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Topic 24 
Classes Part II

"Object-oriented programming as it emerged 
in Simula 67 allows software structure to be 
based on real-world structures, and gives 
programmers a powerful way to simplify the 
design and construction of complex 
programs. "

- David Gelernter

Based on slides for Building Java Programs by Reges/Stepp, found at 
http://faculty.washington.edu/stepp/book/
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More on Classes
�Classes are programmer defined data types
�In Java the primitives (int, char, double, 

boolean) are the core data types already 
defined
�All other data types are classes, and are 

defined by programmers
– even the classes in the Java Standard Library
– look at source code

�Classes are another technique for managing 
complexity
– along with sub programs (methods) and arrays 

(data structures)
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Instance Methods and 
Encapsulation
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Programming Paradigms
�Classes are a major part of a style of 

programming called Object Oriented 
Programming
�One technique for managing complexity and 

building correct programs
�Not the only one
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Accessor methods
�accessor: A method that returns state of the 

object, or computes and returns values based on 
the object's state.
– Unlike mutators, accessors do not modify the state of the 

object.
�example: Write a method named distance in the 

Point class that computes and returns the distance 
between two Points.  (Hint: Use the Pythagorean 
Theorem.)
�example: Write a method named 
distanceFromOrigin that computes and returns 
the distance between the current Point and the 
origin at (0, 0).
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Problem: printability
�By default, println'ing new types of objects prints 

what looks like gibberish:
Point p = new Point(10, 7);
System.out.println(p);  // Point@9e8c34

�We can instead print a more complex String that 
shows the object's state, but this is cumbersome.
System.out.println("(" + p.x + ", " + p.y + ")");

�We'd like to be able to simply print the object itself 
and have something meaningful appear.
// desired:
System.out.println(p);  // (10, 7)
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Special method toString
�If you want your new objects to be easily printable, 

you can write a method named toString that tells 
Java how to convert your objects into Strings as 
needed.

�The toString method, general syntax:
public String toString() {

<statement(s) that return an appropriate String> ;
}

– Example:
// Returns a String representing this Point.
public String toString() {

return "(" + this.x + ", " + this.y + ")";
}
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How toString is used
�Now, in client code that uses your new type of objects, you 

may print them:
– Example:

public class UsePoint2 {
public static void main(String[] args) {

Point p = new Point(3, 8);
System.out.println("p is " + p.toString());

}
}

OUTPUT:
p is (3, 8)

�Java allows you to omit the .toString() when printing an 
object.  The shorter syntax is easier and clearer.

System.out.println("p is " + p);
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Multiple constructors
�It is legal to have more than one constructor in a 

class.
– The constructors must have different parameters.
public class Point {

int x;
int y;

// Constructs a Point at the origin, (0, 0).public Point() {this.x = 0;this.y = 0;}
public Point(int x, int y) {

this.x = x;
this.y = y;

}

// ...
}
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The this keyword
�To avoid redundant code, one constructor may call 

another using the this keyword.
public class Point {

int x;
int y;

public Point() {this(0, 0); // calls the (x, y) constructor
}

public Point(int x, int y) {
this.x = x;
this.y = y;

}

// ...
}
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Encapsulation
�It is considered good style to protect your objects' 

data fields from being externally modified.
– Fields can be declared private to indicate that no code 

outside their own class can change them.
– Declaring a private field, general syntax:
private <type> <name> ;

– Example:
private int x;

�Once fields are private, they otherwise would not 
be accessible at all from outside.  We usually 
provide accessor methods to see (but not modify) 
their values:

public int getX() {
return this.x;

}
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The equals method
�The == operator essentially does not work as one 

might expect on objects:
– Example:
Point p1 = new Point(5, -3);
Point p2 = new Point(5, -3);
System.out.println(p1 == p2);  // false

�Instead, objects are usually compared with the 
equals method.  But new types of objects don't have 
an equals method, so the result is also wrong:

System.out.println(p1.equals(p2));  // false
�We can write an equals method that will behave as 

we expect and return true for cases like the above.
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Writing an equals method
�The equals method, general syntax:

public boolean equals(Object <name>) {
<statement(s) that return a boolean> ;

}
– To be compatible with Java's expectations, the 

parameter to equals must be type Object (which 
means, 'any object can be passed as the parameter').

