
CS305j Introduction to
Computing

Simple Graphics 1

Topic 11
Simple Graphics

"What makes the situation worse is that the highest
level CS course I've ever taken is cs4, and quotes
from the graphics group startup readme like 'these
paths are abstracted as being the result of a
topological sort on the graph of ordering
dependencies for the entries' make me lose
consciousness in my chair and bleed from the
nose."

-mgrimes, Graphics problem report 134
Based on slides for Building Java Programs by Reges/Stepp, found at
http://faculty.washington.edu/stepp/book/

CS305j Introduction to
Computing

Simple Graphics 2

DrawingPanel
�To make a window appear on the screen, we must create a

DrawingPanel object:
DrawingPanel <name> = new DrawingPanel(<width>, <height>);

– Example:
DrawingPanel panel = new DrawingPanel(300, 200);

�The window has nothing
on it, but we can draw
shapes and lines on it
using another object
of a type named Graphics.
– Using Graphics requires us to

place an import statement in
our program: import java.awt.*;

CS305j Introduction to
Computing

Simple Graphics 3

Graphics object
�Shapes are drawn on a DrawingPanel using an object

named Graphics.
– To create a Graphics object for drawing:
Graphics <name> = <name> .getGraphics();

– Example:
Graphics g = panel.getGraphics();

�Once you have the Graphics
object, you can draw shapes
by calling methods on it.
– Example:
g.fillRect(10, 30, 60, 35);
g.fillOval(80, 40, 50, 70);

CS305j Introduction to
Computing

Simple Graphics 4

Graphics methods
�Here are the drawing commands we can execute:

writes text with bottom-left corner at (x, y)drawString(String, x, y)

outline of largest oval that fits in a box of
size width * height with top-left corner at (x,
y)

drawOval(x, y, width, height)

entire largest oval that fits in a box of size
width * height with top-left corner at (x, y)

fillOval(x, y, width, height)

Sets Graphics to paint subsequent shapes in
the given Color

setColor(Color)

entire rectangle of size width * height with
top-left corner at (x, y)

fillRect(x, y, width, height)

outline of rectangle of size width * height
with top-left corner at (x, y)

drawRect(x, y, width, height)

line between points (x1, y1), (x2, y2)drawLine(x1, y1, x2, y2)

DescriptionMethod name

CS305j Introduction to
Computing

Simple Graphics 5

Calling methods of objects
�Graphics is an "object" that contains methods inside it.

– When we want to draw something, we don't just write the method's
name. We also have to write the name of the Graphics object, which
is usually g, followed by a dot.

�Calling a method of an object, general syntax:
<name> . <method name> (<parameter(s)>)

– Examples:
Graphics g = panel.getGraphics();
g.drawLine(20, 30, 90, 10);// tell g to draw a line

CS305j Introduction to
Computing

Simple Graphics 6

Colors
�Shapes can be drawn in many colors.

– Colors are specified through global constants in the
Color class named BLACK, BLUE, CYAN,
DARK_GRAY, GRAY, GREEN, LIGHT_GRAY,
MAGENTA, ORANGE, PINK, RED, WHITE,
YELLOW

– Example:
g.setColor(Color.BLACK);
g.fillRect(10, 30, 100, 50);
g.setColor(Color.RED);
g.fillOval(60, 40, 40, 70);

�The background color of a DrawingPanel
can be set by calling its setBackground
method:
– Example:
panel.setBackground(Color.YELLOW);

CS305j Introduction to
Computing

Simple Graphics 7

Coordinate system
�Each (x, y) position on the DrawingPanel is represented by

one pixel (one tiny dot) on the screen.

�The coordinate system used by DrawingPanel and Graphics
has its origin (0, 0) at the window's top-left corner.
– The x value increases rightward and the y value increases

downward.
– This is reversed from what you may expect from math classes.

�For example, the rectangle from (0, 0) to (200, 100) looks
like this:
(0, 0) +-------+

| |
| |
+-------+ (200, 100)

CS305j Introduction to
Computing

Simple Graphics 8

Drawing example 1
import java.awt.*;

public class DrawingExample1 {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(300, 200);

Graphics g = panel.getGraphics();
g.fillRect(10, 30, 60, 35);
g.fillOval(80, 40, 50, 70);

}
}

CS305j Introduction to
Computing

Simple Graphics 9

Complicated(??) example
Write a Java
program to produce
the star burst pattern.

