CS303E: Elements of Computers and Programming

Repitition with Loops

Mike Scott
Department of Computer Science
University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: May 30, 2024

Using Loops

So we might as well use deverness to do it.
That’s what loops are for.

#inClude <5idio.n?
int mgin(veid)
t

int count s

for (tounT = 1 counT{ =500 ;counT++)

printE (T will nat Throw paper dirplanes in class,” :Il'?
refurn 03

It doesn’t have to be the exact same thing over and over.

And this is how we really harness the power of a computer that
can perform tens of billions (or more) computations per second!

Repetitive Activity

Often we need to do some (program) activity numerous times:

K
LNOT Moc
' WiLL NOT Moc

MR
K MRS puMe

| WiLL NOT MOCK MRS DUM
I WILL NOT MOCK MRS ourgP

| WILL NOT MOCK MRS D!
| WILL NOT MOCK MRS DURGSEIR
| WILL NOT MOCK MRS _; f”z‘ .

CS303E Slideset 4: 2 Loops

While Loop

The majority of programming
languages include syntax to repeat
operations.

Test
Expression

while loop is one option. General form:

while condition:
statement(s)

True

Body of while Loop

Meaning: as long as the condition is
true when checked, execute the
statements.

As with conditionals (if/elif/else), all of

the statements in the body of the

loop must be indented the l
same amount.

CS303E Slideset 4: 4

Loops

While Loop While Loop Example: Test Primality

In file not_throw_airplanes.py:

Print out I will not throw paper airplanes in class
500 times.
def main():
COUNT = 500
MESSAGE = "I will not throw paper airplanes in class."
i=0
while i < COUNT:
print(i, MESSAGE)
i+=1

main()

What would happen if we forgot the i += 1?

will not throw paper airplanes in class.
will not throw paper airplanes in class.
will not throw paper airplanes in class.
will not throw paper airplanes in class.
will not throw paper airplanes in class.

TN WN PO
P HHHH

CS303E Slideset 4: 5 Loops CS303E Slideset 4: 6 Loops

How do prime numbers work?

13 has only two
factors - itself
and 1. Soitis a
prime number.

An integer is prime if it is greater ¥ N
than 1 and has no positive integer 1 13
divisors except 1 and itself.

To test whether an arbitrary integer n rmsthree |
is prime, see if any number in ¥ |\ and 2. Soitis

.. . . . 1 NOT a prime
[2 ... n-1], divides it with no remainder * - 4 s

You couldn't do that in straight line code without knowing n in
advance. Why not?

Even then it would be really tedious if n is very large.

is_prime_1 Loop Example is_prime_1 Loop

is_prime_1.py

Please enter a number greater than or equal to 2: 37

def main():
number = int(input("Please enter a number greater than"
+ " or equal to 2: "))
prime = True
divisor = 2
while divisor < number and prime:

prime = number % divisor != 0
divisor += 1
if prime:
print(number, "is prime.")
else:

print(number, "is not prime.")
OR print(number, " is",
"not" if not prime else "", " prime", sep="")

main()

CS303E Slideset 4: 7 Loops CS303E Slideset 4: 8 Loops

37 is prime.

Please enter a number greater than or equal to 2: 176970203
176970203 is prime.

The second example took ~24 seconds to complete on my laptop.

It works, though it's pretty inefficient. If a number is prime, we
test every possible divisor in [2 ... n-1].

a

“ If nis not prime, it will have a divisor less than or equal to \//; :
“ There’s no need to test any even divisor except 2.

A Better Version: is_prime_2.py

import math

def main():
"""Determine if a number entered by the user is prime or not."""
number = int(input("Please enter a number greater than"
+ " or equal to 2: "))

Special case for 2, the only even prime.

prime = number == 2 or number % 2 != 0

If number is not even then we only need to divide
by odd numbers.

divisor = 3

limit = math.sqgrt(number)
while divisor <= limit and prime:

prime = number % divisor != 0
divisor += 1
if prime:
print(number, "is prime.")
else:

print(number, "is not prime.")
OR print(number, " is",

"not" if not prime else "", " prime", sep="")

gmain()

The Better is_prime_2 Version

is_prime_1 does 176,970,202 divisions to discover
that 176_970_203 is prime.

is_prime_2 does "only” 13,302.

Took much less than a second to complete.
Computer scientists and software developers spend a
lot of time trying to improve the efficiency of their

programs and algorithms.

Measurably reduce the number of computations.

! CS303E Slideset 4: 10 Loops

Example While Loop: Approximate Square Root Running the Example

You could approximate the square root of
a positive integer as follows: square_root.py

Approximate the square root of a positive
integer VERY SLOWLY by increments of 0.1
def main():
number = int(input("Enter a positive integer: "))
while number < 0:
print(number, 'isn\'t a positive int')
number = int(input("Enter a positive integer: "))
guess = 0.1
while guess ** 2 < number:
guess += 0.1
print('The square root of', number,
'is approximately equal to ', guess)

main()

Enter a positive integer: -37

-37 isn't a positive int

Enter a positive integer: -12

-12 isn't a positive int

Enter a positive integer: -891273

-891273 isn't a positive int

Enter a positive integer: 1_024_237

The square root of 1024237 is approximately equal to 1012.1000000001616

Enter a positive integer: 100
The square root of 100 is approximately equal to 10.09999999999998

Notice that the last one isn't quite right. The square root of 100 is
exactly 10.0. Foiled again by the approximate nature of floating
point numbers and floating point arithmetic.

