Functions
* We have used several built in functions already:
:  print(), input(), int(), float(), range
CS303E: Elements of Computers and Programming P O, inp (.)’ . 0. .()’ g2l
o  List of Python built in functions
unctons
Built-in Functions
abs () dieti() help () min () setattr ()
all() dir () hex () next () slice()
Mike Scott any () divmod () id() object () sorted ()
Department Of Computer SC|ence ascii () enumerate () input () oct () staticmethod ()

University of Texas at Austin ool . el i —
bool () exec () isinstance () ord () sum ()
bytearray () filteri() issubclass () pow () super ()

Adafpted fron’] . |d bytes () float () iter () print () tuple ()

Pro essor BI Young S S I es callable () format () len () property () type () I
chr () frozenset () ldist () range () vars ()
classmethod () getattr() locals () repr () zip ()

Last updated: June 21’ 2023 compile () globals () map () reversed() __import__ ()
complex () hasattr() max () round ()
memoryview () set ()

CS303E Slideset 6: 1 Functions ] delattr() hash ()

Modules - More Functions
fabs (x)

* In addition to the standard built in functions. ceil (x)

Description

Example

Returns the absolute value of the argument. fabs(-2) is 2

Rounds x up to its nearest integer and ceil(2.1) is 3

returns this integer. ceil(-2.1) is -2

Standard PVthon lnCIUdeS many mOduleS floor (x) Rounds x down to its nearest integer and floor(2.1) is 2
. . returns this integer. floor(-2.1) is -3
* MOdUIeS are Python Scrlpts (programS) that Contaln’ exp (x) Returns the exponential function of x (e”x). exp(l) is 2.71828

Returns the natural logarithm of x. log(2.71828) is 1.0

logl0 (10, 10) is 1

typically, related functions that we can reuse in many 10g (x)
Python programs and SCI‘iptS log(x, base) Returns the logarithm of x for the specified

base.

) When you download Python, Vou download the sqgrt (x) Returns the square root of x. sqrt(4.0) is 2
sin(x) Returns the sine of x. x represents an angle sin(3.14159 / 2) is 1
standard modules. in radians. sin(3.14159) is 0
asin (x) Returns the angle in radians for the inverse asin(1.0) is 1.57

of sine.

* Most of these modules are beyond the scope of
this course. cos (x)
 Two that we will use are the math module

asin(0.5) is 0.523599
cos(3.14159 / 2) is O
cos (3.14159) is -1

Returns the cosine of x. x represents an

angle in radians.

acos (x) Returns the angle in radians for the inverse acos(1.0) is O
. . . . of cosine. acos (0.5) is 1.0472
mathematlcal Operatlons Wthh don't have deflned tan (x) Returns the tangent of x. x represents an tan(3.14159 / 4) is 1
operators and the random module, with functions to angle in radians. tan(0.0) s 0
fmod (x, y) Returns the remainder of x/y as double. fmod (2.4, 1.3) is 1.1

Converts angle x from radians to degrees degrees (1.57) is 90

generate pseudo random numbers.

Converts angle x from degrees to radians radians (90) is 1.57




Importing Modules The random Module

* To use non standard functions, ones that are part of » Several useful functions are defined in the
a module, we call the function with the name of the random module:

module, a period spoken “dot”, and the name of the
function. math.sqrt(1000)
>>> math.sqrt(1000)

 randint(a, b): generate arandom
integer between a and b, inclusively.

Traceback (most recent call last): * randrange (a, b): generatea random
File "<input>", 1line 1, in <module> int bet d b-1. inclusivel
NameError: name 'math' is not defined mnteger between a an -1, mnclusively.
 must also import the module * random() : generate a float in the
>>> import math range [0 « o 1)
>>> math.sqrt (1000 . . . . .
S 62277668165(;3793) « How would we simulate flipping a coin with

o . two sides?
* In a program or script, imports at the top of the file.