Hard? All lines are the
same number of
pixels apart at the
edges of the panel.

Make in general?

CS305j Introduction to
Computing

Simple Graphics 10

If it is general
�If we make a method to

do the star burst how
hard would it be to go to
this?

CS305j Introduction to
Computing

Simple Graphics 11

More Examples
�Using for loops, we can draw many repetitions of the same

item by varying its x and y coordinates.
– The x or y coordinate's expression should contain the loop counter, i,

so that in each pass of the loop, when i changes, so does x or y.
DrawingPanel panel = new DrawingPanel(400, 300);
panel.setBackground(Color.YELLOW);

Graphics g = panel.getGraphics();
g.setColor(Color.BLUE);

for (int i = 1; i <= 10; i++) {
g.drawString("Hello, world!",

150 - 10 * i, 200 + 10 * i);
}

g.setColor(Color.RED);
for (int i = 1; i <= 10; i++) {

g.fillOval(100 + 20 * i,
5 + 20 * i, 50, 50);

}

CS305j Introduction to
Computing

Simple Graphics 12

Loops that change size
�A for loop can also vary the size of the shape or figure that it

draws.
DrawingPanel panel = new DrawingPanel(300, 220);

Graphics g = panel.getGraphics();
g.setColor(Color.MAGENTA);
for (int i = 1; i <= 10; i++) {

g.drawOval(30, 5,
20 * i, 20 * i);

}

CS305j Introduction to
Computing

Simple Graphics 13

A loop that varies both
�The loop in this program affects both the size and shape of

the figures being drawn.
– Each pass of the loop, the square drawn becomes 20 pixels smaller

in size, and shifts 10 pixels to the right.
DrawingPanel panel = new DrawingPanel(250, 200);

Graphics g = panel.getGraphics();
for (int i = 1; i <= 10; i++) {

g.drawRect(20 + 10 * i, 5,
200 - 20 * i, 200 - 20 * i);

}

CS305j Introduction to
Computing

Simple Graphics 14

Drawing example 2
� What sort of figure does the following code draw?
import java.awt.*;

public class DrawingExample2 {
public static final int NUM_CIRCLES = 10;

public static void main(String[] args) {
DrawingPanel panel = new DrawingPanel(250, 200);
Graphics g = panel.getGraphics();

g.setColor(Color.BLUE);
for (int i = 1; i <= NUM_CIRCLES; i++) {

g.fillOval(15 * i, 15 * i, 30, 30);
}

g.setColor(Color.MAGENTA);
for (int i = 1; i <= NUM_CIRCLES; i++) {

g.fillOval(15 * (NUM_CIRCLES + 1 - i), 15 * i, 30, 30);
}

}
}

CS305j Introduction to
Computing

Simple Graphics 15

Loops that begin at 0
� Often when working with graphics (and with later loops in general), we

begin our loop count at 0 and end one repetition earlier.
– A loop that repeats from 0 to < 10 still repeats 10 times, just like a loop that

repeats from 1 to <= 10.
– But when the loop counter variable i is used to set the figure's coordinates,

often starting i at 0 gives us the coordinates we want.
DrawingPanel panel = new DrawingPanel(250, 250);
Graphics g = panel.getGraphics();
g.drawRect(10, 10, 200, 200);

for (int i = 0; i < 10; i++) {
// lines on the upper-left half
g.drawLine(10, 10 + 20 * i,

10 + 20 * i, 10);

// lines on the lower-right half
g.drawLine(10 + 20 * i, 210,

210, 10 + 20 * i);
}

CS305j Introduction to
Computing

Simple Graphics 16

Superimposing shapes
�Drawing one shape on top of another causes the last shape

to appear on top of the previous one(s).
import java.awt.*;

public class DrawingExample3 {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(200, 100);
panel.setBackground(Color.LIGHT_GRAY);

Graphics g = panel.getGraphics();

g.setColor(Color.BLACK);
g.fillRect(10, 30, 100, 50);

g.setColor(Color.RED);
g.fillOval(20, 70, 20, 20);
g.fillOval(80, 70, 20, 20);

g.setColor(Color.CYAN);
g.fillRect(80, 40, 30, 20);

