CS303E: Elements of Computers and Programming

Files

Mike Scott
Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: June 23, 2022

Value of Files

Files are a persistent way to store programs, input
data, and output data.

Files are stored in the memory of
your computer in an area allocated
to the file system, which is typically
arranged into a hierarchy of
directories (aka folders).

The path to a particular file
details where the file is stored
within this hierarchy.

CS303E Slideset 6: 2 Files

A path to a file may be absolute or relative.

If you just use the name of the file, you’re assuming that
it is in the current working directory.

plato%s pwd
/u/scottm/314
plato% 1ls -1
total 8

scottm prof 4096 14 2020 grade
-rw-r—--r-—- scottm prof 42 25 2019 nums
-rw-r—--r-—- scottm prof 42 4 11:28 nums sorted
-rw-r—--r-—- scottm prof 58 25 2019 simple. txt
scottm prof 4096 19 2020 src

pwd -> print working directory
Is -| -> list the contents of the current

directory in long form (with details)

ve Pathnames

scottm prof 4096 Sep 14 2020 grade
-rw-r—--r-—- scottm prof 42 Nov 25 2019 nums
i-rw-r—--r—- scottm prof 42 May 4 11:28 nums_ sorted
-rw-r—--r-—- scottm prof 58 Nov 25 2019 simple. txt
scottm prof 4096 Aug 19 2020 src
K calculate taxes.pv
fcat: calculate taxes.py: No such file or directory
pPplatos cac src/calculate_taxes.py
def main() :
"""Calculate US Federal Income Tax.

Ask user for income and calculate US
Federal income tax for 2021.
Assumes user 1s filing single.

cat -> from concatenate, synonym for append
(in this case to standard output)
src/ means look for the file in the directory

named src

File Paths

On Windows, a file path might be:

C:\ Users\scottm\314\src\calculate_texas.py
On Linux or MacOS, it might be:

/home/scottm/314/src/calculate_texas.py

Python passes filenames around as strings, which causes
some problems for Windows systems, partly because
Windows uses the '\' in filepaths.

Recall that backslash is an escape character, and including it
in a string may require escaping it.

CS303E Slideset 6: 5 Files

There is a way in Python to treat a string as a raw string,
meaning that escaped characters are treated just as any
other characters.

>>> print('abc\ndef")
abc

def

>>> print (r'abc\ndef')
abc \ndef

Prefix the string with an 'r'. You may or may not need to
do the for Windows pathnames including '\

CS303E Slideset 6: 6 Files

Python - Show the Current Working Directory

In CS303e when we open a file we will
generally assume it is in the same directory as
the running Python program.

When doing homework, how do you know what that is
SO you can put your data files in the same directory?

import os
print (os.getcwd())

print(os.getcwd()) # os already imported above

C:\Users\scottm\Documents\303e_Su2l\lecture_code\examples
Of course your output will be different.

CS303E Slideset 6: 7 Files

Working with Files in Python

Python provides a simple, elegant interface to
storing and retrieving data in files.

Functions for dealing with files:

open : establish a connection to the file and associate
a local file handle with a physical file.

close : terminate the connection to the file.

CS303E Slideset 6: 8 Files

Opening a File

Before your program can access the data in a file, it is necessary
to open it. This returns a file object, also called a 'handle,' that
you can use within your program to access the file.

CYP6B File Handle Our
i‘ii}i Program
Data In Data Out

(Operating (Our Python
System) Program)

O

—

It also informs the system how you intend for your program to
interact with the file, the 'mode.

Example of Opening a File

General Form:

fileVariable = open(filename, mode)

>>> outfile = open('test_file.txt', 'w')

>>> outfile.write('Testing can show the presence of bugs ...\n')
42

>>> ogutfile.write('but not prove their absence.\n')

29

>>> outfile.close()

What do you think the 42 and 29 (an int returned by the write
function) represent above?

Notice we are calling a function (method) on a variable.
outfile.write

(lecture_code) C:\Users\scottm\Documents\303e_Su2l\lecture_code>type test_file.txt
Testing can show the presence of bugs ...
but not prove their absence.

CS303E Slideset 6: 10 Files

Opening a File: Modes

Permissible modes for files:

Mode Description

r Open for reading.

w' Open for writing. If the file already exists the
old contents are overwritten.

'a’ Open for appending data to the end of the file.

'rb" Open for reading binary data.

wb' Open for writing binary data.

You also have to have necessary permissions from the
operating system to access the files.

This semester we won't be using the binary modes.

In other words we are going to read from files assuming it is
encoded as text. In binary we would read the raw 0s and 1s.

CS303E Slideset 6: 11 Files

Closing the File

General form:
file_variable.close()

All files are closed by the OS when your program terminates. Still,
it is very important to close any file you open in Python.

the file will be locked from access by any other program while
you have it open;

items you write to the file may be held in internal buffers
rather than written to the physical file;

if you have a file open for writing, you can't read it until you
close it, and re-open for reading;

it’s just good programming practice.

