
CS305j Introduction to
Computing

Conditional Execution 1

Topic 12
Conditional Execution

"We flew down weekly to meet with IBM, but
they thought the way to measure software
was the amount of code we wrote, when
really the better the software, the fewer lines
of code."

-Bill Gates

Based on slides for Building Java Programs by Reges/Stepp, found at
http://faculty.washington.edu/stepp/book/

2

Conditional execution with if
statements

CS305j Introduction to
Computing

Conditional Execution 3

The if statement
�Programs that read user input often want to take different

actions depending on the values of the user's input.
� if statement: A Java statement that executes a block of

statements only if a certain condition is true.
– If the condition is not true, the block of statements is skipped.

– General syntax:
if (<condition>) {

<statement(s)> ;
}

– Example:
double gpa = console.nextDouble();
if (gpa <= 2.0) {

System.out.println("Your application is denied.");
}

CS305j Introduction to
Computing

Conditional Execution 4

The if/else statement
� if/else statement: A Java statement that executes one block of

statements if a certain condition is true, and a second block of
statements if the condition is not true.
– General syntax:

if (<condition>) {
<statement(s)> ;

}
else {

<statement(s)> ;
}

– Example:
double gpa = console.nextDouble();
if (gpa <= 2.0) {

System.out.println("Your application is denied.");
}
else {

System.out.println("Welcome to Mars University!");
}

CS305j Introduction to
Computing

Conditional Execution 5

Relational expressions
�The <condition> used in an if or if/else statement is

the same kind of value seen in the middle of a for loop.
– for (int i = 1; i <= 10; i++)

�These conditions are called relational expressions.
�Relational expressions use one of the following six

relational operators:

true5.0 >= 5.0greater than or equal to>=

false126 <= 100less than or equal to<=

true10 > 5greater than>

false10 < 5less than<

true3.2 != 2.5does not equal!=

true1 + 1 == 2equals==

ValueExampleMeaningOperator

CS305j Introduction to
Computing

Conditional Execution 6

Evaluating relational expressions
�The relational operators can be used in a bigger expression

with the mathematical operators we learned earlier.
�Relational operators have a lower precedence than

mathematical operators, so they are evaluated last.
– Example:

5 * 7 >= 3 + 5 * (7 - 1)
5 * 7 >= 3 + 5 * 6
35 >= 3 + 30
35 >= 33
true

�Relational operators cannot be "chained" in the way that you
have seen in algebra.
– Example:

2 <= x <= 10
true <= 10

error!

CS305j Introduction to
Computing

Conditional Execution 7

Nested if/else statements
� Nested if/else statement: A chain of if/else that can select between

many different outcomes based on several conditions.
– General syntax (shown with three different outcomes, but any number of

else if statements can be added in the middle):
if (<condition>) {

<statement(s)> ;
} else if (<condition>) {

<statement(s)> ;
} else {

<statement(s)> ;
}

– Example:
int grade = console.nextInt();
if (grade >= 90) {

System.out.println("Congratulations! An A!");
} else if (grade >= 80) {

System.out.println("Your grade is B. Not bad.");
} else if (grade >= 70) {

System.out.println("You got a C. Work harder!");
}

CS305j Introduction to
Computing

Conditional Execution 8

Structures of if/else code

� Choose 0, 1, or many of many paths:
(use this when the conditions/actions are independent of each other)
if (<condition>) {

<statement(s)>;
}
if (<condition>) {

<statement(s)>;
}
if (<condition>) {

<statement(s)>;
}

� Choose 0 or 1 of many paths:
(use this when the conditions are mutually
exclusive and any action is optional)
if (<condition>) {

<statement(s)>;
} else if (<condition>) {

<statement(s)>;
} else if (<condition>) {

<statement(s)>;
}

� Choose 1 of many paths:
(use this when the conditions are mutually
exclusive)
if (<condition>) {

