
CS303E Slideset 6: 1CS303E Slideset 6: 1 Functions

CS303E: Elements of Computers and Programming
Functions

Mike Scott
Department of Computer Science

University of Texas at Austin

Adapted from 
Professor Bill Young's Slides

Last updated: June 21, 2023

CS303E Slideset 6: 2 Functions

Functions

We have used several built in functions already:
print(), input(), int(), float(), range()

List of Python built in functions

CS303E Slideset 6: 3 Functions

Modules - More Functions

In addition to the standard built in functions.
standard Python includes many modules

Modules are Python scripts (programs) that contain, 
typically, related functions that we can reuse in many 
Python programs and scripts

When you download Python, you download the 
standard modules.
Most of these modules are beyond the scope of 
this course.
Two that we will use are the math module 
mathematical operations which don't have defined 
operators and the random module, with functions to 
generate pseudo random numbers.

CS303E Slideset 6: 4 Functions

Math Module FunctionsFunction     Description                                      Example                  

fabs(x)      Returns the absolute value of the argument.      fabs(-2) is 2        

ceil(x)      Rounds x up to its nearest integer and      ceil(2.1) is 3

               returns this integer.                          ceil(-2.1) is -2

floor(x)     Rounds x down to its nearest integer and        floor(2.1) is 2

               returns this integer.                          floor(-2.1) is -3

exp(x)       Returns the exponential function of x (e^x).     exp(1) is 2.71828

log(x)       Returns the natural logarithm of x.              log(2.71828) is 1.0

log(x, base) Returns the logarithm of x for the specified     log10(10, 10) is 1

               base.                       

sqrt(x)      Returns the square root of x.                    sqrt(4.0) is 2

sin(x)       Returns the sine of x. x represents an angle     sin(3.14159 / 2) is 1

               in radians.                                    sin(3.14159) is 0

asin(x)      Returns the angle in radians for the inverse     asin(1.0) is 1.57

               of sine.                                       asin(0.5) is 0.523599

cos(x)       Returns the cosine of x. x represents an         cos(3.14159 / 2) is 0

               angle in radians.                              cos(3.14159) is -1

acos(x)      Returns the angle in radians for the inverse     acos(1.0) is 0

               of cosine.                                     acos(0.5) is 1.0472

tan(x)       Returns the tangent of x. x represents an        tan(3.14159 / 4) is 1

               angle in radians.                              tan(0.0) is 0

fmod(x, y)   Returns the remainder of x/y as double.          fmod(2.4, 1.3) is 1.1

degrees(x)   Converts angle x from radians to degrees         degrees(1.57) is 90                         

radians(x)   Converts angle x from degrees to radians         radians(90) is 1.57



CS303E Slideset 6: 5 Functions

Importing Modules

To use non standard functions, ones that are part of 
a module, we call the function with the name of the 
module, a period spoken "dot", and the name of the 
function.  math.sqrt(1000)

must also import the module

In a program or script, imports at the top of the file.
CS303E Slideset 6: 6 Functions

The random Module

Several useful functions are defined in the 
random module:
randint(a, b): generate a random 
integer between a and b,  inclusively.
randrange(a, b): generate a random 
integer between a and  b-1, inclusively.
random(): generate a float in the 
range [0 . . . 1).
How would we simulate flipping a coin with 
two sides?

CS303E Slideset 6: 7 Functions

Examples of Calls to random Functions

CS303E Slideset 6: 8 Functions

Importing Modules

Typing the name of the module every time 
can be tedious

A lot of programming languages and IDEs have 
features to reduce the amount of typing we have to do

Can import specific or all functions from a module:

Any downside to always importing all?

The * is a
wildcard,
meaning 
all.