Examples of Calls to random Functions Importing Modules
= Tiooes Tann o T T 5 * Typing the name of the module every time
>>> random.randint(1, 2) 1 .
2 >>> random.randrange(1, 3) can be tedlous
>>> dom. dint(1, 2) 2 .
eI REIGED o>> randon. random() * A lot of programming languages and IDEs have
>>> pandom.randint(1, 2) 0.8773265491912745 .
. My features to reduce the amount of typing we have to do
>>> prandom.randint(1, 2) 0.6165742684164001 : 165 3 .
" et { « Can import specific or all functions from a module:
>>> pandom.randint(1, 2) 0.9273524701896365 S>> from random import randint
1 >>> prandom.random() b>> pandint(l, 100)
>>> pandom.randint(1, 6) 0.13852627933299988 4
6 >>> prandom.random() 78
>>> pandom.randint(1, 6) 0.664132281949973 >>> pandint(1, 10)
4 >>> for i1 in range(0, 10): S
>>> random.randint(1, 6) print(random.randint(1, 166)) >>> pandom()
i» random.randrange(1, 2) 63 Traceback (most recent call last): The *is a
1 ’ ' 51 File "<input>", 1line 1, in <module> .
>>> prandom.randrange(1, 2) 43 TypeError: 'module' object is not callable wildcard,
. B >>> from random import * < meaning
>>> prandom.randrange(1, 2) 60 >>> pandom() 11
1 51 all.
>>> Irandom.randrandeﬂ = "3 33 0.086999097275883659
26 * Any downside to always importing all?

CS303E Slideset 6: 7 Functions CS303E Slideset 6: 8 Functions




Three Common Data Types Immutable

Three data types we will use in many of our early Python programs are: | | * |t may appear some

int: signed integers (whole numbers) values are mutable >>> x = 37
° (EZ:()mpL:tatio:s :i];e gxact and of unlimited size * theyare not >>> X
o Examples: 4, -17, . : 37
float: signed real numbers (numbers with decimal points) Large rather variables 3
= range, but fixed precision are mutableand |[>>> 1id(x)
= Computations are approximate, not exact Examples: can be bound 140711339416352
str: represents text (a string) diff | S>> x
o We use it for input and output We'll see Irerent values
o more uses later Examples: "Hello, World!", * Note, how the id of x 477
@ ‘abe (similar to its address) [>>> id (x)

These are all immutable. The value cannot be altered. has changed 140711339416672
CS3E Sideset 6: 10 _|RNRURGHONS
R JEESEEimmutzble

X =37
X | | 37

i [IMMUTABLE VS MUTABLE
jiu3b7s'iltijée in the value x is referring to Q ,;/,\ DMA IYP[S IN PYIHON

# evaluate the exM

x=47 37 An immutable value is one that cannot be changed by the
# SO now X programmer after you create it; e.g., numbers, strings, etc.
\ 47 A mutable values is one that can be changed; e.g., sets, lists, etc.

CS303E Slideset 6: 11 Functions CS303E Slideset 6: 12 Functions




What Immutable Means

* An immutable object is one that cannot be changed by
the programmer after you create it;
e.g., numbers, strings, etc.

« It also means that there is typically only one copy of the
object in memory.

* Whenever the system encounters a new reference to 17, say, it
creates a pointer (references) to the already stored value 17.

* Every reference to 17 is actually a pointer to the
only copy of 17 in memory. Ditto for "abc".

* If you do something to the object that yields a new value
(e.g., uppercase a string), you're actually creating a
new object, not changing the existing one.

CS303E Slideset 6: 13 Functions

Function name Arguments

,~==% Contains a list of values
passed to the function

An identifier by which the <---,
function is called

def name(arguments):
statement
statement

Function body

Function body must 4
be indented

--p This is executed each time
the function is called

return value

Return value

» Ends function call & sends
data back to the program

CS303E Slideset 6: 15 Functions

.....

We've seen lots of system-defined functions;
now it's time to define our own,, like main.

General form:

def functionName( list of parameters ):
¥
header statement(s) # body
Meaning: a function definition defines a block of code that
performs a specific task. It can reference any of the variables
in the list of parameters. It may or may not return a value.

The parameters are formal parameters;
they hold arguments (refer to the same values) passed
to the function later when the function is called.

CS303E Slideset 6: 14 Functions

Calling a Function

Parameters

# Function Definition

def add(a, b):
returna+b

# Function Call

add(2, 3)

Arguments

getKT.com

CS303E Slideset 6: 16 Functions




Function Example Some Observations

Suppose you want to sum the integers 1 to n.

