
Topic 1
Course Introduction Syllabus andCourse Introduction, Syllabus, and

Software Tools
Chapman: I didn't expect a kind of Spanish Inquisition.
Cardinal Ximinez: NOBODY expects the Spanish Inquisition!
Our chief weapon is surprise...surprise and fear...fear andOur chief weapon is surprise...surprise and fear...fear and
surprise.... Our two weapons are fear and surprise...and
ruthless efficiency.... Our three weapons are fear, surprise,
and ruthless efficiency...and an almost fanatical devotion to theand ruthless efficiency...and an almost fanatical devotion to the
Pope.... Our four...no... Amongst our weapons.... Amongst
our weaponry...are such diverse elements as fear, surprise....

Mike Scott, Painter Hall 5.68,
scottm@cs.utexas.edu

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 1

www.cs.utexas.edu/~scottm/cs307

Who Am I?
�Lecturer in CS department since 2000
�Undergrad Stanford MSCS RPIUndergrad Stanford, MSCS RPI
�US Navy for 8 years, submarines
�2 years Round Rock High School�2 years Round Rock High School
�Wife (Kelly) is a nurse.

2 daughters Olivia and Isabelle– 2 daughters, Olivia and Isabelle

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 2

What We Will Do Today
�Discuss

course content– course content
– procedures

t l– tools

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 3

Formal Prerequisites
�One year of programming in high school, a

grade of at least C in CS303E or CS 305J orgrade of at least C in CS303E or CS 305J or
consent of instructor (very rarely given).

�Credit or registration for M408C or M408K�Credit or registration for M408C or M408K,
or a score of at least 520 on the SAT II Math
Level 1 or Math Level 2 testLevel 1 or Math Level 2 test.

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 4

Are you in the right place?
Required Programming Knowledge and q g g g

Experience for 307 – (Informal Prerequisites)
� variables and data types
� expressions, order of operations
� decision making (if statements)

– including boolean logic and boolean expressions
� loops (fixed and variable repetition)
� procedures or functions
� parameters (reference and value parameters, local variables, scope,

problem generalization)
� structures or records or objects
� arrays (vectors, lists)
� top down design (breaking big rocks into little rocks)

– algorithm and data design
– create and implement program of at least 200 - 300 loc

ld it t l t 2 l l t 4?

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 5

– could you write a program to let 2 people play connect 4?

What We Will Do in 307
�A second course in programming with a focus on

canonical data structures, algorithms on those
data structures and object oriented programmingdata structures, and object oriented programming

�Java Basics and Review (1 week)
�Object Oriented Basics (3 weeks)Object Oriented Basics (3 weeks)

– classes and objects, encapsulation, inheritance,
polymorphism

�F d l f i (2 k)�Fundamental of programming (2 weeks)
– algorithm analysis, recursion, sorting and searching

�Introduction application and implementation of�Introduction, application, and implementation of
basic abstract data types (9 weeks)
– lists, iterators, stacks, queues, trees, sets (hash tables,

/)
CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 6

maps/dictionaries, heaps)

Course Materials and Procedures
�If you are new to university level classes,

you may be surprised by how much of theyou may be surprised by how much of the
responsibility for knowing what to do in a
class is up to youclass is up to you.

�You are responsible for a great number of
things!things!

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 7

Course Materials and Procedures
�web site

– userweb.cs.utexas.edu/~scottm/cs307/
most materials you need are on the web sitemost materials you need are on the web site

– links, assignments, schedule, coding samples, study
materials, section problems

�schedule�schedule
– on the web site
– schedule of topics
– required readings, many from the web
– links to the slides I use in class

• Slides are a reference only.
• We will diverge from the slides on many occasions.

– due dates

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 8

Course Materials and Procedures
�syllabus

– very important
lik t t b t i t t– like a contract between instructor
and students

– policies for the coursep
– online with links to more information

�books
– books are recommended not required
– Weiss book -> data structures
– On to Java-> Java reference– On to Java-> Java reference
– Thinking Recursively in Java

(not in Co-op)

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 9

Course Materials and Procedures
�Lecture

– lecture / discussion with instructor
– not just lecture, I ask questions of you and I encourage

you to ask questions of me
iClicker questions– iClicker questions

�Discussion Section
– with graduate teaching assistantg g
– coding quiz at the start of each, similar in nature to test

questions
• quizzes cannot be made up• quizzes cannot be made up

– your chance to ask questions on the assignments
– cover materials from section handouts which are

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 10

available on the class web site

Attendance Question 1
Which of these best describes you?
A Fi t t t ll t hi h h l dA. First semester at college, recent high school grad.
B. First semester at UT, transferring from another

schoolschool.
C. In second year at UT.
D H b t UT f 2D. Have been at UT for 2 or more years

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 11

Attendance Question 2
Which computer programming language are
you most comfortable with?you most comfortable with?