CS303E Slideset 6: 12 Files

Using the with statement

Although not in the textbook, the preferred way of opening a
file is with the with statement. (Another Python keyword)

def demo_with(file_name):

"""Demonstrate creating file objects with the with keyword."""
with open(file_name, 'r') as in_file:

Simply print the lines in the file

for 1line in in_file:

print(line, end="'")
print('Still in with. Is file closed? ',
in_file.closed)

Is the file closed?

print('After with block. Is file closed? ', in_file.closed)

Still 1in with. Is file closed? False
After with block. Is file closed? True

CS303E Slideset 6: 13 Files

Reading/Writing a File

There are various Python functions for reading data
from or writing data to a file, given the file object in

variable fn.
Function Description
fn.read() Return entire remaining contents of file as a string.
fn.read (k) Return next k characters from the file as a string.

fn.readline() Returns the next line as a string.
fn.readlines() Returns all remaining lines in the file as a list of strings.
fn.write(str) Writes the string to the file.

These functions advance an internal file pointer (like a
cursor in a word processing document or a program editor)
that indicates where in the file you're reading/writing.
open sets the file pointer or cursor at the beginning of
the file.

CS303E Slideset 6: 14 Files

Testing File Existence

Sometimes you need to know whether a file exists,
otherwise you may overwrite an existing file.
Use theisfile function from the os.path module.

>>> isfile('foo.txt")
Traceback (most recent call last):

File "<input>", 1line 1, 1in <module>
NameError: name 'isfile' is not defined
>>> import os.path
>>> os.path.isfile('foo.txt")

False
>>> os.path.isfile('test_file.txt')
True

Here the filepath given is relative to the current directory.

CS303E Slideset 6: 15 Files

Example: Read Lines from File

import os.path

def main():
"""Open the file. Print out all lines with a line number."""
file_name = input('Enter file name: ')
if not os.path.isfile(file_name)4
print(file_name, 'does not exist in the current directory.')
else:
file = open(file_name, 'r')
line = file.readline()
line_number = 0

Print out lines of file with line numbers.
while 1line:
line_number += 1
print(format(line_number, '4d'), ': ',
line.strip(), sep="")
line = file.readline()
print('Found', line_number, 'lines.')
print('Value of line that caused loop to stop:', line)

L file.close() 3

Example: Read Lines from File

Enter file name: lyrics.txt

1: That's great, it starts with an earthquake
: Birds and snakes, and aeroplanes
: And Lenny Bruce is not afraid

o1 N NN

: Eye of a hurricane, listen to yourself churn

66: It's the end of the world as we know it (tin

67: It's the end of the world as we know it (tin

68: It's the end of the world as we know it and
Found 68 1lines.

_Value of 1ine that caused loopn to stop: |

CS303E Slideset 6: 17 Files

Example: Write File

Let's write out the flip of 10,000 coins to a file, H for heads,
T for tails. 50 results per line separated by a space.

One major difference is that print inserts a newline at the
end of each line, unless you ask it not to. write does not
do that.

Write out the results of coin flips to a file.
import random

def main():

num_flips = 10_000

flips_per_line = 50

out_file = open('flip_results.txt', 'w')

for i in range(1, num_flips + 1):
side = 'H' if random.random() < 0.5 else 'T'
out_file.write(side)
if 1 % flips_per_line ==

out_file.write('\n")
out_file.close()

Part of Resulting File - Coin Flip Results

THTHATHHHATTHHHAAAAAATHTHTTHHTTTTHHTTTTTTTTTTTTTHH
HHTHTTHTTHTTTHHTTTTHTHTHHTHTHHHHTHEHTHHTTTHHHHTTHTH
HHTHTTHHTTHTTTTTHTTTHTHTHHHTHHHHHTHTTHHHTTHHHTTHHH
HHTHTHTHTHHHHTHTHTTHTHHHTTHTTHTTHTTTHTHTHTHTTHHHHH
THTTTTTHTTHHTHHAAATHAAOATTTHHHTTHHATTHAEATHAETTTHTHTH
HITHHTHTHHTHHTTHTHTTHHTTHHTHTTHTTHTHTTTHTHHHTTHTTTT
HTTHHHTHTHTTHTHTTTTHHHHHHTTTHTTHHTTTHHTTHHHTHHHHHAHA
THHTTHHTTTTTHHTHHTHHHTHTTHTTTHHTTTHHTTHTHTHTTTTHHT
TTTHTHHTHHHTTHTTTTTHTHETTHTHTTTTTTTTHEEHAETHHHATTHT
TTTTTTTTHHHTHHHATTHTHTHHHTHTTTTTHTHTHTHHHHHHHTHTTT
THTHTHTTHHHHHHHHAHTHTTHTTHHTHTHHTHTTHTHHTTHHHHHHTHH
HHHHHTHHTHHHHTTHHHHTHTTHHHHTHTHHTTHTHTTTHHTHHHTTTT
THTTHHHTTHTTTHHTTHTTTHHEATHHHTTHAHATTHTTTTTTHTTTTHHT
THTTHTHHTTHTTTTHHHHTTHTHHHHTHTTTTHHHHHTTHHTHHHTHTH
TTTHHHTHTHHTTTHHTTHTHTHHTTTHTTHTHTHHTHHTTHTTTHHHHH
HHHTHTHTHHHHHTHTHHTHHTHTHTHTTHTHTHHHTTTTHTTHTTTHHH
HOTTHHTHHTHTTTHAATHEATTTHHHHAATHTHTTHETHAETHTTHHHTT
HITHTHTTTTTHHHHTHHHHHHTTTTTTHTTTTHHHTHTTHHHTHHTHTT
TTHTHHHTTHTHTTHTTTHTHTTTTHTHTHTHTTHHHTHTTHTHTHTTHT
HHHTHHTHHTTHHTHTHHHTTTHHTHTHHTTHTTHTTHHHTTTHTHHHTH