CS303E Slideset 6: 9 Functions

Three Common Data Types

Three data types we will use in many of our early Python programs are:
int: signed integers (whole numbers)

Computations are exact and of unlimited size
Examples: 4, -17, 0

float: signed real numbers (numbers with decimal points) Large
range, but fixed precision
Computations are approximate, not exact Examples:
3.2, -9.0, 3.5e7

str: represents text (a string)
We use it for input and output see
more uses later Examples: "Hello, World!",

These are all immutable. The value cannot be altered.

CS303E Slideset 6: 10 Functions

Immutable

It may appear some 
values are mutable

they are not
rather variables 
are mutable and 
can be bound 
(refer to) 
different values

Note, how the id of x 
(similar to its address) 
has changed

CS303E Slideset 6: 11 Functions

x 37

x = 37

x = x + 10
# substitute in the value x is referring to
x = 37 + 10
# evaluate the expression
x = 47

x
37

47
CS303E Slideset 6: 12 Functions

Mutable vs. Immutable

An immutable value is one that cannot be changed by the 
programmer after you create it; e.g., numbers, strings, etc.

A mutable values is one that can be changed; e.g., sets, lists, etc.



CS303E Slideset 6: 13 Functions

What Immutable Means

An immutable object is one that cannot be changed by
the programmer after you create it;
e.g., numbers, strings, etc.

It also means that there is typically only onecopy of the 
object in memory. 

Whenever the system encounters a newreference to 17, say, it
creates a pointer (references) to the already stored value 17.

Every reference to 17 is actually a pointer to the
only copy of 17 in memory. Ditto for "abc".

If you do something to the object that yields a new value
(e.g., uppercase a string), actually creating a
new object, not changing the existing one.

CS303E Slideset 6: 14 Functions

Function

seen lots of system-defined functions;
now time to define our own., like main.

General form:

def functionName( l i s t of parameters  ) :
#

header statement(s) # body

Meaning: a function definition defines a block of code that 
performs a specific task. It can reference any of the variables
in the list of parameters. It may or may not return a value.

The parameters are formal parameters;
they hold arguments (refer to the same values) passed

to the function later when the function is 

CS303E Slideset 6: 15 Functions

Functions

CS303E Slideset 6: 16 Functions

Calling a Function



CS303E Slideset 6: 17 Functions

Function Example
Suppose you want to sum the integers 1 to n. 

In file function_examples.py:

Notice this defines a function to perform the task, but won't 
perform the task until the function is called from else where. 
We still have to call/invoke the function with specific arguments.

CS303E Slideset 6: 18 Functions

Some Observations

def sum_to_n(n)
. . . .

# f u n c t i o n header 
# f u n c t i o n body

Here n is a formal parameter. It is used in the definition as a place 
holder for an actual parameter (e.g., 10 or 1000) in
any specific call.

sum_to_n(n) returns an in t value, meaning that a call to sum_to_n
can be used anyplace an int expression can be used.

Note, with functions the argument is the input.
We occasionally ask the user for input in the function.

CS303E Slideset 6: 19 Functions

Functional Abstraction

Once we ve defined sum_to_n,wecan use it almost 
as if were a primitive in the language without
worry about the details of the definition.

We needto know what it does,
but don t care anymore how it does it!

This is called information hiding
and / or functional abstraction.

And that is POWERFUL!

CS303E Slideset 6: 20 Functions

Another Way to Add Integers 1 to N

Suppose later we discover that we could have coded
sumToNmore efficiently (as discovered by the 8-year old
C.F. Gauss in 1785):

Becausewedefined sum_to_n asa function, wecan just swap in 
this definition without changing any other code. If done 
the implementation in-line, have had to go find every
instance and change it.



CS303E Slideset 6: 21 Functions

Return Statements
When you execute a return statement, you return to the calling 
environment. Your functions may or may not explicitly return a value.

General forms:

return
return expression

A return that return a value actually
returns the constant None. .

Every function has an implicit return at the end.