A. Java
B. C or C++
C. Python
D. PHP
E C#E. C#

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 12

Course Materials and Procedures
�class listserv

– sign up for the listserv, procedure in syllabus and on g p p y
assignment 1

– learn to set up a filter in your email client
i b l i i l– post questions about class, assignments, material,

concepts
– answer your classmates questionsanswer your classmates questions
– updates and information from me will come via the

listserv
– no large chunks (> 3 lines) of solution code on the

listserv
additional test cases are okay

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 13

– additional test cases are okay

Graded Course Components
� Attendance, 41 lectures, 1 point each, 41 points total
� Discussion section quizzes, 13 quizzes, 5 points each, 65 points

totaltotal
� Javabat problems, 7 problem sets, 7 points each, 49 points total
� Programming projects, 12 projects, 10 or 20 points each, 220

i lpoints total
� Midterm 1: 170 points
� Midterm 2: 200 pointsp
� Final: 290 points

� Attendance Quizzes Javabat Programming capped at 340� Attendance, Quizzes, Javabat, Programming capped at 340
points.

� 35 points of “slack” among those 4 components

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 14

Grades and Performance
�Final grade determined by final point total and a 900 – 800 –Final grade determined by final point total and a 900 800

700 – 600 scale
– Will be adjusted with plusses and minuses if within 25 points of

cutoff: 875 899: B+ 900 924: Acutoff: 875 – 899: B+, 900 – 924: A-

�Last semester 134 students enrolled in the course.
– 100 students got a C or better. (47 As, 31 Bs, 22 Cs)
– 24 students got a D or F.
– 10 students dropped or withdrew– 10 students dropped or withdrew.

�The majority of students getting Ds or Fs missed 1 or more j y g g
exams without an excuse and / or had a failing average on
non exam components. (assignments, attendance, javabat,
and quizzes)

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 15

and quizzes)

Course Materials and Procedures
�Assignments

– where ~80% of your learning will take placey g p
– constant feedback -> good news / bad news
– for learning, not evaluation -> low point value

t d t l b it– posted to class web site
– see assignment page for general guidelines
– creating programs using Javacreating programs using Java
– usually creating parts of programs based on provided

code
sometimes a complete program– sometimes a complete program

– some assignments done as individual, some can be done
with a partner

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 16

Course Materials and Procedures
�More on assignments

– some test cases providedsome test cases provided
– some provided test cases may have errors
– use class listserv to discuss and resolve errors inuse class listserv to discuss and resolve errors in

provided test cases
– create your own test cases
– graded on correctness, style, efficiency,

generality, comments, testing
t d d li l ff t• not graded on a linear scale or on effort

– program must work, compile errors / runtime
errors lose all correctness points

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 17

errors lose all correctness points

Course Materials and Procedures
�Still more on assignments

– VERY IMPORTANT: must get account for CS– VERY IMPORTANT: must get account for CS
department labs -> see syllabus for procedure

– turn in assignments to your lab account via the turnin
program – DEMO

– turn in the right thing! (source code now, jar files
later correct name)later, correct name)

– slip days, 6 total for the semester
– no provisions other than slip days and “slack" in gradingno provisions other than slip days and slack in grading

scheme for late / missed assignments
– slip days and “slack” are for emergencies!

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 18

Course Materials and Procedures
�And yet more on assignments

– graded by teaching assistant and proctorgraded by teaching assistant and proctor
– scores posted to egradebook -> link on class web site
– individual assignments are just that, individual
– copying solution code or giving code to someone else is

CHEATING -> F in the course
l ti h k d ith l i i d t ti ft– solutions checked with plagiarism detection software

– sharing test cases okay and encouraged
– read the portion of the syllabus regarding cheating and– read the portion of the syllabus regarding cheating and

collaboration

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 19

Javabat Problems
�Small scale problems
�7 sets�7 sets
�create account, grant access to TA / Grader

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 20

Course Materials - Exams
�Out of class midterms.
�Midterm 1: Wednesday, March 2, 6 – 8 pmy
�Midterm 2: Wednesday, April 20, 6 – 8 pm

��If you have a conflict, relax. We will determine a
makeup time. Email me ASAP.

�Final Exam: Uniform Time to be determined.
� i t t d / t d t / /�registrar.utexas.edu/students/exams/

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 21

More on Exams
�old tests on line – study materials
�tests consist of short answer questions andtests consist of short answer questions and

coding questions
�test emphasize problem solving algorithmtest emphasize problem solving, algorithm

implementation, some syntax
�tests scores curved up if instructor feelstests scores curved up if instructor feels

necessary.

