
CS305j
Introduction to Computing

Classes 1

Topic 23
Classes – Part I

"A 'class' is where we teach an
'object' to behave."

-Rich Pattis

Based on slides for Building Java Programs by Reges/Stepp, found at
http://faculty.washington.edu/stepp/book/

2

An example that benefits from
new object types

CS305j
Introduction to Computing

Classes 3

City distance program
�Given an input file named cities.txt that contains x/y

coordinates of many cities, like this:
6
50 20
90 60
10 72
74 98
5 136
150 91

�Write a program that prints distance information:
Type a city's x/y coordinates: 10 72
for the city at (10, 72):

you are 65.6 miles from the city at (50, 20)
you are 80.89 miles from the city at (90, 60)
you are 69.08 miles from the city at (74, 98)
you are 64.2 miles from the city at (5, 136)
you are 141.28 miles from the city at (150, 91)
you are 72.69 miles from the origin at (0, 0)

CS305j
Introduction to Computing

Classes 4

The Point type
�Java has a type of objects named Point, in the java.awt

package.
�Constructing a Point object, general syntax:

Point <name> = new Point(<x>, <y>);
or
Point <name> = new Point(); // the origin, (0, 0)

– Example:
Point p1 = new Point(5, -2);
Point p2 = new Point(); // 0, 0

�Point objects are useful:
– An array of Points is useful to store many x/y pairs.
– In programs that do a lot of 2D graphics, it can be nice to be able to

return an (x, y) pair from a method.
– Points have several useful geometric methods we can call in our

programs.

CS305j
Introduction to Computing

Classes 5

Point object methods
�Data fields of Point objects:

�Useful methods of Point objects:

converts the Point into a String such as
"java.awt.Point[x=5,y=-2]"

toString()

whether the two Points have the same (x, y) coordinatesequals(Point)

how far apart these two Points aredistance(Point)

adjusts this Point's x and y by the given difference
amounts

translate(dx, dy)

changes this Point's x and y to be the given valuessetLocation(x, y)

DescriptionMethod name

Point's y-coordinatey
Point's x-coordinatex

DescriptionField name

CS305j
Introduction to Computing

Classes 6

Reminder: references
�Remember that variables of Object types store references to

the actual object. Here we have 3 variables that refer to 2
unique objects:

Point p1 = new Point(3, 8);
Point p2 = new Point();
Point p3 = p2;

+--------------------+
+---+ | +----+ +----+ |

p1 | +-+--> | x | 3 | y | 8 | |
+---+ | +----+ +----+ |

+--------------------+

+--------------------+
+---+ | +----+ +----+ |

p2 | +-+--> | x | 0 | y | 0 | |
+---+ | +----+ +----+ |

+--------------------+
^

+---+ |
p3 | --+--------------+

+---+

CS305j
Introduction to Computing

Classes 7

Reference semantics
� If two variables refer to the same object, modifying one of

them will also make a change in the other:
p3.setLocation(2, -1);
System.out.println(p2.toString());

+--------------------+
+---+ | +----+ +----+ |

p1 | +-+--> | x | 3 | y | 8 | |
+---+ | +----+ +----+ |

+--------------------+

+--------------------+
+---+ | +----+ +----+ |

p2 | +-+--> | x | 2 | y | -1 | |
+---+ | +----+ +----+ |

+--------------------+
^

+---+ |
p3 | --+--------------+

+---+

OUTPUT:
java.awt.Point[x=2,y=-1]

CS305j
Introduction to Computing

Classes 8

Objects and Object Oriented Programming
�object: An encapsulation of data and behavior.
�object-oriented programming (OOP): Writing

programs that perform most of their useful behavior
through interactions with objects.

�So far, we have interacted with objects of the
following data types:
– String
– Point
– DrawingPanel
– Graphics
– Color
– Scanner
– Random
– File

CS305j
Introduction to Computing

Classes 9

Abstractions
�abstraction: A distancing between ideas and details.

– The objects in Java provide a level of abstraction, because we can
use them without knowing how they work.

