The list class is a very useful tool in Python.

CS303E: Elements of Computers and Programming length =5
B2 E EA
Mike Scott index 0 1 2 3 4
Department of Computer Science negative index -5 4 3 2 i

University of Texas at Austin
Both lists and strings are sequence types in Python, so
share many similar methods. Unlike strings, lists are
mutable.

Adapted from
Professor Bill Young's Slides

If you change a list, it doesn’t create a new copy; it
changes the actual contents of the list.

CS303E Slideset 7: 2 Lists

Value of Lists Indexing and Slicing

With Lists you can get sublists using slicing

Last updated: June 28, 2023

Suppose you have 30 different test grades to average. You could
use 30 variables: grade1, grade2, ..., grade30. Or you could use
one list with 30 elements: grades|0], grades[1], ..., grades[29].

s &

T T T T T index out of range
det grades_example(): Forward Indexing 0 1 2 3 4 5 g 7 /

"""Shows creation of a list and determining
average of elements."""]
grades = [67, 82, 56, 84, 66, 77, 64, 64, 85, 67, Lt YR

73, 63, 98, 74, 81, 67, 93, 77, 97, 65,

77, 91, 91, 74, 93, 56, 96, 90, 91, 99] .
tota.L - 0 -5 -7 -5 5 . -4 -3 . -2 . 1 Reverse Indexing
for score in grades: <

total += score #///

average = total / len(grades) index out of range
print("Class average =", format(average, '.2f'))

CS303E Slideset 7: 3 Lists CS303E Slideset 7: 4 Lists

List Slicing Creating Lists

* Listslicing format: 1ist[start : end]

* Span is a list containing copies of elements

from start up to, but not including, end
o|f start not specified, 0 is used for start index
e|f end not specified, 1en (1ist) is used for end
index

* Slicing expressions can include a step value
and negative indexes relative to end of list

CS303E Slideset 7: 5 Lists

Many programming languages have an array type.

Element

First index (at index 8)

1 2 3 4 5 6 7\8 9— Indices

[T TTTTTI87]

4—Array length is 10———p»

Arrays are:
= homogeneous (all elements
are of the same type)

Python lists are:
o heterogeneous (can contain
elements of different types)
o fixed size
o permit very fast access time

o variable size
o permit fast acoess time

Lists and arrays are examples of data structures. A very simple definition of
a data structure is a variable that stores other variables.
CS313e explores many standard data structures.

Lists can be created with the list class constructor or using

special syntax.

>>> list() # create enpty list, with constructor
[l

>>> list([1, 2, 3]) # create list [1, 2, 3]

[1, 2, 3]

>>> list (["red", 3, 2.5]) # create heterogeneous list
["red”, 3, 2.5]

>>> ["red", 3, 2.5] # create list, no explicit constructor
["red”, 3, 2.5]

>>> range (4) # not an actual list

range(0, 4) .)

>>> list(range(4)) # create list using range

(o, 1, 2, 3] . .

>>> list("abed") # create character list from string
["a’, 'b’, "c¢’, 'd’]

CS303E Slideset 7: 6 Lists

Sequence Operations

Lists are sequences and inherit various functions
from sequences.

Function Description

X in s X is in sequence s

X not in s X is not in sequence s

sl + s2 concatenates two sequences

s*n repeat sequence s n times
s[i] ith element of sequence (0-based)
s[i:j] slice of sequence sfrom i to j-1

len(s) number of elements in s
min(s) minimum element of s
max(s) maximum element of s
sum(s) sum of elements in s

for loop traverse elements of sequence

<, <=, >, >=

compares two sequences
compares two sequences

=

7

CS303E Slideset 7: 8 Lists

CS303E Slideset 7: 7 Lists

Calling Functions on Lists Using Functions

ey vy We could rewrite the grades_examples function as follows:
en —
5
>>> min(l1) # assumes elements are comparable
1
>>> max(11) # assumes elements are comparable def gr'adES_example_z():
5 , """Shows creation of a list and determining
>>> SUIl'(Il) # assumes summing makes sense . .
15 average of elements. This version takes advantage
>>> 12 = [1, 2, "red"] of the sum function for sequences."""
>>> sum(12) o
Traceback (most recent call last): gr'ades B [67’ 82, 56, 84, 66, 77, 64, 64, 85, 67,
File "<stdin>", line 1, in <nodule> 73, 63, 98, 74, 81, 67’ 93, 77, 97, 65,
Type]/irror: unsupported operand type(s) for +: “int’ and ’str 77, 91' 91, 741 93, 56, 96, 90’ 91, 99]
>>> min(12) average = sum(grades) / len(grades)
Tra?eback (n?st recgnt Call. last): pr'int("C'Lass average =" 'For‘mat(aver‘age, I.Zfl))
File "<stdin>", line 1, in <module>
TypeError: ‘<’ not supported between instances of ’“str’ and
“int’
>>>
Traversing Elements with a For Loop Comparing Lists
General Form: Compare lists using the operators: >, >=, <, <=, ==, !=. Uses
for uin list: lexicographic ordering: Compare the first elements of the two lists;
body if they match, compare the second elements, and soon. The
In file test.py: elements must be of comparable classes.
for u in range(3): # not really a list >>> listl = ["red", 3, "green"]
print(u, end=" ") >>> list2 = ["red", 3, "grey"]
print () >>>listl <list2
True
for uin [2, 3, 5, 7]: >>> 1ist3 = ["red", 5, "green"]
print(u, end=" ") >>>list3 >listl
print () True
>>> list4 = [5, "red", "green"]
for u in range(15, 1, -3): # not really a list >>> list3 < list4
print(u, end=" ") Traceback (most recent call last):
print () File "<stdin>", line 1, in <nodule>
TypeError: <’ not supported between instances of 'str’ and
“int’
glpélthon test. py >>> ["red", 5, "green"] == [5, "red", "green"]
235 7 False
15 12 9 6 3

