The list class is a very useful tool in Python.
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Both lists and strings are sequence types in Python, so
share many similar methods. Unlike strings, lists are
mutable.
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If you change a list, it doesn’t create a new copy; it
changes the actual contents of the list.
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Value of Lists Indexing and Slicing

With Lists you can get sublists using slicing

Last updated: June 28, 2023

Suppose you have 30 different test grades to average. You could
use 30 variables: grade1, grade2, ..., grade30. Or you could use
one list with 30 elements: grades|0], grades[1], ..., grades[29].

s &

T T T T T index out of range
det grades_example(): Forward Indexing 0 1 2 3 4 5 g 7 /

"""Shows creation of a list and determining
average of elements.""" ]
grades = [67, 82, 56, 84, 66, 77, 64, 64, 85, 67, Lt YR

73, 63, 98, 74, 81, 67, 93, 77, 97, 65,

77, 91, 91, 74, 93, 56, 96, 90, 91, 99] .
tota.L - 0 -5 -7 -5 5 . -4 -3 . -2 . 1 Reverse Indexing
for score in grades: <

total += score #///

average = total / len(grades) index out of range
print("Class average =", format(average, '.2f'))
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List Slicing Creating Lists

* Listslicing format: 1ist[start : end]

* Span is a list containing copies of elements

from start up to, but not including, end
o|f start not specified, 0 is used for start index
e|f end not specified, 1en (1ist) is used for end
index

* Slicing expressions can include a step value
and negative indexes relative to end of list
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Many programming languages have an array type.

Element

First index (at index 8)

1 2 3 4 5 6 7\8 9— Indices

[T TTTTTI87]

4—Array length is 10———p»

Arrays are:
= homogeneous (all elements
are of the same type)

Python lists are:
o heterogeneous (can contain
elements of different types)
o fixed size
o permit very fast access time

o variable size
o permit fast acoess time

Lists and arrays are examples of data structures. A very simple definition of
a data structure is a variable that stores other variables.
CS313e explores many standard data structures.

Lists can be created with the list class constructor or using

special syntax.

>>> list() # create enpty list, with constructor
[l

>>> list([1, 2, 3]) # create list [1, 2, 3]

[1, 2, 3]

>>> list (["red", 3, 2.5]) # create heterogeneous list
["red”, 3, 2.5]

>>> ["red", 3, 2.5] # create list, no explicit constructor
["red”, 3, 2.5]

>>> range (4) # not an actual list

range(0, 4) . )

>>> list(range(4)) # create list using range

(o, 1, 2, 3] . .

>>> list("abed") # create character list from string
["a’, 'b’, "c¢’, 'd’]
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Sequence Operations

Lists are sequences and inherit various functions
from sequences.

Function Description

X in s X is in sequence s

X not in s X is not in sequence s

sl + s2 concatenates two sequences

s*n repeat sequence s n times
s[i] ith element of sequence (0-based)
s[i:j] slice of sequence sfrom i to j-1

len(s) number of elements in s
min(s) minimum element of s
max(s) maximum element of s
sum(s) sum of elements in s

for loop traverse elements of sequence

<, <=, >, >=

compares two sequences
compares two sequences

=

7
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Calling Functions on Lists Using Functions

ey vy We could rewrite the grades_examples function as follows:
en —
5
>>> min(l1) # assumes elements are comparable
1
>>> max(11) # assumes elements are comparable def gr'adES_example_z():
5 , """Shows creation of a list and determining
>>> SUIl'(Il) # assumes summing makes sense . .
15 average of elements. This version takes advantage
>>> 12 = [1, 2, "red"] of the sum function for sequences."""
>>> sum(12) o
Traceback (most recent call last): gr'ades B [67’ 82, 56, 84, 66, 77, 64, 64, 85, 67,
File "<stdin>", line 1, in <nodule> 73, 63, 98, 74, 81, 67’ 93, 77, 97, 65,
Type]/irror: unsupported operand type(s) for +: “int’ and ’str 77, 91' 91, 741 93, 56, 96, 90’ 91, 99]
>>> min(12) average = sum(grades) / len(grades)
Tra?eback (n?st recgnt Call. last): pr'int("C'Lass average =" 'For‘mat(aver‘age, I.Zfl))
File "<stdin>", line 1, in <module>
TypeError: ‘<’ not supported between instances of ’“str’ and
“int’
>>>
Traversing Elements with a For Loop Comparing Lists
General Form: Compare lists using the operators: >, >=, <, <=, ==, !=. Uses
for uin list: lexicographic ordering: Compare the first elements of the two lists;
body if they match, compare the second elements, and soon. The
In file test.py: elements must be of comparable classes.
for u in range(3): # not really a list >>> listl = ["red", 3, "green"]
print(u, end=" ") >>> list2 = ["red", 3, "grey"]
print () >>>listl <list2
True
for uin [2, 3, 5, 7]: >>> 1ist3 = ["red", 5, "green"]
print(u, end=" ") >>>list3 >listl
print () True
>>> list4 = [5, "red", "green"]
for u in range(15, 1, -3): # not really a list >>> list3 < list4
print(u, end=" ") Traceback (most recent call last):
print () File "<stdin>", line 1, in <nodule>
TypeError: <’ not supported between instances of 'str’ and
“int’
glpélthon test. py >>> ["red", 5, "green"] == [5, "red", "green"]
235 7 False
15 12 9 6 3
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List Comprehension List Comprehension with Files