�You use abstraction every day when interacting with
technological 'objects' such as a radio.
– You understand the external behavior of the radio (volume

knobs/buttons, station dial, etc.)
– You might not understand the inner workings of the radio (capacitors,

wires, etc.)
• You don't need to understand the inner workings to use the radio
• You do need to understand the inner workings if you want to build a

radio

CS305j
Introduction to Computing

Classes 10

Creation of real objects
� In real life, a factory can create many similar 'objects':

+--------------------------------------+
| Radio Factory |
| |
| state: |
| # of radios made |
| |
| behavior: |
| directions on how to build a radio |
+--------------------------------------+

|
| builds
|

+-----------------------+-------------------------+
| | |
v v v

+-------------------+ +-------------------+ +-------------------+
Radio #1		Radio #2		Radio #3
state:		state:		state:
station		station		station
volume		volume		volume
behavior:		behavior:		behavior:
power on/off		power on/off		power on/off
change station		change station		change station
adjust volume		adjust volume		adjust volume
+-------------------+ +-------------------+ +-------------------+

CS305j
Introduction to Computing

Classes 11

Creation of Java objects
�The analogous entity in Java to the 'factory' is a class.

+---+
| Radio class |
| |
| static int numRadios |
| |
| Radio(double station, int volume) |
+---+

|
| constructs
|

+---------------------+---------------------+
| | |
v v v

+-------------------+ +-------------------+ +-------------------+
Radio object #1		Radio object #2		Radio object #3
double station		double station		double station
int volume		int volume		int volume
powerOn()		powerOn()		powerOn()
powerOff()		powerOff()		powerOff()
setStation(value)		setStation(value)		setStation(value)
setVolume(value)		setVolume(value)		setVolume(value)
+-------------------+ +-------------------+ +-------------------+

CS305j
Introduction to Computing

Classes 12

Classes, types, objects
�class:

1. A file that can be run as a program, containing static
methods and global constants.

2. A template for a type of objects.
�We can write Java classes that are not programs in

themselves, but instead are definitions of new types
of objects.
– We can use these objects in other programs.

�Why would we want to do this?
– It could be useful to create the new type of objects

because it is a valuable abstraction that we can use in
another program.

– a way of managing complexity

CS305j
Introduction to Computing

Classes 13

A Point class
�A class of Points might look something like this:

– Each object contains its own data and methods.
– The class has the instructions for how to construct individual objects.

+---------------------+
| Point class |
| |
| Point() |
| Point(int x, int y) |
+---------------------+

|
| constructs
|

+------------------------------+-------- ...
| |
v v

+---------------------------+ +---------------------------+
Point object #1		Point object #2
int x		int x
int y		int y
distance(Point p)		distance(Point p)
equals(Object o)		equals(Object o)
setLocation(int x, int y)		setLocation(int x, int y)
toString()		toString()
translate(int dx, int dy)		translate(int dx, int dy)
+---------------------------+ +---------------------------+

CS305j
Introduction to Computing

Classes 14

A simple class (data fields)
�The following class creates a new type of objects

named Point.
– Each object contains two pieces of data:

• an int named x,
• and an int named y.

– Point objects (so far) do not contain any behavior.

public class Point {
int x;
int y;

}

– We'd save the above into a file named Point.java.

CS305j
Introduction to Computing

Classes 15

Data fields
�data field: A variable declared inside an object.

– Each object of our type will have its own copy of the data
field.

�Declaring a data field, general syntax:
<type> <name> ;
or,
<type> <name> = <value> ;

– Example:
public class Student {

// each student object has a
// name and gpa data fieldString name;double gpa;

}

CS305j
Introduction to Computing

Classes 16

Accessing data fields
�Code in another class can access your object's

data fields. (for now)
– Later in this chapter, we'll learn about encapsulation,

which will change the way we access the data inside
objects.

�Accessing or modifying a data field, general syntax:
<variable name> . <field name>
or
<variable name> . <field name> = <value> ;

– Examples:
System.out.println("the x-coord is " + p1.x);
p2.y = 13;

CS305j
Introduction to Computing

Classes 17

Client code: Using Point class
�The following code (stored in UsePoint.java) uses

our Point class.
�client code: Code that uses our objects.

public class UsePoint {
public static void main(String[] args) {

// create two Point objects
Point p1 = new Point();p1.x = 5;p1.y = -2;
Point p2 = new Point();p2.x = -4;p2.y = 3;

// print each point
System.out.println("(" + p1.x + ", " + p1.y + ")");
System.out.println("(" + p2.x + ", " + p2.y + ")");

}
}

OUTPUT:
(5, -2)
(-4, 3)

CS305j
Introduction to Computing

Classes 18

Class with behavior (method)
�This second version of Point gives a method

named translate to each Point object.
– Each Point object now contains one method of behavior,

which modifies its x and y coordinates by the given
parameter values.

public class Point {
int x;
int y;

public void translate(int dx, int dy) {
this.x += dx;
this.y += dy;

}
}
– Note the use of the keyword this which allows the Point object to

refer to itself.