}
}

CS305j Introduction to
Computing

Simple Graphics 17

Drawing with parameters
� Imagine that we want to draw two figures as shown in the

picture below.
� If you wish to repeat the same figure multiple times on the

drawing panel, write a method that draws that figure and
accepts the x/y position as parameters.
– Adjust all of your x/y coordinates of your drawing commands to take

into account the parameters.
– Since you'll need to send commands to the Graphics g in order to

draw the now parameterized figure, you should also pass Graphics g
as a parameter.

public static void drawCar(Graphics g, int x, int y) {
g.setColor(Color.BLACK);
g.fillRect(x, y, 100, 50);

// ...
}

CS305j Introduction to
Computing

Simple Graphics 18

Drawing with parameters
�Here is the complete program that uses a

parameterized method to draw multiple car
figures:
import java.awt.*;
public class DrawingWithParameters {

public static void main(String[] args) {
DrawingPanel panel = new DrawingPanel(260, 100);
panel.setBackground(Color.LIGHT_GRAY);
Graphics g = panel.getGraphics();
drawCar(g, 10, 30);
drawCar(g, 150, 10);

}

public static void drawCar(Graphics g, int x, int y) {
g.setColor(Color.BLACK);
g.fillRect(x, y, 100, 50);
g.setColor(Color.RED);
g.fillOval(x + 10, y + 40, 20, 20);
g.fillOval(x + 70, y + 40, 20, 20);
g.setColor(Color.CYAN);
g.fillRect(x + 70, y + 10, 30, 20);

}
}

CS305j Introduction to
Computing

Simple Graphics 19

Result

CS305j Introduction to
Computing

Simple Graphics 20

More parameters
�A new version where the cars can be resized:

public class DrawingWithParameters2 {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(210, 100);
panel.setBackground(Color.LIGHT_GRAY);

Graphics g = panel.getGraphics();
drawCar(g, 10, 30, 100);
drawCar(g, 150, 10, 50);

}

public static void drawCar(Graphics g, int x, int y, int size) {
g.setColor(Color.BLACK);
g.fillRect(x, y, size, size / 2);
g.setColor(Color.RED);
g.fillOval(x + size / 10, y + 2 * size / 5,

size / 5, size / 5);
g.fillOval(x + 7 * size / 10, y + 2 * size / 5,

size / 5, size / 5);
g.setColor(Color.CYAN);
g.fillRect(x + 7 * size / 10, y + size / 10,

3 * size / 10, size / 5);
}

}

CS305j Introduction to
Computing

Simple Graphics 21

Parameterized figure exercise
�Let's write a program together that will display the

following figures on a drawing panel of size
300x400:
– top-left figure:

• overall size = 100
• top-left corner = (10, 10)
• oval size = 50
• inner top-left corner = (35, 35)

– top-right figure:
• overall size = 60
• top-left corner = (150, 10)
• oval size = 30
• inner top-left corner = (165, 25)

– bottom figure:
• overall size = 140
• top-left corner = (60, 120)
• oval size = 70
• inner top-left corner = (95, 155)

CS305j Introduction to
Computing

Simple Graphics 22

Parameterized figure exercise
�Write a program that will display the following figure

using parameterized methods.
– Start with the "loops that begin at 0" program shown

earlier in the slides.
– Use a parameter for the number of lines (as well as any

other parameters you need).
– The second square is still 200x200 in size, but it is at

(220, 30) and has 40 line loops compared to the original
figure's 10.

CS305j Introduction to
Computing

Simple Graphics 23

Animation with sleep
�The DrawingPanel has a method named sleep that

makes your program pause for a given number of
milliseconds (thousandths of a second).

�You can use the sleep method to produce simple
animations.
DrawingPanel panel = new DrawingPanel(250, 200);
Graphics g = panel.getGraphics();

g.setColor(Color.BLUE);
for (int i = 1; i <= NUM_CIRCLES; i++) {

g.fillOval(15 * i, 15 * i, 30, 30);
panel.sleep(500);

}
– Try adding sleep commands to loops in past exercises in this chapter

and watch the panel draw itself piece by piece!