In file function_examples.py:

# Return the sum of values from 1 to n.
# This is an example of a cumulative sum algorithm.
def sum_to_n(n):
total = 0
for i in range(1, n + 1):
total += 1
return total

Notice this defines a function to perform the task, but won't
perform the task until the function is called from else where.
We still have to call/invoke the function with specific arguments.

def main(): 1
print(sum_to_n(1)) 1 500500
print(sum_to_n(1600))

Process finished with exit code

# function header
# function body

def sum_to_n(n)

Here nis a formal parameter. 1t is used in the definition as a place
holder for an actual parameter (e.g., 10 or 1000) in
any specific call.

sum_to_n(n) returns an int value, meaning that a call to sum_to n
can be used anyplace an int expression can be used.

x = sum_to_n(30)
print(x)
print('Even' if sum_to_n(5) % 2 == 0 else 'Odd"')
for i in range(l, 30):
print(i, sum_to_n(i))

Note, with functions the argument is the input.
We occasionally ask the user for input in the function.

CS303E Slideset 6: 17 Functions CS303E Slideset 6: 18 Functions

Functional Abstraction Another Way to Add Integers 1 to N

Once we've defined sum_to n,we can useit almost
asif werea primitive in the language without
worry about the details of the definition.

We need to know what it does,
but don’t care anymore how it does it!

This is called information hiding
and / or functional abstraction.

And that is POWERFUL!

Suppose later we discover that we could have coded
sumToN more efficiently (as discovered by the 8-year old
C.F. Gauss in 1785):

# Efficient implementation of summing the values
# from 1 to n. We assume n >= 1
def sum_to_n(n):

return (n + 1) * n // 2

Because we defined sum to n as a function, we can just swap in
this definition without changing any other code. If we'd done
the implementation in-line, we'd have had to go find every
instance and change it.

CS303E Slideset 6: 19 Functions CS303E Slideset 6: 20 Functions




Return Statements Some More Function Examples

When you execute a return statement, you return to the calling

environment. Your functions may or may not explicitly return a value Suppose we want to muiltiply the integers from 1 to n:

# Return the result of multiply the values from

General forms: # 1 to n. This is the factorial function. We assume n >= 0
def multiply_to_n(n):
result = 1
return for i in range(2, n + 1):
return expression result *= result

returns the constant None. Use return without a value sparingly.

# Convert degrees fahrenheit to degrees celsius.
def fahrenheit_to_celsius(degrees_f):

Every function has an implicit return at the end.
return 5 / 9 % (degrees_f - 32)

# Demonstrate the implicit return in functions even
# 1f no return written.
def print_x(x):

# Convert degrees celsius to degrees fahrenheit.

prinf(x) def celsius_to_fahrenheit(degrees_c):
print(print_x(73)) 73 return 1.8 * degrees_c + 32
None

Fahr to Celsius Table Running the Temperature Program

In slideset 1, we showed the C version of a program to print a == =450

. . b . -40 -40.0

table of Fahrenheit to Celsius values. Here's a Python version: -39 344

. . -20 -28.9

In file fahr_to_celsius_table.py: o g

from function_examples import fahrenheit_to_celsius 0 -17.8

10 -12.2

. 20 -6.7

# Prln? the table. 30 1.1

def main(): 40 4.4

lower_temp = -50 50 10.0
upper_temp = 250 :

step = 10 60 15.6

# If the loop variable has meaning beyond a simple 70 21.1

# counter, okay to name it something other than i, k, j. 80 26.7

for degrees_f in range(lower_temp, upper_temp + 1, step): 90 32.2

degrees_c = fahrenheit_to_celsius(degrees_f) 100 37.8

print(format(degrees_f, "3d"), '\t', 110 43.3

format(degrees_c, "5.1f")) 120 48.9

Exercise: Do a similar problem converting Celsius to Fahrenheit.

--o W




A Bigger Example: Print First 100 Primes

Suppose you want to print out a table of the first 100 primes, 10
per line.

You could sit down and write T
this program from scratch,
without using functions. But it
would be a complicated mess
(see section 5.8).