CS303E Slideset 6: 22 Functions

Some More Function Examples

Suppose we want to multiply the integers from 1 to n:

Convert Fahrenheit to Celsius AND Celsius to Fahrenheit :

CS303E Slideset 6: 23 Functions

Fahr to Celsius Table
In slideset 1, weshowed the C version of a program to print a 
table of Fahrenheit to Celsius values. a Python version:

In file fahr_to_celsius_table.py:

CS303E Slideset 6: 24 Functions

Running the Temperature Program

Exercise: Do a similar problem converting Celsius to Fahrenheit.



CS303E Slideset 6: 25 Functions

A Bigger Example: Print First 100 Primes

Suppose you want to print out a table of the first 100 primes, 10 
per line.

You could sit down and write 
this program from scratch, 
without using functions. But it 
would be a complicated mess 
(see section 5.8).

Better to use functional 
abstraction: find parts of the 
algorithm that can be coded 
separately and as 
functions.

CS303E Slideset 6: 26 Functions

Print First 100 Primes: Algorithm

some Python-like pseudocode to print 100 primes:

def print100Primes(): 
primeCount = 0
num= 0
while (primeCount < 100) :

i f already printed 10 on the current l i n e ) :  
go to a new line

nextPrime = ( the next prime > num)  
print nextPrime on the current  l ine 
num= nextPrime
primeCount += 1

Note that most of this is just straightforward Python 
programming! The only part is how to find the next prime. 
So make that a function.

CS303E Slideset 6: 27 Functions

Top Down Development

So let s assume we can define a function:

in such a way that it returns the first prime
larger than num.

Is that even possible?

Is there always a prime larger than num?

Yes! There are an infinite number of primes. So if we keep testing 
successive numbers starting at num+ 1, eventually find the next
prime. That may not be the most efficient way!

CS303E Slideset 6: 28 Functions

Value of Functional Abstraction

Notice following a and 
approach: Reduce the

solution of our bigger problem into one
or more subproblems which we can
tackle independently.

also an instance of
We want to think about

how to find the next prime, while
worrying about printing 100 primes.
Put that off! Think about one thing at 
a time. 



CS303E Slideset 6: 29 Functions

Next Step

Now solve the original problem, assuming we can write get_next_prime(n)

In file function_examples.py:

CS303E Slideset 6: 30 Functions

Looking Ahead

what the output should look like.

Of course, we do this if we really defined
get_next_prime. So see what that looks like.

CS303E Slideset 6: 31 Functions

How to Find the Next Prime

The next prime (> num) can be found as indicated in the 
following pseudocode:

def get_next_prime(num) :  
i f num< 2 :

return 2 as the answer 
e l s e :

guess = num+ 1
while ( guess i s not prime)  

guess += 1
return guess as the answer

Again we solved one problem by assuming the solution to another 
problem: deciding whether a number is prime.

Can you think of ways to improve this algorithm?

CS303E Slideset 6: 32 Functions

the Implementation

Note that assuming we can write:

This works (assuming we have defined is_prime), but
got an inefficiency. How can we make it more efficient?



CS303E Slideset 6: 33 Functions

Find Next Prime: A Better Version

When looking for the next prime, we t have to test every  
number, just the odd numbers (after 2).

Now all that remains is to write is_prime.
CS303E Slideset 6: 34 Functions

Is a Number Prime?

We already solved a version of this in a previous lecture.
rewrite that code as a Boolean-valued function:

CS303E Slideset 6: 35 Functions

Sidetrack - Boolean "Zen" 

Did you notice this line of code in the 
is_prime method?

prime is a boolean that holds the value True 
of False, so we simply return than value in 
that variable 

avoid the following:
it is unnecessarily 
verbose

CS303E Slideset 6: 36 Functions

One More Example

Suppose we want to find and print k primes, starting from a given number:

In file function_examples.py:

Notice that we can use functions defined such as 
get_next_prime and is_prime (almost) as if they were
Python primitives.



CS303E Slideset 6: 37 Functions

Positional Arguments

This function has four formal parameters:

Any call to this function should have exactly four actual
arguments,  which are matched to the corresponding
formal parameters:

This is called using positional arguments.