CS303E Slideset 7: 11 Lists CS303E Slideset 7: 12 Lists

List Comprehension List Comprehension with Files

List comprehension gives a compact syntax for List comprehension gives a compact syntax for
building lists. building lists, even from files.
>>> range (4) # not actually a list
range(0, 4)
>>> [x for x in range(4) | # create list from range mples.py = sample.txt
[0, 1, 2;*3] ‘ Team by team, reporters baffled, trumped, tethered, cropped
Fg> 5 *, 9§ for x in range(4)] Look at that low plane, fine, then
>>> 1st = [2, 3, 5, 7, 11, 13] Uh oh, overflow, population, common group
>>> [x ** 3 for x in lst] But it'll do, save yourself, serve yourself
[8, 27, 125, 343, 1331, 2197] World serves its own needs, listen to your heart bleed
>>> [x for x in Ist if x > 2] : . . :
(3, 5, 7, 11, 13] Tell me with the Rapture and the reverent in the right, right
>>> [s[0] for sin ["red", "green", "blue"] if s <= "green"] You vitriolic, patriotic, slam fight, bright light
["g”, 'b’] Feeling pretty psyched
>>> from IsPrime3 import * '
>>> [x for x in range(100) if isPrime(x)]
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89, 97]
List Comprehension with Files List Comprehension with Files
List comprehension gives a compact syntax for List comprehension gives a compact syntax for
building lists, even from files. building lists, even from files.
def list_from_filg(file_path): _)) 1: Team by team, reporters baffled, trumped, tethered, cropped
"""Read the lines from the given file and print them out.""" 2: Look at that low plane, fine, then
with open(file_path, 'r') as infile: _ 3: Uh oh, overflow, population, common group
_ ﬁlTes - [11ne.§trlpg) for line in infile] | 4: But it'll do, save yourself, serve yourself
print(‘number of lines:*, len(lines)) 5: World serves its own needs, listen to your heart bleed
line_num = 1 6: Tell me with the Rapture and the reverent in the right, right
for 1line 1in lines:] 7: You vitriolic, patriotic, slam fight, bright light
print(line_num, ': ', line, sep='") 8: Feeling pretty psyched
line_num += 1

CS303E Slideset 7: 15 Lists CS303E Slideset 7: 16 Lists

Let’s Take a Break

More List Methods

These are methods from class list.
Since lists are mutable, these actually change t.
Method Description
t.append(x) add x to the end of t
t.count(x) number of times x appearsin t
t.extend(11) append elements of 11 tot
t.index(x) index of first occurence of x in t
t.insert(i, x) insert xinto t at position i
t.pop() remove and return the last element of t
t.pop(i) remove and return the ith element of t
t.remove(x) remove the first occurence of x from t
t.reverse() reverse the elements of t
t.sort() order the elements of t
List Examples List Examples
'>>>"1T.pop() # remove and return Tast element
>>> 11T =11, 2, 3]
>>> 1. append (4)# add 4 to the end of 11 >>> 11
>>> 1 # note: changes 11 [0, 1, 2, 3, 4, 5, 6]
[1, 2, 3, 4] >>> 11.reverse () # reverse order of elements
>>> 11.count(4) # count occurrences of 4 in 11 >>> 11
1 [6, 5, 4,3, 2,1, 0]
>>> 12 =[5, 6, 7] >>> 11.sort() # elements must be comparable
>>> 11.extend (12) # add elements of 12 to 11 >>> 11
>>> 11 [0, 1, 2, 3, 4, 5, 6]
1, 2, .3/ 4, 5,6, 7]) 5 >>> 12 = [4, 1.3, "dOg"]
Z>> I1.index(5) # where does 5 occur in 112 >>> [2.sort () # elements must be comparable
>>> 11.insert (0, 0) # add 0 at the start of 11 Tr;ﬁzac,,lié;g?it;ecel?;:alll 'lraxs<tl?r(:)d le>
>>> 11 # note new value of 11 ! ’ s 1 u
[0, 1, 2,3, 4,5, 6, 7] Type?rror:,’<’ not supported between instances of ’“str’ and
>>> 11.insert (3, "a’) # lists are heterogenous float p 'dog’
s> 11 ’>>> ’12.pop() remove dog
[0, 1, 2,7, 3, 4,5, 6, 7] dog
>>> 11.remove(’a’) # what goes in can come out [>Z> 112 3]
11 Lo
[>0>,> 1, 2,3, 4,5, 6,7 z:: l122,:;o1rt() # int and float are comparable
[1.3, 4]
|

CS303E Slideset 7: 19 Lists CS303E Slideset 7: 20 Lists

Random Shuffle Processing CSV Lines

A useful method on lists is random.shuffle()
from the random module.

