
CS305j
Introduction to Computing

Classes II 1

Topic 24
Classes Part II

"Object-oriented programming as it emerged
in Simula 67 allows software structure to be
based on real-world structures, and gives
programmers a powerful way to simplify the
design and construction of complex
programs. "

- David Gelernter

Based on slides for Building Java Programs by Reges/Stepp, found at
http://faculty.washington.edu/stepp/book/

CS305j
Introduction to Computing

Classes II 2

More on Classes
�Classes are programmer defined data types
�In Java the primitives (int, char, double,

boolean) are the core data types already
defined
�All other data types are classes, and are

defined by programmers
– even the classes in the Java Standard Library
– look at source code

�Classes are another technique for managing
complexity
– along with sub programs (methods) and arrays

(data structures)

CS305j
Introduction to Computing

Classes II 3

Instance Methods and
Encapsulation

CS305j
Introduction to Computing

Classes II 4

Programming Paradigms
�Classes are a major part of a style of

programming called Object Oriented
Programming
�One technique for managing complexity and

building correct programs
�Not the only one

CS305j
Introduction to Computing

Classes II 5

Accessor methods
�accessor: A method that returns state of the

object, or computes and returns values based on
the object's state.
– Unlike mutators, accessors do not modify the state of the

object.
�example: Write a method named distance in the

Point class that computes and returns the distance
between two Points. (Hint: Use the Pythagorean
Theorem.)
�example: Write a method named
distanceFromOrigin that computes and returns
the distance between the current Point and the
origin at (0, 0).

CS305j
Introduction to Computing

Classes II 6

Problem: printability
�By default, println'ing new types of objects prints

what looks like gibberish:
Point p = new Point(10, 7);
System.out.println(p); // Point@9e8c34

�We can instead print a more complex String that
shows the object's state, but this is cumbersome.
System.out.println("(" + p.x + ", " + p.y + ")");

�We'd like to be able to simply print the object itself
and have something meaningful appear.
// desired:
System.out.println(p); // (10, 7)

CS305j
Introduction to Computing

Classes II 7

Special method toString
�If you want your new objects to be easily printable,

you can write a method named toString that tells
Java how to convert your objects into Strings as
needed.

�The toString method, general syntax:
public String toString() {

<statement(s) that return an appropriate String> ;
}

– Example:
// Returns a String representing this Point.
public String toString() {

return "(" + this.x + ", " + this.y + ")";
}

CS305j
Introduction to Computing

Classes II 8

How toString is used
�Now, in client code that uses your new type of objects, you

may print them:
– Example:

public class UsePoint2 {
public static void main(String[] args) {

Point p = new Point(3, 8);
System.out.println("p is " + p.toString());

}
}

OUTPUT:
p is (3, 8)

�Java allows you to omit the .toString() when printing an
object. The shorter syntax is easier and clearer.

System.out.println("p is " + p);

CS305j
Introduction to Computing

Classes II 9

Multiple constructors
�It is legal to have more than one constructor in a

class.
– The constructors must have different parameters.
public class Point {

int x;
int y;

// Constructs a Point at the origin, (0, 0).public Point() {this.x = 0;this.y = 0;}
public Point(int x, int y) {

this.x = x;
this.y = y;

}

// ...
}

CS305j
Introduction to Computing

Classes II 10

The this keyword
�To avoid redundant code, one constructor may call

another using the this keyword.
public class Point {

int x;
int y;

public Point() {this(0, 0); // calls the (x, y) constructor
}

public Point(int x, int y) {
this.x = x;
this.y = y;

}

// ...
}

CS305j
Introduction to Computing

Classes II 11

Encapsulation
�It is considered good style to protect your objects'

data fields from being externally modified.
– Fields can be declared private to indicate that no code

outside their own class can change them.
– Declaring a private field, general syntax:
private <type> <name> ;

– Example:
private int x;

�Once fields are private, they otherwise would not
be accessible at all from outside. We usually
provide accessor methods to see (but not modify)
their values:

public int getX() {
return this.x;

}
CS305j
Introduction to Computing

Classes II 12

The equals method
�The == operator essentially does not work as one

might expect on objects:
– Example:
Point p1 = new Point(5, -3);
Point p2 = new Point(5, -3);
System.out.println(p1 == p2); // false

�Instead, objects are usually compared with the
equals method. But new types of objects don't have
an equals method, so the result is also wrong:

System.out.println(p1.equals(p2)); // false
�We can write an equals method that will behave as

we expect and return true for cases like the above.

CS305j
Introduction to Computing

Classes II 13

Writing an equals method
�The equals method, general syntax:

public boolean equals(Object <name>) {
<statement(s) that return a boolean> ;

}
– To be compatible with Java's expectations, the

parameter to equals must be type Object (which
means, 'any object can be passed as the parameter').