CS303E Slideset 6: 38 Functions

Keyword Arguments

It is also possible to use the formal parameters as keywords.

These two calls are equivalent:

CS303E Slideset 6: 39 Functions

Keyword Arguments

You can list the keyword arguments in any order,
but all must still be specified.

CS303E Slideset 6: 40 Functions

Keyword Arguments

And even possible to mix keyword arguments with 
positional arguments.

The positional arguments must come first followed by the keyword.



CS303E Slideset 6: 41 Functions

Default Parameters

Do any of the built in functions we have been using have 
default arguments? 

You can also specify default arguments for a function. If you 
specify a corresponding actual argument, the default is used.

CS303E Slideset 6: 42 Functions

Using Defaults

You can mix default and non-default
arguments, but must define the non-
default arguments first.

CS303E Slideset 6: 43 Functions

Passing by Reference

All values in Python are objects, including numbers, strings, etc.

When you pass an argument to a function, actually passing 
a reference to the object, not the object itself.

There are two kinds of objects in Python:
mutable: you can change them in your program. 

immutable: you change them in your program.

If you pass a reference to a mutable object, it can be changed by 
your function. If you passareference to an immutable object, it 

be changed by your function.

CS303E Slideset 6: 44 Functions

What is a Data Type?

A data type is a categorization of values.

Data Type Description Example
int integer. An immutable number of 

unlimited magnitude
42

float A real number. An immutable floating 
point number, system defined precision

3.1415927

str string. An immutable sequence of 
characters

'Wikipedia'

bool boolean. An immutable truth value True, False
tuple Immutable sequence of mixed types. (4.0, 'UT', True)
list Mutable sequence of mixed types. [12, 3, 12, 7, 6]
set Mutable, unordered collection, no 

duplicates
[12, 6, 3]

dict dictionary a.k.a. maps, A mutable group of 
(key, value pairs)

{'k1': 2.5, 'k2': 5}

Others we likely won't use in 303e: 
complex, bytes, frozenset



CS303E Slideset 6: 45 Functions

Passing an Immutable Object

Consider the following code:

CS303E Slideset 6: 46 Functions

Passing Immutable and Mutable Objects - Output

Notice that the immutable integer parameter to increment_x
was unchanged, while the mutable list parameter to
reverse_list was changed.

Variables are mutable. They can be made to refer to different 
objects (values), but some objects (values) such as ints, floats, and 
Strings in Python are immutable.

CS303E Slideset 6: 47 Functions

Scope of Variables

Variables defined in a Python program have an associated
scope, meaning the portion of the program in which they
are defined.

A global variable is defined outside of a function and is
visible after it is defined. Use of global variables is
generally considered bad programming practice.
Not allowed per our 303e program hygiene guidelines.

A local variable is defined within a function and is visible
from the definition until the end of the function.

A local definition overrides a global definition.

CS303E Slideset 6: 48 Functions

Overriding

A local definition (locally) overrides the global definition.

x = 1 # x is global

def  func ():  
x = 2 # this x is local
print(x) # will print 2

func ()  
print(x) # will print 1

Running the program:

>  python  funcy . py
2

1



CS303E Slideset 6: 49 Functions

Returning Multiple Values - Useful

The Python return statement can also return multiple values. In 
fact it returns a tuple of values.

de f mul t i pl e Val ue s ( x , y ) :   
r e t ur n x + 1 , y + 1

pr i nt ( " Val ue s r e t ur ne d ar e : " , mul t i pl e Val ue s ( 4 , 5. 2 ) )   

x1 , x2 = m u l t i p l e Values ( 4 , 5 . 2 )
pr i nt ( " x1 : " , x1 , " \t x2 : " , x2 )

Val ues r e t ur ned ar e : ( 5 , 6 . 2)
x1 : 5 x2 : 6 . 2

You can operate on this using tuple functions, which we ll cover 
later in the semester, or assign them to variables.