<statement(s)>;
} else if (<condition>) {

<statement(s)>;
} else {

<statement(s)>;
}

CS305j Introduction to
Computing

Conditional Execution 9

How to comment: if/else
� Comments on an if statement don't need to describe exactly what the if

statement is testing.
– Instead, they should describe why you are performing that test, and/or what

you intend to do based on its result.
– Poor style:

// Test whether student 1's GPA is better than student 2's
if (gpa1 > gpa2) {

// print that student 1 had the greater GPA
System.out.println("The first student had the greater GPA.");

} else if (gpa2 > gpa1) {
// print that student 2 had the greater GPA
System.out.println("The second student's GPA was higher.");

} else {
// there was a tie
System.out.println("There has been a tie!");

}
– Good style:

// Print a message about which student had the higher grade point average.
if (gpa1 > gpa2) {

System.out.println("The first student had the greater GPA.");
} else if (gpa2 > gpa1) {

System.out.println("The second student's GPA was higher.");
} else { // gpa1 == gpa2 (a tie)

System.out.println("There has been a tie!");
}

CS305j Introduction to
Computing

Conditional Execution 10

How to comment: if/else 2
� If an if statement's test is straightforward, and if the actions

to be taken in the bodies of the if/else statement are very
different, sometimes putting comments on the bodies
themselves is more helpful.
– Example:

if (guessAgain.equals("y")) {
// user wants to guess again; reset game state and
// play another game
System.out.println("Playing another game.");
score = 0;
resetGame();
play();

} else {
// user is finished playing; print their best score
System.out.println("Thank you for playing.");
System.out.println("Your score was " + score);

}

CS305j Introduction to
Computing

Conditional Execution 11

Math.max/min vs. if/else
�Many if/else statements that choose the larger or smaller of

2 numbers can be replaced by a call to Math.max or
Math.min.
– int z; // z should be larger of x, y
if (x > y) {

z = x;
} else {

z = y;
}

– int z = Math.max(x, y);
– double d = a; // d should be smallest of a, b, c
if (b < d) {

d = b;
}
if (c < d) {

d = c;
}

– double d = Math.min(a, Math.min(b, c));

CS305j Introduction to
Computing

Conditional Execution 12

Factoring if/else code
� factoring: extracting a common part of code to reduce

redundancy
– factoring if/else code reduces the size of the if and else statements

and can sometimes eliminate the need for if/else altogether.
– example:

int x;
if (a == 1) {

x = 3;
} else if (a == 2) {

x = 5;
} else { // a == 3

x = 7;
}

int x = 2 * a + 1;

CS305j Introduction to
Computing

Conditional Execution 13

Code in need of factoring
� The following example has a lot of redundant code in the if/else:

if (money < 500) {
System.out.println("You have, $" + money + " left.");
System.out.print("Caution! Bet carefully.");
System.out.print("How much do you want to bet? ");
bet = console.nextInt();

} else if (money < 1000) {
System.out.println("You have, $" + money + " left.");
System.out.print("Consider betting moderately.");
System.out.print("How much do you want to bet? ");
bet = console.nextInt();

} else {
System.out.println("You have, $" + money + " left.");
System.out.print("You may bet liberally.");
System.out.print("How much do you want to bet? ");
bet = console.nextInt();

}

CS305j Introduction to
Computing

Conditional Execution 14

Code after factoring
� If the beginning of each if/else branch is essentially the same, try to

move it out before the if/else. If the end of each if/else branch is the
same, try to move it out after the if/else.

System.out.println("You have, $" + money + " left.");

if (money < 500) {
System.out.print("Caution! Bet carefully.");

} else if (money < 1000) {
System.out.print("Consider betting moderately.");

} else {
System.out.print("You may bet liberally.");

}

System.out.print("How much do you want to bet? ");
bet = console.nextInt();

CS305j Introduction to
Computing

Conditional Execution 15

Practice methods
�Write a method to determine the max value,

given three integers
�Write a method determines if 2 points form a

line and if so if it is a vertical line, horizontal
line, or neither
�Write a method to determine the number of

times the character 'm' occurs in a String
�Generalize the previous method to

determine the number of times any given
character occurs in a String
�Write a method that determines the last

index of a character in a given String

