
CS303E Slideset 3: 1 Conditionals and Boolean Logic

CS303E: Elements of Computers and Programming

Conditionals and Boolean Logic

Mike Scott

Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: May 31, 2023

CS303E Slideset 3: 2 Conditionals and Boolean Logic

Booleans

So far we’ve been considering straight line code, meaning

executing one statement after another.

a.k.a. sequential flow of control

But often in programming, you need to ask a question, and do

different things based on the answer.

Boolean values are a useful

way to refer to the answer to a

yes/no question.

The Boolean literal values are

the values: True, False.

A Boolean expression

evaluates to a Boolean value.

CS303E Slideset 3: 3 Conditionals and Boolean Logic

Using Booleans

>>> import math
>>> b = (30. 0 < mat h. s qr t (1024))
>>> p r i n t (b)
True

s ta tement
boolean ex pr ess i on

>>> x = 1
>>> x < 0
F a l s e
>>> x >= - 2 # boolean express ion
True
>>> b = (x == 0) # s ta tement c o n t a i n i n g

boolean ex pr ess i on
>>> pr i nt (b)
F a l s e

Booleans are implemented in the bool class.

CS303E Slideset 3: 4 Conditionals and Boolean Logic

Booleans

Internally, Python uses 0 to represent False and anything not 0 to

represent True. You can convert from Boolean to int using the

in t function and from in t to Boolean using the bool function.

CS303E Slideset 3: 5 Conditionals and Boolean Logic

Boolean Context

In a Boolean context—one that expects a Boolean value—False,

0, " " (the empty string), and Noneall is considered False and

any other value is considered True.

>>> bool (" xyz ")
True
>>> bool (0 . 0)
F a l s e
>>> b o o l (" ")
F a l s e
>>> i f 4 : p r i n t (" xyz ") # boolean c o n t e x t
xyz
>>> i f 4. 2: pr i nt (" xyz ")
xyz
>>> i f " ab" : pr i nt (" xyz ")
xyz

This may be confusion but can be very useful in some programming situations.

CS303E Slideset 3: 6 Conditionals and Boolean Logic

Comparison Operators

The following comparison (or relational) operators are

useful for comparing numeric values:

Operator Meaning Example

< Less than x < 0
<= Less than or equal x <= 0
> Greater than x > 0
>= Greater than or equal x >= 0
== Equal to x == 0

!= Not equal to x != 0

Each of these returns a Boolean value, True or False.

What happened
on that last line?

CS303E Slideset 3: 7 Conditionals and Boolean Logic

Caution

Be very careful using “==” when comparing floats, because float

arithmetic is approximate.

What happe ne d?
>>> (1 . 1 * 3 == 3 . 3)
F a l s e
>>> 1 . 1 * 3
3 . 3000000000000003

The problem: converting decimal 1.1 to binary yields a repeating binary

expansion: 1.000110011 . . . = 1.00011. That means it can’t be

represented exactly in a fixed size binary representation.

Thought for the day. Some rational numbers are repeating

decimals in one base, but not in others. 1/3 = 0.33333…10 = 0.13

CS303E Slideset 3: 8 Conditionals and Boolean Logic

One Way If Statements

It’s often useful to be able to perform an action only if some

conditions is true.

General form:

i f boolean-expression:
statement(s)

Note the colon after the

boolean-expression.

All of the statements

controlled by the if must

be indented the same

amount.

i f y ! = 0 :
z = (x / y)

CS303E Slideset 3: 9 Conditionals and Boolean Logic

If Statement Example

In file if_example.py:

Would “ i f x :” have worked instead of “ i f (x ! = 0) : ”?

CS303E Slideset 3: 10 Conditionals and Boolean Logic

Two-way If-else Statements

A two-way If-else statement executes one of two actions,

depending on the value of a Boolean expression.

General form:

i f boolean-expression:
true-case-statement(s)

e l s e :
false-case-statement(s)

Note the colons after the boolean-expression and after the else.