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 22

Succeeding in the Course
�Randy Pausch,

CS Professor at CMU said:

�"When I got tenure a year
early at Virginia otherearly at Virginia, other
Assistant Professors would come up to me and say, 'You
got tenure early!?!?! What's your secret?!?!?' and I

uld t ll th m 'C ll m in m ffi t 10pm n F idwould tell them, Call me in my office at 10pm on Friday
night and I'll tell you.' "

�Meaning: Some things don't have an easy solution.
�Some things simply require a lot of hard work.

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 23

Succeeding in the Course
�do the readings
�start on assignments early
� t h l f th t hi t ff h t t k�get help from the teaching staff when you get stuck

on an assignment
�attend lecture and discussion sections�attend lecture and discussion sections
�participate on the listserv
�do the Javabat problemsdo the Javabat problems
�do the extra section problems
�study for tests using the old testsstudy for tests using the old tests
�study for tests in groups
�ask questions and get help when needed

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 24

as ques o s a d ge e p e eeded

Course Materials and Procedures
�Software

– can work in CS department microlab, 5th floor of ca o CS depa e c o ab, 5 oo o
Painter Hall

– login via CS account name and passwordg p
– can work at home if you wish
– Java.Java.

• Free.
• Web page has details under Software. (JDK 6.0)

– Optional IDE.
• Recommended IDE is Eclipse, also free

CS307 Fundamentals of
Computer Science

Course Overview, Materials, and Procedures 25

Topic 2Topic 2
Java Basics

"On the other hand, Java has already been a big win
in academic circles where it has taken the place ofin academic circles, where it has taken the place of
Pascal as the preferred tool for teaching the basics of
good programming "good programming…

-The New Hacker's Dictionary version 4.3.1
www tuxedo org/~esr/jargon/html/The Jargon Lexicon framed htmlwww.tuxedo.org/~esr/jargon/html/The-Jargon-Lexicon-framed.html

CS 307 Fundamentals of
Computer Science

Java Basics 1

Agenda
��Brief History of Java and overview of

language
�Solve a problem to demonstrate Java syntax
�Discuss coding issues and style via examplescuss cod g ssues a d sty e a e a p e
�Slides include more details on syntax

may not cover everything in class but you are– may not cover everything in class, but you are
expected to know these

CS 307 Fundamentals of
Computer Science

Java Basics 2

Brief History of Java and
Overview of Langauge

java.sun.com/features/1998/05/birthday.html

CS 307 Fundamentals of
Computer Science

Java Basics 3

A brief history of Java
– "Java whose original name was Oak was developed as a– Java, whose original name was Oak, was developed as a

part of the Green project at Sun. It was started in
December '90 by Patrick Naughton, Mike Sheridan and
James Gosling and was chartered to spend time trying toJames Gosling and was chartered to spend time trying to
figure out what would be the "next wave" of computing and
how we might catch it. They came to the conclusion that at
least one of the waves was going to be the convergence ofleast one of the waves was going to be the convergence of
digitally controlled consumer devices and computers. "

�Applets and Applications
– "The team returned to work up a Java technology-based clone

of Mosaic they named "WebRunner" (after the movie Blade
Runner), later to become officially known as the HotJavaTM

browser It was 1994 WebRunner was just a demo but anbrowser. It was 1994. WebRunner was just a demo, but an
impressive one: It brought to life, for the first time, animated,
moving objects and dynamic executable content inside a Web
browser. That had never been done. [At the TED

CS 307 Fundamentals of
Computer Science

Java Basics 4

[
conference.]"

How Java Works
�J ' l tf i d d i hi d b th�Java's platform independence is achieved by the

use of the Java Virtual Machine
�A Java program consists of one or more files with aA Java program consists of one or more files with a

.java extension
– these are plain old text files

�When a Java program is compiled the .java files
are fed to a compiler which produces a .class file
for each java filefor each .java file

�The .class file contains Java bytecode.
�Bytecode is like machine language but it is�Bytecode is like machine language, but it is

intended for the Java Virtual Machine not a specific
chip such as a Pentium or PowerPC chip

CS 307 Fundamentals of
Computer Science

Java Basics 5

More on How Java Works
�T J h b d i l fil�To run a Java program the bytecode in a .class file

is fed to an interpreter which converts the byte code
to machine code for a specific chip (IA 32to machine code for a specific chip (IA-32,
PowerPC)

�Some people refer to the interpreter as "The JavaSome people refer to the interpreter as The Java
Virtual Machine" (JVM)

�The interpreter is platform specific because it takesThe interpreter is platform specific because it takes
the platform independent bytecode and produces
machine language instructions for a particular chip

�So a Java program could be run an any type of
computer that has a JVM written for it.