CS305j
Introduction to Computing

Classes 19

Alternate syntax
�Instead of using this. we could just refer to x.
�What is the advantage of using this. ?

public class Point {
int x;
int y;

public void translate(int dx, int dy) {
x += dx;
y += dy;

}
// also works in this case

}

CS305j
Introduction to Computing

Classes 20

Object 'context' and this
�The code for a method of a type of objects executes in

the 'context' or perspective of a particular object.
– A special keyword named this exists, which lets you refer

to the object on which the method is running.
– Using the this keyword lets you examine, print, or modify

the values of that object's data fields.
– The this is sometimes called the 'implicit parameter.'

// I'm a Point, and I'm being asked to adjust my
// x and y values by the given amounts.
public void translate(int dx, int dy) {

this.x += dx; // change 'my' x value
this.y += dy; // change 'my' y value

}

CS305j
Introduction to Computing

Classes 21

The meaning of static
�It is illegal to use the this keyword in a

static method, because static code doesn't
operate in the context of an object.
�You'll get a "cannot use keyword this from

a static context" error.
�So what does static mean?

– Look at methods from the String class and the
Math class.

CS305j
Introduction to Computing

Classes 22

Objects' methods
�Methods of objects (methods without the static

keyword) define the behavior for each object.
– The object can use the this keyword to refer to its own

fields or methods as necessary.

�mutator: A method that modifies the state of the
object in some way.
– Sometimes the modification is based on parameters that

are passed to the mutator method, such as a setX
method with an int x parameter.

– The translate method is an example of a mutator.

CS305j
Introduction to Computing

Classes 23

Object method syntax
�Declaring an object's method, general syntax:

public <type> <name> (<parameter(s)>) {
<statement(s)> ;

}

– Example:
public void setLocation(int x, int y) {

this.x = x;
this.y = y;

}

– Notice again how the object uses the keyword this
when referring to its own data field variables.

CS305j
Introduction to Computing

Classes 24

Logic error with no this
– Example:
public void setLocation(int x, int y) {

x = x;
y = y;

}

– I want to set the Point object's x equal to the value of the
setLocation method's parameter named x and likewise
for y.

– But I have an identifier with the same name as a field of
the object.

– This "shadows" the objects field and the this. is required
to refer to the object's x.

CS305j
Introduction to Computing

Classes 25

Client code (2)
�The following client code (stored in
UsePoint2.java) uses our modified Point class:
public class UsePoint2 {

public static void main(String[] args) {
Point p = new Point();
p.x = 3;
p.y = 8;
p.translate(2, -1);
System.out.println("(" + p.x + ", " + p.y + ")");

}
}

OUTPUT:
(5, 7)

CS305j
Introduction to Computing

Classes 26

Constructors
�It is tedious to have to construct an object and

assign values to all of its data fields manually.
Point p = new Point();
p.x = 3;
p.y = 8; // tedious

�We'd rather be able to pass in the data fields'
values as parameters, as was possible with Java's
built-in Point type.
Point p = new Point(3, 8); // better!

�To do this, we need to learn about a special type of
method called a constructor.

CS305j
Introduction to Computing

Classes 27

Point class w/ constructor
�constructor: A method that specifies how to

initialize the state of a new object.
– Constructors may have parameters to initialize the

object.
public class Point {

int x;
int y;

public Point(int x, int y) {this.x = x;this.y = y;}
public void translate(int dx, int dy) {

this.x += dx;
this.y += dy;

}
}

CS305j
Introduction to Computing

Classes 28

Constructor syntax
�Constructor, general syntax:

public <type> (<parameter(s)>) {
<statement(s)> ;

}
– Example:
public Point(int x, int y) {

this.x = x;
this.y = y;

}

�Note that the parameters to the constructor can have the
same name as the object's data fields.
– Java doesn't get confused by this, if we refer to the data fields with

the this. notation.
– A constructor doesn't need to specify a return type (not even void)

because it implicitly returns a new Point object.

CS305j
Introduction to Computing

Classes 29

Client code (3)
�The following client code (stored in
UsePoint3.java) uses our new Point class
with constructor:
public class UsePoint3 {

public static void main(String[] args) {
Point p = new Point(3, 8);
p.translate(2, -1);
System.out.println("(" + p.x + ", " + p.y + ")");

}
}

OUTPUT:
(5, 7)