List comprehension gives a compact syntax for List comprehension gives a compact syntax for
building lists. building lists, even from files.
>>> range (4) # not actually a list
range(0, 4)
>>> [ x for x in range(4) | # create list from range mples.py = sample.txt
[0, 1, 2;*3] ‘ Team by team, reporters baffled, trumped, tethered, cropped
Fg> 5 *, 9§ for x in range(4) ] Look at that low plane, fine, then
>>> 1st = [ 2, 3, 5, 7, 11, 13 ] Uh oh, overflow, population, common group
>>> [ x ** 3 for x in lst ] But it'll do, save yourself, serve yourself
[8, 27, 125, 343, 1331, 2197] World serves its own needs, listen to your heart bleed
>>> [ x for x in Ist if x > 2 ] : . . :
(3, 5, 7, 11, 13] Tell me with the Rapture and the reverent in the right, right
>>> [s[0] for sin ["red", "green", "blue"] if s <= "green"] You vitriolic, patriotic, slam fight, bright light
["g”, 'b’] Feeling pretty psyched
>>> from IsPrime3 import * '
>>> [ x for x in range(100) if isPrime(x) ]
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89, 97]
List Comprehension with Files List Comprehension with Files
List comprehension gives a compact syntax for List comprehension gives a compact syntax for
building lists, even from files. building lists, even from files.
def list_from_filg(file_path): _ ) ) 1: Team by team, reporters baffled, trumped, tethered, cropped
"""Read the lines from the given file and print them out.""" 2: Look at that low plane, fine, then
with open(file_path, 'r') as infile: _ 3: Uh oh, overflow, population, common group
_ ﬁlTes - [11ne.§trlpg) for line in infile] | 4: But it'll do, save yourself, serve yourself
print(‘number of lines:*, len(lines)) 5: World serves its own needs, listen to your heart bleed
line_num = 1 6: Tell me with the Rapture and the reverent in the right, right
for 1line 1in lines: ] 7: You vitriolic, patriotic, slam fight, bright light
print(line_num, ': ', line, sep='") 8: Feeling pretty psyched
line_num += 1
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Let’s Take a Break

More List Methods

These are methods from class list.
Since lists are mutable, these actually change t.
Method Description
t.append(x) add x to the end of t
t.count(x) number of times x appearsin t
t.extend(11) append elements of 11 tot
t.index(x) index of first occurence of x in t
t.insert(i, x) insert xinto t at position i
t.pop() remove and return the last element of t
t.pop(i) remove and return the ith element of t
t.remove(x) remove the first occurence of x from t
t.reverse() reverse the elements of t
t.sort() order the elements of t
List Examples List Examples
'>>>"1T.pop() # remove and return Tast element
>>> 11T =11, 2, 3]
>>> 1. append (4)# add 4 to the end of 11 >>> 11
>>> 1 # note: changes 11 [0, 1, 2, 3, 4, 5, 6]
[1, 2, 3, 4] >>> 11.reverse () # reverse order of elements
>>> 11.count(4) # count occurrences of 4 in 11 >>> 11
1 [6, 5, 4,3, 2,1, 0]
>>> 12 =[5, 6, 7] >>> 11.sort() # elements must be comparable
>>> 11.extend (12) # add elements of 12 to 11 >>> 11
>>> 11 [0, 1, 2, 3, 4, 5, 6]
1, 2, .3/ 4, 5,6, 7] ) 5 >>> 12 = [4, 1.3, "dOg"]
Z>> I1.index(5)  # where does 5 occur in 112 >>> [2.sort () # elements must be comparable
>>> 11.insert (0, 0) # add 0 at the start of 11 Tr;ﬁzac,,lié;g?it;ecel?;:alll 'lraxs<tl?r(:)d le>
>>> 11 # note new value of 11 ! ’ s 1 u
[0, 1, 2,3, 4,5, 6, 7] Type?rror:,’<’ not supported between instances of ’“str’ and
>>> 11.insert (3, "a’) # lists are heterogenous float p 'dog’
s> 11 ’>>> ’12.pop() remove dog
[0, 1, 2,7, 3, 4,5, 6, 7] dog
>>> 11.remove(’a’) # what goes in can come out [>Z> 112 3]
11 Lo
[>0>,> 1, 2,3, 4,5, 6,7 z:: l122,:;o1rt() # int and float are comparable
[1.3, 4]
|
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Random Shuffle Processing CSV Lines

A useful method on lists is random.shuffle()
from the random module.