CS 307 Fundamentals of
Computer Science

Java Basics 6
– PC, Mac, Unix, Linux, BeaOS, Sparc

A Picture is Worth…

The output of the
compiler is .class
file

The Interpreter's are sometimes referred to as the Java Virtual

CS 307 Fundamentals of
Computer Science

Java Basics 7
Machines

So What!
�The platform independence of Java may be a hugeThe platform independence of Java may be a huge

marketing tool, but is actually of little use to people
learning Object Oriented Programming and
Ab t t D t TAbstract Data Types

�What is of use is the simplicity of the Java syntax
and programming conceptsand programming concepts

�Java is a "pure" Object Oriented Language
– encapsulation, inheritance, and polymorphismencapsulation, inheritance, and polymorphism
– all code must be contained in a class
– no free functions (functions that do not belong to some

class) like C++ altho gh someone ho ants to riteclass) like C++, although someone who wants to write
messy Java code certainly can

– Is OO the best programming paradigm?

CS 307 Fundamentals of
Computer Science

Java Basics 8

HelloWorld.java
/**
* A simple program
*/

bli l H ll W ldpublic class HelloWorld
{

public static void main(String[] args)public static void main(String[] args)
{

System.out.println("HELLO CS307!");System.out.println(HELLO CS307!);
}

}
CS 307 Fundamentals of
Computer Science

Java Basics 9

}

More on Java Programs
�All code part of some class�All code part of some class

public class Foo
{ //start of class Foo{ //start of class Foo

/*all code in here!*/
} // end of class Foo

�The code for class Foo will be in a file
named Foo.java
– just a text file with the .java extension
– a class is a programmer defined data type

�A complete program will normally consist of
many different classes and thus many
diff t fil

CS 307 Fundamentals of
Computer Science

Java Basics 10

different files

Attendance Question 1
What does 6,967 * 7,793 equal?

A. 10,000
B. 23,756,201
C 54 293 831C. 54,293,831
D. 2,147,483,647
E 2 14 483 648E. - 2,147,483,648

CS 307 Fundamentals of
Computer Science

Java Basics 11

Attendance Question 2
How many factors does 54,161,329 have?

A. 2
B. 3
C 4C. 4
D. 6
E h 6E. more than 6

Bonus question. What are they?

CS 307 Fundamentals of
Computer Science

Java Basics 12

Example Problem
��Determine if a given integer is prime

– problem definition
– really naïve algorithm
– implementation
– testing
– a small improvementp
– another improvement
– yet another improvementy p
– always another way ...
– what about really big numbers? (Discover AKS

CS 307 Fundamentals of
Computer Science

Java Basics 13

what about really big numbers? (Discover AKS
Primality Testing)

Error Types
��Syntax error / Compile errors

– caught at compile time.
– compiler did not understand or compiler does not

allow
�Runtime error

– something “Bad” happens at runtime. Java
breaks these into Errors and Exceptions

�Logic Errorg
– program compiles and runs, but does not do

what you intended or want

CS 307 Fundamentals of
Computer Science

Java Basics 14

Java Language
Review of Basic Features

CS 307 Fundamentals of
Computer Science

Java Basics 15

Basic Features
�D t T�Data Types

– primitives
l / bj t– classes / objects

�Expressions and operators
��Control Structures
�Arrays
�Methods
�Programming for correctnessg g

– pre and post conditions
– assertions

CS 307 Fundamentals of
Computer Science

Java Basics 16

Java Data TypesJava Data Types

CS 307 Fundamentals of
Computer Science

Java Basics 17

Identifiers in Java
� letters digits and $ (don't use $ Can confuse� letters, digits, _, and $ (don't use $. Can confuse

the runtime system)
� start with letter, , or $, _,
� by convention:

1. start with a letter
2 variables and method names lowercase with internal2. variables and method names, lowercase with internal

words capitalized e.g. honkingBigVariableName
3. constants all caps with _ between internal words e.g.