5 7 | 11|13 |17 23| 29

37
79
131
18
239
293
359
421
479

41 43 | 47
83 89 | 97
137 139 149
191 193 ‘ 197
241 251 257
307 311 313
367 373 379
431 433 439
487 491 | 499

53 | 59
101 103
151 157
199 211
263 | 269
317 331

67
109
167
227
277

71
113
173
229
281
349
409
463
541

iy

347
401
461
523

Better to use functional
abstraction: find parts of the
algorithm that can be coded
separately and “packaged” as
functions.

383 389
443 | 449
503 509

CS303E Slideset 6: 25 Functions

Top Down Development

So let's assume we can define a function:

# Return the first prime larger than n.
def get_next_prime(n):

in such a way that it returns the first prime
larger than num.

Is that even possible?

Is there always a “nhext” prime larger than hum?

Yes! There are an infinite number of primes. So if we keep testing
successive numbers starting at mm+ 1, we'll eventually find the next
prime. That may not be the most efficient way!

CS303E Slideset 6: 27 Functions

Print First 100 Primes: Algorithm

Here's some Python-like pseudocode to print 100 primes:

def print100Primes():

primeCount = 0

um= 0

while (primeCount < 100):
if (we've already printed 10 onthe current line):

goto a newline

nextPrime = ( the next prime > num)
print nextPrime onthe current line
mum= nextPrime
primeCount += 1

Note that most of this is just straightforward Python
programming! The only “new” part is how to find the next prime.
So we'll make that a function.

CS303E Slideset 6: 26 Functions

Value of Functional Abstraction

Notice we're following a “divide and
conquer” approach: Reduce the
solution of our bigger problem into one
or more subproblems which we can
tackle independently.

KEEP
CALM

It's also an instance of “information
hiding.” We don’t want to think about
how to find the next prime, while we're
worrying about printing 100 primes.
Put that off! Think about one thing at
a time. Structural decomposition.

AND

DIVIDE &
CONQUER

KeepCalmAndPosters.com

CS303E Slideset 6: 28 Functions




Next Step Looking Ahead

Now solve the original problem, assuming we can write get_next_prime(n) Here's what the output should look like

In file function_examples.py:

# Print a table of the first n primes 2 3 5 7 ik 13 87 19 23 29
# 10 per line. We expect n >= 1 31 37 41 43 47 53 59 61 67 7

127 131 137 139 149 151 157 163 167 173

current_num = 1 179 181 191 193 197 199 211 223 227 229

for i in range(l, n + 1): . 233 239 241 251 257 263 269 271 277 281
current_num = get_next_prime(current_num) 283 293 307 311 313 317 B&31 337 347 349
ppj_nt(-For\mat(cupr\ent_num, '5d'), end=" ") 353 359 367 373 379 383 389 397 401 409
i . = _ 467 479 487 491 499 503 509 521 523 541
if 1 % 10 ==

print()
print() Of course, we couldn't do this if we really hadn't defined
get_next_prime. So let’s see what that looks like.
How to Find the Next Prime Here's the Implementation
The next prime (> num) can be found as indicated in the Note that we're assuming we can write:

following pseudocode: # We assume n >= 2. Return True if n is prime,

# False otherwise.

def get_next_prime(rum): def is_prime(n):
if num< 2:
return 2 as the answer # Return the first prime larger than n.
else: def get_next_prime(n):
guess = rum+ 1 if n < 2:
while (guess is not prime) return 2
guess += 1 guess = nh + 1
return guess as the answer while not is_prime(guess):
_ _ _ guess += 1
Again we solved one problem by assuming the solution to another return guess

problem: deciding whether a number is prime.
_ _ _ _ This works (assuming we have defined is_prime), but it’s
Can you think of ways to improve this algorithm? got an inefficiency. How can we make it more efficient?

CS303E Slideset 6: 31 Functions CS303E Slideset 6: 32 Functions




Find Next Prime: A Better Version Is a Number Prime?

When looking for the next prime, we don't have to test every
number, just the odd numbers (after 2).