All of the statements in both if and else branches should be

indented the same amount.

CS303E Slideset 3: 11 Conditionals and Boolean Logic

If-else Statement: Example

In file compute_circle_area.py:

CS303E Slideset 3: 12 Conditionals and Boolean Logic

Multiway if-elif-else Statements

If you have multiple options, you can use if-elif-else statements.

General Form:

i f boolean-expression1:
statement(s)

e l i f boolean-expression2:
statement(s)

e l i f boolean-expression3:
. . .

e l s e : # optional
statement(s)

You can have any number of e l i f branches with their conditions.

The else branch is optional.

CS303E Slideset 3: 13 Conditionals and Boolean Logic

Sample Program: Calculate US Federal Income Tax

Simplified US
Federal Income Tax
Table

Source:
https://www.nerdwa
llet.com/article/taxes
/federal-income-tax-
brackets

https://www.nerdwallet.com/article/taxes/federal-income-tax-brackets

CS303E Slideset 3: 14 Conditionals and Boolean Logic

income_tax.py

CS303E Slideset 3: 15 Conditionals and Boolean Logic

Break

Maybe take a break?

CS303E Slideset 3: 16 Conditionals and Boolean Logic

Logical Operators

Python has logical operators (and, or, not) that can be used to

make compound Boolean expressions.

not : logical negation

and : logical conjunction

or : logical disjunction

Operators and and or are always evaluated using short circuit

evaluation.

(x % 100 == 0) and not (x % 400 == 0)

CS303E Slideset 3: 17 Conditionals and Boolean Logic

Truth Tables

And: (A and B) is True

whenever both A is True and B is

True.

A B A and B

False False False

False True False

True False False

True True True

Or: (A or B) is True whenever

either A is True or B is True.

A B A or B
False False False

False True True

True False True

True True True

Not: not A
is True whenever A is False.

A not A

False True
True False

Remember that “is True” really

means “is not False, the empty

string, 0, or None.”

CS303E Slideset 3: 18 Conditionals and Boolean Logic

Short Circuit Evaluation

Notice that (A and B) is False, if A is False; it doesn’t matter what B is.

So there’s no need to evaluate B, if A is False!

Also, (A or B) is True, if A is True; it doesn’t matter what B is.

So there’s no need to evaluate B, if A is True!

>>> x = 13
>>> y = 0
>>> l e gal = (y == 0 or x / y > 0)
>>> p r i n t (l e g a l)
True

Python doesn’t evaluate B if evaluating A is sufficient to determine

the value of the expression. That’s important sometimes.

This is called short circuiting the evaluation.

Stopping early when answer it know.

CS303E Slideset 3: 19 Conditionals and Boolean Logic

Boolean Operators

In a Boolean context, Python doesn’t always return True or False,

just something equivalent. What’s going on in the following?

e q u i va l e n t to F a l s e

coerced to F a l s e

e q u i va l e n t to F a l s e

coerced to F a l s e

same as n o t (F a l s e)

same as n o t (True)

e q u i va l e n t to F a l s e
same as F a l s e or True
e q u i va l e n t to True
coerced to True

>>> " " and 14
’ ’
>>> b o o l (" " and 1 4)
F a l s e
>>> 0 and " abc "
0
>>> bool (0 and " abc ")
F a l s e
>>> not (0 . 0)
True
>>> not (1000)
F a l s e
>>> 14 and " "
’ ’
>>> 0 or " abc "
’ abc ’
>>> bool (0 or ’ abc ’)
True

CS303E Slideset 3: 20 Conditionals and Boolean Logic

Leap Years

Here’s a concise way to do a Leap Year computation:

Note the use of outer parenthesis on the assignment to is_leap_year

to avoid the use of the continuation character, "\".

