table

Source:
https://www.nerdwa
llet.com/article/taxes
/federal-income-tax-
brackets

https://www.nerdwallet.com/article/taxes/federal-income-tax-brackets
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income_tax.py
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Break

Maybe take a break?
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Logical Operators

Python has logical operators (and, or, not) that can be used to 

make compound Boolean expressions.

not : logical negation 

and : logical conjunction

or : logical disjunction

Operators and and or are always evaluated using short circuit 

evaluation.

( x % 100 == 0 ) and not ( x % 400 == 0 )
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Truth Tables

And: (A and B) is True 

whenever both A is True and B is 

True.

A B A and B

False False False

False True False

True False False

True True True

Or: (A or B) is True whenever 

either A is True or B is True.

A B A or B
False False False

False True True

True False True

True True True

Not: not A
is True whenever A  is False.

A not A

False True
True False

Remember that “is True” really 

means “is not False, the empty 

string, 0, or None.”
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Short Circuit Evaluation

Notice that (A and B) is False, if A is False; it doesn’t matter what B is.

So there’s no need to evaluate B, if A is False!

Also, (A or B) is True, if A is True; it doesn’t matter what B is.

So there’s no need to evaluate B, if A is True!

>>> x = 13
>>> y = 0
>>> l e gal = ( y == 0 or x / y > 0 )
>>> p r i n t ( l e g a l )  
True

Python doesn’t evaluate B if evaluating A is sufficient to determine 

the value of the expression. That’s important sometimes.

This is called short circuiting the evaluation. 

Stopping early when answer it know. 
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Boolean Operators

In a Boolean context, Python doesn’t always return True or False, 

just something equivalent. What’s going on in the following?

# e q u i va l e n t to  F a l s e

# coerced to  F a l s e

# e q u i va l e n t to  F a l s e  

# coerced to F a l s e

# same as n o t ( F a l s e )

# same as n o t ( True )

# e q u i va l e n t to  F a l s e
# same as F a l s e   or True 
# e q u i va l e n t to True
# coerced to  True

>>> " " and 14 
’ ’
>>> b o o l ( " " and 1 4 )
F a l s e
>>> 0 and " abc "   
0
>>> bool ( 0 and " abc " )
F a l s e
>>> not ( 0 . 0 )
True
>>> not ( 1000)
F a l s e
>>> 14 and " "  
’ ’
>>> 0 or " abc "
’ abc ’
>>> bool ( 0 or ’ abc ’ )   
True
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Leap Years

Here’s a concise way to do a Leap Year computation:

Note the use of outer parenthesis on the assignment to is_leap_year

to avoid the use of the continuation character, "\".
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Leap Years Revisited

>pyt hon Le apYe ar 2 . py  
Enter a y e a r : 2000

Year 2000 i s a leap y e a r.
>pyt hon Le apYe ar 2 . py  
Enter a y e a r : 1900

Year 1900 i s not a leap y e a r.
>pyt hon Le apYe ar 2 . py  
Enter a y e a r : 2004

Year 2004 i s a leap y e a r.
>pyt hon Le apYe ar 2 . py  
Enter a y e a r : 2005

Year 2005 i s not a leap y e a r.
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Conditional Expressions

A Python conditional expression returns one of two values based 

on a condition.

Consider the following code:

# S e t p a r i t y   according  to   num 
i f ( num% 2 == 0) :

par i t y = " even"   
e l s e :

par i t y = " odd"

This sets variable parity to one of two values, “even” or “odd”. 

An alternative is:

par i t y = " e ve n" i f ( num % 2 == 0 ) e l s e " odd"
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Conditional Expression

General form:

expr-1 i f boolean-expr else expr-2

It means to return expr-1 if boolean-expr evaluates to True, 

and to return expr-2 otherwise.

# f i n d   maximum of   x and y 
max = x i f ( x >= y ) e l s e y
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Conditional Expression

Use of conditional expressions can simplify your code. 

In file test_sort.py:
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Operator Precedence

Arithmetic expressions in Python attempt to match widely 

used mathematical rules of precedence. Thus,

3 + 4 * ( 5 + 2)

is interpreted as representing:

(3 + ( 4 * ( 5 + 2 ) ) ) .

That is, we perform the operation within parenthesis first, then the 

multiplication, and finally the addition.

To make this happen we precedence rules are enforced.
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Precedence

The following are the precedence rules for Python, with items 

higher in the chart having higher precedence.

Operator
+ , -

Meaning

Unary plus, minus, like - 3, +12
* *  
not

* , / , / / , %

+ , -
< , <=, > , >=
==, ! =
and  
or

Exponentiation 

logical negation

Multiplication, division, 

integer division, modulus

Binary plus, minus 

Comparison

Equal, not equal 

Conjunction 

Disjunction
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Precedence Examples

and 3 - 10 < 0

>>> - 3 * 4
-12
>>> - 3 + - 4
- 7
>>> 3 + 2 * * 4
19
>>> 4 + 6 < 11
True
>>> 4 < 5 <= 17 # n o t i c e   s p e c i a l syntax

# t h i s s u r p r i s e d  me!

True
>>> 4 + 5 < 2 + 7
F a l s e
>>> 4 + ( 5 < 2 ) + 7
11

Most of the time, the precedence follows what you would expect.
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Precedence

Operators on the same line have equal precedence.

Operator
+ , -

Meaning

Binary plus, minus
* , / , / / , % Multiplication, division, 

integer division, remainder

Evaluate them left to right.

All binary operators are left associative. Example: x + y - z + w
means ( (x + y) - z) + w.

Note that assignment is right associative.

x = y = z = 1 # ass i gn z f i r s t
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Use Parentheses to Override Precedence

Use parenthesis to override precedence or to

make the evaluation clearer.

# an e x p r e s s i o n

# what precedence  w i l l do 

# o ve r r i d e precedence

# not p a r t i c u l a r l y c l e a r  

# b e t t e r

>>> 10 - 8 + 5
7
>>> ( 1 0   - 8 ) + 5
7
>>> 10 - ( 8 + 5 )
- 3
>>> 5 - 3 * 4 / 2
- 1 . 0
>>> 5 - ( ( 3 * 4 ) / 2 )
- 1 . 0

Work to make your code easy to read!