# Return the first prime larger than n.
def get_next_prime(n):
if n < 2:
return 2
# We know n >= 2 and that no even integers
# greater than 2 are prime. So go to the next
# odd number and only check odd numbers.
guess = n+1if n % 2 == 0 else n + 2

# OR maybe more clearly
# quess = n + 1

# if guess % 2 == 0:

# guess = guess + 1

while not is_prime(guess):
guess += 2
return guess

Now all that remains is to write is_prime.

CS303E Slideset 6: 33 Functions CS303E Slideset 6: 34 Functions

We already solved a version of this in a previous lecture.
Let's rewrite that code as a Boolean-valued function:

# We assume n >= 2. Return True if n 1is prime,
# False otherwise.
def is_prime(n):
# Special case for 2, the only even prime.
if n ==
return True
# Check if there are any odd divisors
# up to the square root of the number.
prime = n % 2 !=0
divisor = 3
limit = math.sqrt(n)
while divisor <= 1limit and prime:
prime = n % divisor != 0
divisor += 2
return prime

Sidetrack - Boolean "Zen" One More Example

* Did you notice this line of code in the
is_prime method?
return prime
* prime is a boolean that holds the value True
of False, so we simply return than value in

that variable

# YUCK!!!!

« avoid the following: 1f prime == True:
PR . return True
1t 1s unnecessarlly .
verbose else:

return False

CS303E Slideset 6: 35 Functions

Suppose we want to find and print k primes, starting from a given number:

Infile function_examples.py:

# Print the first num primes after the
# value start. One prime per line.
def print_num_primes_staring_from(num, start):

if num ==
print("Request was for 0 primes")
else:
print('First', num, 'primes after', start, '.')

current = start

for 1 in range(num):
current = get_next_prime(current)
print((i + 1), current)

Notice that we can use functions we've defined such as
get_next_prime and is_prime (almost) as if they were
Python primitives.

CS303E Slideset 6: 36 Functions




Positional Arguments

This function has four formal parameters:

# Demo of positional arguments.
def some functlon(xl X2, X3y

X4) :
Any call to this function should have exactly folr actu
arguments, which are matched th corregpondi
formal parameters:

some funct10n(5 12, 5. 13)

X =
Y =-5
some_function(x, y + 2, x * vy, 12)

This is called using positional arguments.

CS303E Slideset 6: 37

Functions

Keyword Arguments

You can list the keyword arguments in any order,
but all must still be specified.

some_function(x3=12,

x1=12§

Traceback (most recent call last):
File "C:/Users/scottm/PycharmProjects/AssignnmentSolutions/SlidesCode/function

main()

File "C:/Users/scottm/PycharmProjects/AssignnmentSolutions/SlidesCode/function|

some_function(x3=12, x1=12)

TypeError: some_function() missing 2 required positional arguments: 'x2' and 'x4

CS303E Slideset 6: 39 Functions

Keyword Arguments

It is also possible to use the formal parameters as keywords.

# Demo of positional arguments.
def some_function(x1l, x2, x3, X4):
print('In some_function')
print(x1, x2, x3, x4)
These two calls are equivalent:
some_function(b, 12, -7, 13)
some_function(x3=-7, x1=5, x4=13, x2=12)

T~
In some_function
512 -7 13
In some_function
512 -7 13

Keyword Arguments

And even possible to mix keyword arguments with
positional arguments.

The positional arguments must come first followed by the keyword.

some_function(5, 12, x4=13, x3=-7)

N4

def some_function(x1l, x2, x3, X4):

CS303E Slideset 6: 40

Functions



Default Parameters Using Defaults

You can also specify default arguments for a function. If you

don't specify a corresponding actual argument, the default is used. A rectangle with a width of 1.6 and a height of 2.6 has an area equal o 2.0
A rectangle with a width of 4.5 and a height of 7.6 has an area equal to 34.199
# Demonstrate a default argument fOf‘ a parameter’. A rectangle with a width of 5.2 and a height of 20.5 has an area equal to 106.6
def print_rectangle_area(width=1.0, height=2.0): A rectangle with a width of 4.5 and a height of 2.0 has an area equal to 9.0
_ 2 g A rectangle with a width of 1.0 and a height of 10.0 has an area equal to 10.0
area = width * helght A rectangle with a width of 5.25 and a height of 2.0 has an area equal to 10.5

print('A rectangle with a width of', width,

'and a height of', height, .
ffigs. am apﬂa equal to-? area) You can mix default and non-default