– The value that is passed can be cast into your type.

– Example:
// Returns whether the have the same x/y
public boolean equals(Object o) {

Point p2 = (Point) o;
return this.x == p2.x && this.y == p2.y;

}
– This is our first version of equals. It turns out there is

much more involved in writing a correct equals method
CS305j
Introduction to Computing

Classes II 14

Object practice problem
�Create a new type of objects named Circle.

– A circle is represented by a point for its center,
and its radius.

– Make it possible to construct the unit circle,
centered at (0, 0) with radius 1, by passing
no parameters to the constructor.

– Circles should be able to tell whether a given point is
contained inside them.

– Circles should be able to draw themselves using a
Graphics.

– Circles should be able to be printed on the console, and
should be able to be compared to other circles for
equality.

CS305j
Introduction to Computing

Classes II 15

Object practice problem
�Create a new type of objects named

LineSegment.
– A line segment is represented by

two endpoints.

– A line segment should be able to compute
its slope (y2-y1)/(x2-x1).

– A line segment should be able to tell whether a given
point intersects it.

– Line segments should be able to draw themselves using
a Graphics.

– Line segments should be able to be printed on the
console, and should be able to be compared to other
lines for equality.

CS305j
Introduction to Computing

Classes II 16

Advanced Object Features

CS305j
Introduction to Computing

Classes II 17

Default initialization
�If you do not initialize an object's data field in its

constructor, or if there is no constructor, the data
field is given a default 'empty' value.
– Recall the initial version of the Point class:
public class Point {

int x;
int y;

}
– Example (using the above class):
Point p1 = new Point();
System.out.println(p1.x); // 0

�This is similar to the way that array elements are
automatically initialized to 'empty' or zero values.

CS305j
Introduction to Computing

Classes II 18

Null object data fields
�What about data fields that are of object types?

– Recall the initial version of the Point class:
public class Circle {

Point center;
double radius;

}
– Example (using the above class):
Circle circ = new Circle();
System.out.println(circ.center); // null

�Java prints the bizarre output of 'null' to indicate
that the circle's center data field does not refer to
any Point object (because none was constructed
and assigned to it).

CS305j
Introduction to Computing

Classes II 19

The keyword null
�null: The absence of an object.

– The Java keyword null may be stored into a reference
variable (a variable intended to refer to an object) to
indicate that that variable does not refer to any object.

– Example:
Point p1 = new Point(-4, 7);
Point p2 = null;

+---------------------+
+---+ | +----+ +----+ |

p1 | --+--> | x | -4 | y | 7 | |
+---+ | +----+ +----+ |

+---------------------+
+---+

p2 | / |
+---+

CS305j
Introduction to Computing

Classes II 20

NullPointerException
� If you try to call a method on a variable storing null, your program will

crash with a NullPointerException.
– Example:

Point p = null;
System.out.println("p is " + p);
System.out.println(p.getX()); // crash

– Output:
p is null
Exception in thread "main"
java.lang.NullPointerException

at UsePoint.main(UsePoint.java:9)

� To avoid such exceptions, you can test for null using == and != .
– Example:

if (p == null) {
System.out.println("There is no object here!");

} else {
System.out.println(p.getX());

}

CS305j
Introduction to Computing

Classes II 21

Violated preconditions
�What if your precondition is not met?

– Sometimes the author of the other code (the 'client'
of your object) passes an invalid value to your
method.

– Example:
// in another class (not in Point.java)
Point pt = new Point(5, 17);
Scanner console = new Scanner(System.in);
System.out.print("Type the coordinates: ");
int x = console.nextInt(); // what if the user types
int y = console.nextInt(); // a negative number?
pt.setLocation(x, y);

– How can we scold the client for misusing our class in this
way?

CS305j
Introduction to Computing

Classes II 22

Throwing exceptions
�exception: A Java object that represents an error.

– When an important precondition of your method has been violated, you
can choose to intentionally generate an exception in the program.

– Example:
// Sets this Point's location to be the given (x, y).
// Precondition: x, y >= 0
// Postcondition: this.x = x, this.y = y
public void setLocation(int x, int y) {

if (x < 0 || y < 0) {
throw new IllegalArgumentException();

}

this.x = x;
this.y = y;

}

CS305j
Introduction to Computing

Classes II 23

Exception syntax
�Throwing an exception, general syntax:

throw new <exception type> ();
or,
throw new <exception type> ("<message>");

• The <message> will be shown on the console when the program
crashes.

�It is common to throw exceptions when a method or
constructor has been called with invalid parameters
and there is no graceful way to handle the problem.
– Example:
public Circle(Point center, double radius) {

if (center == null || radius < 0.0) {
throw new IllegalArgumentException();

}
}