Suppose grades for a dass were stored in a list of csv strings, such

>>> listl = [x for x in range(9)] as:

>>> listl - '

[0, 1, 2, 3, 4, 5, 6, 7, 8] student_data = '[Alie, 90, 75 /
>>> random shuffle(list1) Robert, 8, 77",
>>> listl 'Charlie, 60, 80']

[7, 4, 0, 8 1, 6, 5, 2, 3]
>>> random shuffle(list1)
>>> listl Compute the average for each student and print a table of results.
[4, 1, 5, 0, 7, 8, 3, 2, 6]
>>> random shuffle(listl)
>>> listl

[7, 5, 2, 6, 0, 4, 3, 1, 8]

Here the fields are: Name, Midterm grade, Final Exam grade.

CS303E Slideset 7: 21 Lists CS303E Slideset 7: 22 Lists

Processing CSV Lines from List Processing CSV Lines

def print_test_scores(student_data): =
"""Print the test scores for the elements of student_data. students = [IA-Llce: 20 198I r ' Robert 158 r77| r

'Michael, 80', 'Charlie, 60 ,80']
student_data is a list of Strings. Each String is of the form:

"<Name>, <Midterm Score>, <Final Score>' pPint_test_scores(students)

Course score 1s based on 1/3 of midterm score and 2/3s of
final score.
nmnnn

print('Name BT PN Course’) Name MT FN Course

= %]
for student in student_data: || | TS oo s s s s m—— e —mm e —m——m— ==
data = student.split(",")

if len(data) 1= 3: Alice Q0 @98 95.33
print('Bad student data:', student)

else: Robert 58 77 70.67
name = data[0].strip() i
midterm = int(data[1].strip()) Bad student data: Michael, 80
final = int(data[2].strip()) s
course_score = midterm / 3 + final * 2 / 3 Cha r‘-Lle 6@ 80 73 . 33

print(format(name, '10s'), format(midterm, '4d'),
format(final, '4d'), format(course_score, '6.2f')) !

CS303E Slideset 7: 23 Lists CS303E Slideset 7: 24 Lists

Copying Lists

Suppose you want to make a copy of alist. The following won’t work!
>>> nums = [12, 56, 37, 12]
>>> N2 = nums
>>> n2 1s nums
True
>>> N2 == nums
True
sa» n2[1] = 73
>>> n2
[12, |73} 37, 12]
>>> nums
[12, 173} 37, 12]

CS303E Slideset 7: 25 Lists

Passing Lists to Functions

Like any other mutable object, when you passalist to afunction,
you're really passing a reference (pointer) to the object in memory.

def alter(Ist):
Ist. pop()
def main():
Ist = [1, 2, 3, 4]
print ("Before call: ", Ist)
alter(Ist)
print("After call: ", lst)
main()
> python ListArg. py
Before call: [1, 2, 3, 4]
After call: [1, 2, 3]

CS303E Slideset 7: 27 Lists

Copying Lists

But, many ways of making a copy of a list.

>>> nums

[12, 73, 37, 17]

>>> n2 = nums.copy()

>>> n2 is nums

Fal.se , > 3 n2:{||5t 4)[12, 73, 37, 12]
>>> n3 = list(nums) .

>>> n3 is nums > 2 = {list 4} [12, 73,37, 12]
False > 2= nd = {list: 4) [12, 73, 37, 12]
>>> n3 is n2 i

False > 1= n5 = {list: 4) [12, 73, 37, 12]
>>> n4 = nums[0:] > 2= nums = {list: 4} [12, 73, 37, 12]
>>> n4 is nums

False

>>> nb = [1 for i in nums]

>>> nb is nums

False

Lists

CosUsE Slideset 7 Zo

Let’s Take a Break

THVIEFOR A
BREAK

CS303E Slideset 7: 28 Lists

Example Problems

To get good at working with lists, we must practice!
» CodingBat: https://codingbat.com/python
« List1: first_last6, same_first last, max_end3
« List2: count_even, big_diff, has_22
+ given list of ints or floats, is it sorted in descending order?
» get last index of a given value in list
+ given two lists of ints, return a list that contains the
difference between corresponding elements
 change to be the max
+ are all the elements of a given list unique? In other words,
no duplicate values in the list
 given a list of ints place all even values before all odd
values