ANOTHER HONKING BIG INDENTIFIERANOTHER_HONKING_BIG_INDENTIFIER
4. classes start with capital letter, internal words

capitalized, all other lowercase e.g
HonkingLongClassNameHonkingLongClassName

� Why? To differentiate identifiers that refer to
classes from those that refer to variables

CS 307 Fundamentals of
Computer Science

Java Basics 18

Data Types
�Primitive Data Types yp

– byte short int long float double boolean char

//dataType identifier;yp ;
int x;
int y = 10;
int z zz;int z, zz;
double a = 12.0;
boolean done = false, prime = true;

– stick with int for integers, double for real numbers

char mi = 'D';

g
�Classes and Objects

– pre defined or user defined data types consisting of constructors,
methods and fields (constants and fields (variables) which may be

CS 307 Fundamentals of
Computer Science

Java Basics 19

methods, and fields (constants and fields (variables) which may be
primitives or objects.)

Java Primitive Data Types
Data Characteristics RangeData
Type

Characteristics Range

byte 8 bit signed integer -128 to 127

short 16 bit signed integer -32768 to 32767

int 32 bit signed integer -2,147,483,648 to 2,147,483,647

long 64 bit signed integer -9,223,372,036,854,775,808 to-
9,223,372,036,854,775,807

float 32 bit floating point + 1 4E-45 tofloat 32 bit floating point
number

+ 1.4E-45 to
+ 3.4028235E+38

double 64 bit floating point
number

+ 4.9E-324 to
+ 1.7976931348623157E+308

boolean true or false NA, note Java booleans cannot be
converted to or from other types

char 16 bit, Unicode Unicode character, \u0000 to \uFFFF

CS 307 Fundamentals of
Computer Science

Java Basics 20

16 bit, Unicode U code c a acte , \u0000 to \u
Can mix with integer types

What are Classes and Objects?
�Class is synonymous with data typeClass is synonymous with data type
�Object is like a variable

– The data type of the Object is some ClassThe data type of the Object is some Class
– referred to as an instance of a Class

�Classes contain:Classes contain:
– the implementation details of the data type
– and the interface for programmers who just wantand the interface for programmers who just want

to use the data type
�Objects are complex variablesj p

– usually multiple pieces of internal data
– various behaviors carried out via methods

CS 307 Fundamentals of
Computer Science

Java Basics 21

Creating and Using Objects
�D l ti D t T id tifi�Declaration - DataType identifier

Rectangle r1;

�C ti t d ifi d�Creation - new operator and specified
constructor
1 R t l ()r1 = new Rectangle();
Rectangle r2 = new Rectangle();

�B h i i th d t t�Behavior - via the dot operator
r2.setSize(10, 20);
St i 2 2 t St i ()String s2 = r2.toString();

�Refer to documentation for available
behaviors (methods)

CS 307 Fundamentals of
Computer Science

Java Basics 22

behaviors (methods)

Built in Classes
�J h l b il �S�Java has a large built

in library of classes
with lots of useful

�System
�Arrays

with lots of useful
methods

�Ones you should

�Scanner
�File

Ones you should
become familiar with
quickly

�Object
�Randomq y

�String
�Math

�Look at the Java API
pageMath

�Integer, Character,
Double

CS 307 Fundamentals of
Computer Science

Java Basics 23

import
�import is a reserved wordimport is a reserved word
�packages and classes can be imported to

another classanother class
�does not actually import the code (unlike the

C++ include preprocessor command)C++ include preprocessor command)
�statement outside the class block
import java util ArrayList;import java.util.ArrayList;
import java.awt.Rectangle;
public class Foo{p {

// code for class Foo
}

CS 307 Fundamentals of
Computer Science

Java Basics 24

More on import
� i l d h l k�can include a whole package

– import java.util.*;

� li t i l�or list a given class
– import java.util.Random;

�i t t th il t l k i th k f�instructs the compiler to look in the package for
types it can't find defined locally

�the java lang * package is automatically�the java.lang.* package is automatically
imported to all other classes.

�Not required to import classes that are part of the�Not required to import classes that are part of the
same project in Eclipse

CS 307 Fundamentals of
Computer Science

Java Basics 25

The String Class
��String is a standard Java class

– a whole host of behaviors via methods
�also special (because it used so much)

– String literals exist (no other class has literals)g ()
String name = "Mike D.";

– String concatenation through the + operator
String firstName = "Mike";
String lastName = "Scott";
String wholeName = firstName + lastName;String wholeName = firstName + lastName;

– Any primitive or object on other side of + operator
from a String automatically converted to String

CS 307 Fundamentals of
Computer Science

Java Basics 26

from a String automatically converted to String

Standard Output
��To print to standard output use

System.out.print(expression); // no newline
System.out.println(expression); // newline
System out println(); // just a newlineSystem.out.println(); // just a newline

idi i b ild icommon idiom is to build up expression to
be printed out

System.out.println("x is: " + x + " y is: " + y);
CS 307 Fundamentals of
Computer Science