– The value that is passed can be cast into your type.

– Example:
// Returns whether the have the same x/y
public boolean equals(Object o) {

Point p2 = (Point) o;
return this.x == p2.x && this.y == p2.y;

}
– This is our first version of equals. It turns out there is 

much more involved in writing a correct equals method
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Object practice problem
�Create a new type of objects named Circle.

– A circle is represented by a point for its center,
and its radius.

– Make it possible to construct the unit circle,
centered at (0, 0) with radius 1, by passing
no parameters to the constructor.

– Circles should be able to tell whether a given point is 
contained inside them.

– Circles should be able to draw themselves using a 
Graphics.

– Circles should be able to be printed on the console, and 
should be able to be compared to other circles for 
equality.
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Object practice problem
�Create a new type of objects named

LineSegment.
– A line segment is represented by

two endpoints.

– A line segment should be able to compute 
its slope (y2-y1)/(x2-x1).

– A line segment should be able to tell whether a given 
point intersects it.

– Line segments should be able to draw themselves using 
a Graphics.

– Line segments should be able to be printed on the 
console, and should be able to be compared to other 
lines for equality.
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Advanced Object Features
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Default initialization
�If you do not initialize an object's data field in its 

constructor, or if there is no constructor, the data 
field is given a default 'empty' value.
– Recall the initial version of the Point class:
public class Point {

int x;
int y;

}
– Example (using the above class):
Point p1 = new Point();
System.out.println(p1.x);  // 0

�This is similar to the way that array elements are 
automatically initialized to 'empty' or zero values.
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Null object data fields
�What about data fields that are of object types?

– Recall the initial version of the Point class:
public class Circle {

Point center;
double radius;

}
– Example (using the above class):
Circle circ = new Circle();
System.out.println(circ.center);  // null

�Java prints the bizarre output of 'null' to indicate 
that the circle's center data field does not refer to 
any Point object (because none was constructed 
and assigned to it).
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The keyword null
�null: The absence of an object.

– The Java keyword null may be stored into a reference 
variable (a variable intended to refer to an object) to 
indicate that that variable does not refer to any object.

– Example:
Point p1 = new Point(-4, 7);
Point p2 = null;

+---------------------+
+---+    |   +----+     +----+ |

p1 | --+--> | x | -4 |   y |  7 | |
+---+    |   +----+     +----+ |

+---------------------+
+---+

p2 | / |
+---+
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NullPointerException
� If you try to call a method on a variable storing null, your program will 

crash with a NullPointerException.
– Example:

Point p = null;
System.out.println("p is " + p);
System.out.println(p.getX());  // crash

– Output:
p is null
Exception in thread "main" 
java.lang.NullPointerException

at UsePoint.main(UsePoint.java:9)

� To avoid such exceptions, you can test for null using == and != .
– Example:

if (p == null) {
System.out.println("There is no object here!");

} else {
System.out.println(p.getX());

}
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Violated preconditions
�What if your precondition is not met?

– Sometimes the author of the other code (the 'client' 
of your object) passes an invalid value to your 
method.

– Example:
// in another class (not in Point.java)
Point pt = new Point(5, 17);
Scanner console = new Scanner(System.in);
System.out.print("Type the coordinates: ");
int x = console.nextInt();  // what if the user types
int y = console.nextInt();  // a negative number?
pt.setLocation(x, y);

– How can we scold the client for misusing our class in this 
way?
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Throwing exceptions
�exception: A Java object that represents an error.

– When an important precondition of your method has been violated, you 
can choose to intentionally generate an exception in the program.

– Example:
// Sets this Point's location to be the given (x, y).
// Precondition: x, y >= 0
// Postcondition: this.x = x, this.y = y
public void setLocation(int x, int y) {

if (x < 0 || y < 0) {
throw new IllegalArgumentException();

}

this.x = x;
this.y = y;

}
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Exception syntax
�Throwing an exception, general syntax:

throw new <exception type> ();
or,
throw new <exception type> ("<message>");

• The <message> will be shown on the console when the program 
crashes.

�It is common to throw exceptions when a method or 
constructor has been called with invalid parameters 
and there is no graceful way to handle the problem.
– Example:
public Circle(Point center, double radius) {

if (center == null || radius < 0.0) {
throw new IllegalArgumentException();

}
}