Note, the line numbers are NOT part of the

file. They are shown by the text editor | used.

Aside: Redirecting Output

There's another way to get the output of a program into a file.

When your file does a print, it sends the output to
standard out, which is typically the terminal.

You can redirect the output to a file, using > filename on
Linux systems. Anything that would have been printed on the
screen goes into a file instead.

Notice that this happens at the OS level, not at the Python level.
Programmers know how to do things multiple ways!

Can even redirect standard output inside of a Python program.

This is part of how the auto grader works. Redirecting your program’s
standard output so we can compare it to what we expect the output
to be.

CS303E Slideset 6: 20 Files

irecting Output

plato% 1ls -1
total 36
[drwxrwxr-x scottm usl 4096 Feb OOFall
drwxr-x—--—- scottm usl 4096 Dec 00Spring
scottm prof 4096 Jun assignmn solutions
scottm usl 4096 Feb Fall2000
scottm prof 4096 Jul 28 grading
-rw-r—--r—- scottm prof 422 Jun 3 hello world.py
drwxr-sr-x scottm usl 4096 May 20 Quilt
drwxr-sr-x scottm usl 4096 Feb 16 Rock
drwxr-sr-x scottm usl 4096 Feb 7 Spring2000
platof? python hello world.py > output.
plato% 1s
OOFall assignmn solutions grading output. txt| Rock
00Spring Fall2000 hello world.py Quilt Spring2000
plato% cat output. txt
3
Hello World!
Hook 'em Horns!

CS303E Slideset 6: 21

Example: Reading and Writing File

inport os. path

def copy file():
""" Copy contents from filel to file2.
Ask user for filenames
f1 = input('Source filename: ').strip()
t2 = input('Target filename: ").strip()
Check it target file exists.
if os.path.isfile(f2):
print(f2 +' already exists')
return
Open files for input and output
infile = open(f1, 'r')
outfile = open(2, 'wW)
Copy from input to output a line at a time

ra

Close both fri1les

outfile. close()

copy_file()

for line in infile: .
Li outfile. write(line)|<\ NOt|Ce the use Oft
infile.close() for IOOp tO read al

3

the lines in the fiIeF.

CS303E Slideset 6: 22 Files

Example: Reading and Writing File

One cannot simultaneously read and write a file in Python.
However, you can write a file, close it, and re-open it for reading.

import random

def main():
"""lWrite out 100 random integers to a file, then read the file."""
outfile = open('random_nums.txt', 'w')
for i in range(100):
outfile.write(str(random.randint(0, 99)) + ' ')
outfile.close()

Now read in the numbers and print 10 per line
infile = open('random_nums.txt', 'r')

nums = infile.read()

print(nums, '\n')

numbers = [int(x) for x in nums.split()]
num_printed = 0
for x in numbers:
num_printed += 1
print(format(x, '3d'), end='")
if num_printed == 10:
print()
num_printed = 0
else:
print(' ', end="")

Reading and Writing File

19 52 13 78 48 67 56 10 8 26
34 54 75 80 16 85 83 97 40 70
b5 8 30 67 70 85 6 11 80 O
b6 56 28 57 67 2 57 52 90 52
79 85 87 74 24 50 67 74 64 32
71 42 97 22 75 57 7 18 77 1
29 74 43 62 53 28 35 21 235 18
48 82 22 71 62 23 84 98 D53 36
11 79 72 32 57 95 1 59 357 18
42 27 45 54 11 50 12 77 80 43

CS303E Slideset 6: 24 Files

Append Mode

Opening a file in append mode 'a’, means that writing a value to
the file appends it at the end of the file.

It does not overwrite the
previous content of the file.

You might use this to maintain
a log file of transactions on an
account.

New transactions are added at
the end, but all transactions
are recorded.

CS303E Slideset 6: 25 Files