Java Basics 27

y p (y y);

Constants
�Li l " h if l h�Literal constants - "the way you specify values that

are not computed and recomputed, but remain,
well constant for the life of a program "well, constant for the life of a program.
– true, false, null, 'c', "C++", 12, -12, 12.12345

�Named constantsNamed constants
– use the keyword final to specify a constant
– scope may be local to a method or to a classscope may be local to a method or to a class

�By convention any numerical constant besides -1,
0, 1, or 2 requires a named constant, , q

final int NUM_SECTIONS = 3;

CS 307 Fundamentals of
Computer Science

Java Basics 28

Expressions and OperatorsExpressions and Operators

CS 307 Fundamentals of
Computer Science

Java Basics 29

Operators
�Basic Assignment: =�Basic Assignment: =
�Arithmetic Operators: +, -, *, /, %(remainder)

– integer, floating point, and mixed arithmetic and
expressions

��Assignment Operators: +=, -=, *=, /=, %=
�increment and decrement operators: ++, --

– prefix and postfix.
– avoid use inside expressions. p

int x = 3;
x++;

CS 307 Fundamentals of
Computer Science

Java Basics 30

Expressions
�E i l t d b d th�Expressions are evaluated based on the

precedence of operators
�J ill t ti ll t i l�Java will automatically convert numerical

primitive data types but results are
sometimes surprisingsometimes surprising
– take care when mixing integer and floating point

numbers in expressionsnumbers in expressions
�The meaning of an operator is determined by

its operandsits operands
/

is it integer division or floating point division?

CS 307 Fundamentals of
Computer Science

Java Basics 31

g g p

Casting
�Casting is the temporary conversion of a variable from its

i i l d t t t th d t toriginal data type to some other data type.
– Like being cast for a part in a play or movie

�With primitive data types if a cast is necessary from a less p yp y
inclusive data type to a more inclusive data type it is done
automatically.

int x = 5;
double a = 3.5;
double b = a * x + a / x;
double c = x / 2;

� if a cast is necessary from a more inclusive to a less� if a cast is necessary from a more inclusive to a less
inclusive data type the class must be done explicitly by the
programmer

failure to do so results in a compile error– failure to do so results in a compile error.
double a = 3.5, b = 2.7;
int y = (int) a / (int) b;
y = (int)(a / b);

(i t) / b // t

CS 307 Fundamentals of
Computer Science

Java Basics 32

y = (int) a / b; //syntax error

Primitive Casting Outer ring is most
inclusive data type.

double

float

c us e data type
Inner ring is least
inclusive.

long

int

In expressions
variables and
sub expressions
f l i l iint

short,
char

of less inclusive
data types are
automatically cast
to more inclusiveFrom MORE to LESS

byte

to more inclusive.

If trying to place
expression that is

From MORE to LESS

expression that is
more inclusive into
variable that is less
inclusive, explicit cast

CS 307 Fundamentals of
Computer Science

Java Basics 33

, p
must be performed.

Java Control StructuresJava Control Structures

CS 307 Fundamentals of
Computer Science

Java Basics 34

Control Structures
�li fl f t l�linear flow of control

– statements executed in consecutive order
�Decision making with if - else statementsDecision making with if - else statements
if(boolean-expression)

statement;
if(boolean-expression)
{ statement1;

statement2;statement2;
statement3;

}
A single statement could be replaced by a
statement block, braces with 0 or more statements
inside

CS 307 Fundamentals of
Computer Science

Java Basics 35

inside

Boolean Expressions
�b l i l t t t f l�boolean expressions evaluate to true or false
�Relational Operators: >, >=, <, <=, ==, !=
�Logical Operators: &&, ||, !

– && and || cause short circuit evaluation
– if the first part of p && q is false then q is not

evaluated
if the first part of || is true then q is not– if the first part of p || q is true then q is not
evaluated

//example//example
if(x <= X_LIMIT && y <= Y_LIMIT)

//do something

CS 307 Fundamentals of
Computer Science

Java Basics 36

More Flow of Control
� if-else:
if(b l i)if(boolean-expression)

statement1;
else

2statement2;
�multiway selection:
if(boolean-expression1)

statement1;
else if(boolean-expression2)

statement2;
else

statement3;
� individual statements could be replaced by a statementindividual statements could be replaced by a statement

block, a set of braces with 0 or more statements
�Java also has the switch statement, but not part of our

subset
CS 307 Fundamentals of
Computer Science

Java Basics 37

subset

for Loops
��for loops
for(init-expr;boolean-expr;incr-expr)

statementstatement;

�init-expr and incr-expr can be more zero or more
expressions or statements separated by commasexpressions or statements separated by commas