Suppose grades for a dass were stored in a list of csv strings, such

>>> listl = [ x for x in range(9) ] as:

>>> listl - '

[0, 1, 2, 3, 4, 5, 6, 7, 8] student_data = '[ Alie, 90, 75 /
>>> random shuffle(list1) Robert, 8, 77",
>>> listl 'Charlie, 60, 80']

[7, 4, 0, 8 1, 6, 5, 2, 3]
>>> random shuffle(list1)
>>> listl Compute the average for each student and print a table of results.
[4, 1, 5, 0, 7, 8, 3, 2, 6]
>>> random shuffle(listl)
>>> listl

[7, 5, 2, 6, 0, 4, 3, 1, 8]

Here the fields are: Name, Midterm grade, Final Exam grade.
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Processing CSV Lines from List Processing CSV Lines

def print_test_scores(student_data): =
"""Print the test scores for the elements of student_data. students = [IA-Llce: 20 198I r ' Robert 158 r77| r

'Michael, 80', 'Charlie, 60 ,80']
student_data is a list of Strings. Each String is of the form:

"<Name>, <Midterm Score>, <Final Score>' pPint_test_scores(students)

Course score 1s based on 1/3 of midterm score and 2/3s of
final score.
nmnnn

print('Name BT PN Course’) Name MT FN Course

= %]
for student in student_data: || | TS oo s s s s m—— e —mm e —m——m— ==
data = student.split(",")

if len(data) 1= 3: Alice Q0 @98 95.33
print('Bad student data:', student)

else: Robert 58 77 70.67
name = data[0].strip() i
midterm = int(data[1].strip()) Bad student data: Michael, 80
final = int(data[2].strip()) s
course_score = midterm / 3 + final * 2 / 3 Cha r‘-Lle 6@ 80 73 . 33

print(format(name, '10s'), format(midterm, '4d'),
format(final, '4d'), format(course_score, '6.2f')) !
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Copying Lists

Suppose you want to make a copy of alist. The following won’t work!
>>> nums = [12, 56, 37, 12]
>>> N2 = nums
>>> n2 1s nums
True
>>> N2 == nums
True
sa» n2[1] = 73
>>> n2
[12, |73} 37, 12]
>>> nums
[12, 173} 37, 12]
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Passing Lists to Functions

Like any other mutable object, when you passalist to afunction,
you're really passing a reference (pointer) to the object in memory.

def alter( Ist ):
Ist. pop()
def main():
Ist = [1, 2, 3, 4]
print ( "Before call: ", Ist )
alter( Ist )
print( "After call: ", lst )
main()
> python ListArg. py
Before call: [1, 2, 3, 4]
After call: [1, 2, 3]
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Copying Lists

But, many ways of making a copy of a list.

>>> nums

[12, 73, 37, 17]

>>> n2 = nums.copy()

>>> n2 is nums

Fal.se , > 3 n2:{||5t 4)[12, 73, 37, 12]
>>> n3 = list(nums) .

>>> n3 is nums > 2 = {list 4} [12, 73,37, 12]
False > 2= nd = {list: 4) [12, 73, 37, 12]
>>> n3 is n2 i

False > 1= n5 = {list: 4) [12, 73, 37, 12]
>>> n4 = nums[0:] > 2= nums = {list: 4} [12, 73, 37, 12]
>>> n4 is nums

False

>>> nb = [1 for i in nums]

>>> nb is nums

False

Lists
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Let’s Take a Break
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BREAK

CS303E Slideset 7: 28 Lists




Example Problems

To get good at working with lists, we must practice!
» CodingBat: https://codingbat.com/python
« List1: first_last6, same_first last, max_end3
« List2: count_even, big_diff, has_22
+ given list of ints or floats, is it sorted in descending order?
» get last index of a given value in list
+ given two lists of ints, return a list that contains the
difference between corresponding elements
 change to be the max
+ are all the elements of a given list unique? In other words,
no duplicate values in the list
 given a list of ints place all even values before all odd
values