CS303E Slideset 4: 11 Loops CS303E Slideset 4: 12 Loops

More efficient way of calculating square root? For Loop

Newton's method for approximating square roots adapted

from the Dr. Math website
The goal is to find the square root of a number. Let's call it num
1. Choose a rough approximation of the square root of num, call it
approx.
How to choose?
2. Divide num by approx and then average the quotient with approx,
in other words we want to evaluate the
expression ((num/approx) + approx) / 2
3. How close are we? In programming we would store the result of the
expression back into the variable approx.
4. How do you know if you have the right answer?

CS303E Slideset 4: 13 Loops

In a for loop, you typically know how many times you'll
execute. :
or each
item in
General form: sequence
4
for <var> in <sequence>:
<statement(s)> Last »
4 es
- item
Meaning: assign each element of reached?
sequence in turn to var and execute
the statements. No
As usual, all of the statements in
the body must be indented the s
same amount.
Exit loop

CS303E Slideset 4: 14 Loops

What's a Sequence? Range Examples

A Python sequence holds multiple items stored one after another.

>>> seq = [2, 3, 5, 7, 11, 13] # a list |

The range function is a good way to generate a sequence.

range(a, b) : denotes the sequence a, a+1, ..., b-1.
range(b) :is the same as range(0, b).
range(a, b, ¢) : generatesa, a+c, a+2c,, b’, where

b’ is the last value < b.

CS303E Slideset 4: 15 Loops CS303E Slideset 4: 16 Loops

>>> for i in range(3, 6): print(i, end=" ")
345 o

>>> for i in range(3): print(i, end=" ")
012 o

>>> for i in range (0, 11, 3): print(i, end=" ")
0369 o

>>> for i in range (11, 0, -3): print(i, end=" ")
11 8 5 2

>>>

For Loop Example For Loop Example

. Enter the base: 2
Suppose you want to print a table of the powers of Eften e sl powche
. 2 to the 0 is 1
n . . —
a given base up to base”. In file powers_of.py: 2 to the 1 is 2 T —
2 to the 2 1s 4 Enter the maximum power: 12
Print the powers of a base entered by the user up to 5;2 EEE 2 ie ié 13;; :EO E:e 2 is 1037
0 e 1s
the I.ﬂ':h power, also entered by the user. 2 to the 5 is 32 1037 to the 2 is 1075369
def main(): 2 to the 6 is 64 1037 to the 3 is 1115157653
— g ; ' i 2 to the 7 is 128 1037 to the 4 is 1156418486161
ik 1nt(1r‘1put§ Enten: e pdses)). . 2 to the 8 is 256 1037 to the 5 is 1199205970148957
max_power = int(input('Enter the maximum power: ')) 2 to the 9 is 512 1037 to the 6 is 1243576591044468409
for power in range(0, max_power + 1): 2 to the 10 is 1024 1037 to the 7 is 1289588924913113740133
. . 2 to the 11 is 2048 i
P (P 2 to the 12 is 4096 1037 to the 9 is 1386783952594890209613084077
base ** power) 2 to the 13 is 8192 1637 to the 10 is 1438094958848901147368768187849
2 to the 14 is 16384 1037 to the 11 is 1491304472318014489821412610799413
2 to the 15 is 32768 1037 to the 12 is 154648273779378102594480487739899128
. 2 to the 16 is 65536
main() 2 to the 17 is 131072
2 to the 18 is 262144
2 to the 19 is 524288
Nested Loops Print BMI for various heights and weights
The body of while loops and for loops contain # Print out BMI (Body Mass Index) values for heights from for
any kind of statements, including other loops. # heights from 4' 6" (4 feet, 6 inches = 54 inches)
to 6' 10" (82 inches) going up by 2 inches each time
Suppose we want to compute and print out the BMI value # AND weights from 85 to 350 pounds, going up by 5 pounds.
for heights from 4' 6" (4 feet, 6 inches = 54 inches) to 6' 10" L o
. .) . english_units_conversion = 703
(82 inches) going up by 2 inches each time for height in range(54, 83, 2):
AND weights from 85 to 350 pounds, going up by 5 pounds? print('current height =', height)
for weight in range(85, 351, 5):
bmi = english_units_conversion * weight / (height **x 2)
We could then take that data and create a visual graph for # Below is an example of the format function.
ick look # < means left justify
quICK 00K Up. # 4 means 4 total spots
.1 means 1 digit after the decimal
f means a floating point number
. ; ; . . print('height ="', height, ‘'weight =', weight,
It is arbitrary whether the outer loopis height or weight ‘bmi =', format(bmi, '<4.1f'))

CS303E Slideset 4: 19 Loops CS303E Slideset 4: 20 Loops