CS303E Slideset 3: 21 Conditionals and Boolean Logic

Leap Years Revisited

>pyt hon Le apYe ar 2 . py
Enter a y e a r : 2000

Year 2000 i s a leap y e a r.
>pyt hon Le apYe ar 2 . py
Enter a y e a r : 1900

Year 1900 i s not a leap y e a r.
>pyt hon Le apYe ar 2 . py
Enter a y e a r : 2004

Year 2004 i s a leap y e a r.
>pyt hon Le apYe ar 2 . py
Enter a y e a r : 2005

Year 2005 i s not a leap y e a r.

CS303E Slideset 3: 22 Conditionals and Boolean Logic

Conditional Expressions

A Python conditional expression returns one of two values based

on a condition.

Consider the following code:

S e t p a r i t y according to num
i f (num% 2 == 0) :

par i t y = " even"
e l s e :

par i t y = " odd"

This sets variable parity to one of two values, “even” or “odd”.

An alternative is:

par i t y = " e ve n" i f (num % 2 == 0) e l s e " odd"

CS303E Slideset 3: 23 Conditionals and Boolean Logic

Conditional Expression

General form:

expr-1 i f boolean-expr else expr-2

It means to return expr-1 if boolean-expr evaluates to True,

and to return expr-2 otherwise.

f i n d maximum of x and y
max = x i f (x >= y) e l s e y

CS303E Slideset 3: 24 Conditionals and Boolean Logic

Conditional Expression

Use of conditional expressions can simplify your code.

In file test_sort.py:

CS303E Slideset 3: 25 Conditionals and Boolean Logic

Operator Precedence

Arithmetic expressions in Python attempt to match widely

used mathematical rules of precedence. Thus,

3 + 4 * (5 + 2)

is interpreted as representing:

(3 + (4 * (5 + 2))) .

That is, we perform the operation within parenthesis first, then the

multiplication, and finally the addition.

To make this happen we precedence rules are enforced.

CS303E Slideset 3: 26 Conditionals and Boolean Logic

Precedence

The following are the precedence rules for Python, with items

higher in the chart having higher precedence.

Operator
+ , -

Meaning

Unary plus, minus, like - 3, +12
* *
not

* , / , / / , %

+ , -
< , <=, > , >=
==, ! =
and
or

Exponentiation

logical negation

Multiplication, division,

integer division, modulus

Binary plus, minus

Comparison

Equal, not equal

Conjunction

Disjunction

CS303E Slideset 3: 27 Conditionals and Boolean Logic

Precedence Examples

and 3 - 10 < 0

>>> - 3 * 4
-12
>>> - 3 + - 4
- 7
>>> 3 + 2 * * 4
19
>>> 4 + 6 < 11
True
>>> 4 < 5 <= 17 # n o t i c e s p e c i a l syntax

t h i s s u r p r i s e d me!

True
>>> 4 + 5 < 2 + 7
F a l s e
>>> 4 + (5 < 2) + 7
11

Most of the time, the precedence follows what you would expect.

CS303E Slideset 3: 28 Conditionals and Boolean Logic

Precedence

Operators on the same line have equal precedence.

Operator
+ , -

Meaning

Binary plus, minus
* , / , / / , % Multiplication, division,

integer division, remainder

Evaluate them left to right.

All binary operators are left associative. Example: x + y - z + w
means ((x + y) - z) + w.

Note that assignment is right associative.

x = y = z = 1 # ass i gn z f i r s t

CS303E Slideset 3: 29 Conditionals and Boolean Logic

Use Parentheses to Override Precedence

Use parenthesis to override precedence or to

make the evaluation clearer.

an e x p r e s s i o n

what precedence w i l l do

o ve r r i d e precedence

not p a r t i c u l a r l y c l e a r

b e t t e r

>>> 10 - 8 + 5
7
>>> (1 0 - 8) + 5
7
>>> 10 - (8 + 5)
- 3
>>> 5 - 3 * 4 / 2
- 1 . 0
>>> 5 - ((3 * 4) / 2)
- 1 . 0

Work to make your code easy to read!