�statement could be replaced by a statement block
false

execute
init-expr

evaluate
boolean-expr

false

skip to 1st statement after
body of loop

truetrue

execute
body of loop

execute
incr-expr

CS 307 Fundamentals of
Computer Science

Java Basics 38

p

while loops
� hil l�while loops
while(boolean-expression)

statement; //or statement block; //
�do-while loop part of language
do

statement;
while(boolean-expression);

�Again could use a statement block�Again, could use a statement block
�break, continue, and labeled breaks

– referred to in the Java tutorial as branching statementsreferred to in the Java tutorial as branching statements
– keywords to override normal loop logic
– use them judiciously (which means not much)

CS 307 Fundamentals of
Computer Science

Java Basics 39

Attendance Question 3
True or false: Strings are a primitive data
type in Java.

A. TRUE
B. FALSES

CS 307 Fundamentals of
Computer Science

Java Basics 40

Attendance Question 4
What is output by the following Java code?
int x = 3;

/double a = x / 2 + 3.5;
System.out.println(a);

A. a
B. 55
C. 4.5
D 4D. 4
E. 5.0

CS 307 Fundamentals of
Computer Science

Java Basics 41

ArraysArrays

CS 307 Fundamentals of
Computer Science

Java Basics 42

Arrays in Java
� "Should array indices start at 0 or 1? My compromise of 0.5 was rejected

without, I thought, proper consideration. "
– S. Kelly-Bootle

�Java has built in arrays a k a native arraysJava has built in arrays. a.k.a. native arrays
�arrays hold elements of the same type

– primitive data types or classes
– space for array must be dynamically allocated with new operator.

(Size is any integer expression. Due to dynamic allocation does not
have to be constant.)

public void arrayExamples()
{ int[] intList = new int[10];

for(int i = 0; i < intList.length; i++)
{ assert 0 > i && i < intList length;{ assert 0 >= i && i < intList.length;

intList[i] = i * i * i;
}
intList[3] = intList[4] * intList[3];

CS 307 Fundamentals of
Computer Science

Java Basics 43

intList[3] intList[4] intList[3];
}

Array Details
� ll t b d i ll ll t d�all arrays must be dynamically allocated
�arrays have a public, final field called length

– built in size field, no separate variable needed
– don't confuse length (capacity) with elements in

use
�elements start with an index of zero, last index

is length - 1
�trying to access a non existent element resultstrying to access a non existent element results

in an ArrayIndexOutOfBoundsException
(AIOBE)
CS 307 Fundamentals of
Computer Science

Java Basics 44

(O)

Array Initialization
�Array variables are object variables�Array variables are object variables
�They hold the memory address of an array

bj tobject
�The array must be dynamically allocated
�All values in the array are initialized (0, 0.0,

char 0, false, or null))
�Arrays may be initialized with an initializer

list:list:
int[] intList = {2, 3, 5, 7, 11, 13};

double[] dList = {12.12, 0.12, 45.3};

CS 307 Fundamentals of
Computer Science

Java Basics 45

String[] sList = {"Olivia", "Kelly", "Isabelle"};

Arrays of objects
�A native array of objects is actually a native�A native array of objects is actually a native

array of object variables
all object variables in Java are really what?– all object variables in Java are really what?

– Pointers!
public void objectArrayExamples()public void objectArrayExamples()
{ Rectangle[] rectList = new Rectangle[10];

// How many Rectangle objects exist?

rectList[5].setSize(5,10);rectList[5].setSize(5,10);
//uh oh!

for(int i = 0; i < rectList.length; i++)
{ rectList[i] = new Rectangle();{ rectList[i] new Rectangle();
}

rectList[3].setSize(100,200);
}

CS 307 Fundamentals of
Computer Science

Java Basics 46

}

Array Utilities
�I th l t ti th d�In the Arrays class, static methods
�binarySearch, equals, fill, and sort

th d f f ll i iti tmethods for arrays of all primitive types
(except boolean) and arrays of Objects

o erloaded ersions of these methods for– overloaded versions of these methods for
various data types

�In the System class there is an arraycopyIn the System class there is an arraycopy
method to copy elements from a specified
part of one array to anotherpart of one array to another
– can be used for arrays of primitives or arrays of

objects

CS 307 Fundamentals of
Computer Science

Java Basics 47

The arraycopy method
� t ti id (Obj t i t P�static voidarraycopy(Object src, int srcPos,

Object dest, int destPos, int length)

Copies an array from the specified sourceCopies an array from the specified source
array, beginning at the specified position, to
the specified position of the destination arraythe specified position of the destination array.
int[] list = new int[10];
// code to fill list
// list needs to be resized
int[] temp = new int[list.length * 2];
System.arraycopy(list, 0, temp, 0, y y py(, , p, ,

list.length);
list = temp;

CS 307 Fundamentals of
Computer Science

Java Basics 48

2D Arrays in Java
��Arrays with multiple dimensions may be

declared and used
int[][] mat = new int[3][4];

�the number of pairs of square brackets t e u be o pa s o squa e b ac ets
indicates the dimension of the array.