. arguments, but must define the non-
print_rectangle_area() # uses default argupments
print_rectangle_area(4.5, 7.6) # uses positional arguments default arguments ﬁrst_

print_rectangle_area(height=20.5, width=5.2) # uses keyword arguments
print_rectangle_area(4.5) # default height
print_rectangle_area(height=10.0) # default width

print_rectangle_area(width=5.25) # default height d E'F ema i-L (a d d Nress s messa g e= = ) :
Do any of the built in functions we have been using have
default arguments?

Passing by Reference What is a Data Type?

A data type is a categorization of values.

DataType _|Description ________[Example

int integer. An immutable number of 42
unlimited magnitude

All values in Python are objects, including numbers, strings, etc.

When you pass an argument to a function, you're actually passing

. . . A real number. An immutable floating
a reference to the object, not the object itself. float oint number, system defined precison 5 1415927
There are two kinds of objects in Python: str Sl N E S s 'Wikipedia'
. characters
mutable: you can Change them in your program. bool boolean. An immutable truth value True, False
immutable: you can’t change them in your program. tuple mmutable sequence of mixed types. (4.0, 'UT', True)
>~ 7
list Mutable sequence of mixed types. [12 312 7 6]
? 7’ 7 7

If you pass a reference to a mutable object, it can be changed by
your function. If you pass a reference to an immutable object, it set M TR (G e [12, 6, 3]

, R duplicates
can’t be changed by your function. -~
dict dictionary a.k.a. maps, A mutable group of {'kl': 2.5 'k2'": 5}
(key, value pairs) !
Others we likely won't use in 303e:
complex, bytes, frozenset




Passing an Immutable Object

Consider the following code:
def increment_x(x):

X += 1
print('Value of x in the function increment_x =

", x)

def reverse_list(lst):
1st.reverse()
print('list in the function reverse_list =', 1st)

print()

X =3

print('x before function call:', Xx)
increment_x(x)

print('x after function call:
print()

"e %)

1st = [2, 3, 5, 7, 11]
print('list before function call:', 1st)
reverse_list(1lst)

;print('list after function call: ', lst);‘

Scope of Variables

Variables defined in a Python program have an associated
scope, meaning the portion of the program in which they
are defined.

A global variable is defined outside of a function and is
visible after it is defined. Use of global variables is
generally considered bad programming practice.

Not allowed per our 303e program hygiene guidelines.

A local variable is defined within a function and is visible
from the definition until the end of the function.

A local definition overrides a global definition.

Passing Immutable and Mutable Objects - Output

X before function call: 3
Value of x in the function increment_x
x after function call: 3

4

list before function call: [2, 3, 5, 7, 11]
list in the function reverse_list [11, 7, B, 3, 2]
list after function call: [11, 7, 5, 3, 2]

Notice that the immutable integer parameter to increment_x
was unchanged, while the mutable list parameter to
reverse_list was changed.

Variables are mutable. They can be made to refer to different
objects (values), but some objects (values) such as ints, floats, and
Strings in Python are immutable.

CS303E Slideset 6: 46 Functions

A local definition (locally) overrides the global definition.

x=1 # xis global
def func():
‘=D # this xis local
print(x) # will print 2
func ()
print(x) # will print 1

Running the program:

> python funcy.py
2

1

CS303E Slideset 6: 47 Functions CS303E Slideset 6: 48 Functions




Returning Multiple Values - Useful

The Python return statement can also return multiple values. In
fact it returns a tuple of values.

def nultipleValues ( x, y ):
return x + 1, y + 1

print( "Values returned are: ", nmultipleValues ( 4, 5.2 ))

x1, x2 = multipleValues( 4, 5.2 )
print( "x1: ", x1, "\tx2: ", x2 )

Values returned are: (5, 6.2)
xl: 5 x2: 6.2

You can operate on this using tuple functions, which we'll cover
later in the semester, or assign them to variables.

CS303E Slideset 6: 49 Functions