�by convention in a 2D array the first numberby convention, in a 2D array the first number
indicates the row and the second the column

�Java multiple dimensional arrays are�Java multiple dimensional arrays are
handles differently than in many other
programming languages

CS 307 Fundamentals of
Computer Science 2D Arrays

49

programming languages.

Two Dimensional Arrays
0 1 2 3 column0 1 2 3 column

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0
row

This is our abstract picture of the 2D array and treating
it this way is fine.
mat[2][1] = 12;

CS 307 Fundamentals of
Computer Science 2D Arrays

50

The Real Picture

0

0 1 2 3
0 0 0 00

1
0 1 2 3

0 0 0 0

mat 1

0 1 2 3

0 0 0 0

2

mat holds the memory address of an array with 3

0 0 0 0

mat holds the memory address of an array with 3
elements. Each element holds the memory address
of an array of 4 ints
CS 307 Fundamentals of
Computer Science 2D Arrays

51

of an array of 4 ints

Arrays of Multiple Dimension
��because multiple dimensional arrays are

treated as arrays of arrays of
arrays……multiple dimensional arrays can
be ragged
– each row does not have to have the same

number of columns
int[][] raggedMat = new int[5][];
for(int i = 0; i < raggedMat.length; i++)

d [i] i [i 1]

– each row array has its own length field

raggedMat[i] = new int[i + 1];

CS 307 Fundamentals of
Computer Science 2D Arrays

52

Ragged Arrays
��Ragged arrays are sometime useful, but

normally we deal with rectangular matrices
– each row has the same number of columns as

every other row
– use this a lot as precondition to methods that

work on matrices
��working on matrices normally requires

nested loops
– why is this so hard?

CS 307 Fundamentals of
Computer Science 2D Arrays

53

Enhanced for loop
�N i J 5 0�New in Java 5.0
�a.k.a. the for-each loop
�useful short hand for accessing all elements in an

array (or other types of structures) if no need to
alter valuesalter values

�alternative for iterating through a set of values
for(Type loop variable : set expression)for(Type loop-variable : set-expression)

statement

�logic error (not a syntax error) if try to modify an�logic error (not a syntax error) if try to modify an
element in array via enhanced for loop

CS 307 Fundamentals of
Computer Science

Java Basics 54

Enhanced for loop
public static int sumListOld(int[] list)p ([])
{ int total = 0;

for(int i = 0; i < list.length; i++)
{ total += list[i];{ total list[i];

System.out.println(list[i]);
}
return total;

public static int sumListEnhanced(int[] list)

return total;
}

{ int total = 0;
for(int val : list)
{ total += val;

System.out.println(val);
}
return total;

CS 307 Fundamentals of
Computer Science

Java Basics 55

}

Attendance Question 5
What is output by
the code to the right

public void d2(int x){

x *= 2;
S t t i t()when method d1 is

called?
System.out.print(x);

}

A. 322
B. 323

public void d1(){
int x = 3;3 3

C. 363
D 366

System.out.print(x);

d2(x);

S t t i t()D. 366
E. 399

System.out.print(x);

}

CS 307 Fundamentals of
Computer Science

Java Basics 56

Attendance Question 6
What is output
by the code to

int[] list = {5, 1, 7, 3};

System.out.print(list[2]);

S t t i t(li t[4])the right?
A. Output will vary from one run of program to

System.out.print(list[4]);

next
B. 0000
C. 363
D 7 then a runtime errorD. 7 then a runtime error
E. No output due to syntax error

CS 307 Fundamentals of
Computer Science

Java Basics 57

MethodsMethods

CS 307 Fundamentals of
Computer Science

Java Basics 58

Methods
�methods are analogous to procedures and

f ti i th lfunctions in other languages
– local variables, parameters, instance variables
– must be comfortable with variable scope: where is amust be comfortable with variable scope: where is a

variable defined?
�methods are the means by which objects are

i l t d (bj t t t i h d) hmanipulated (objects state is changed) - much
more on this later

�method header consists ofmethod header consists of
– access modifier(public, package, protected, private)
– static keyword (optional, class method)
– return type (void or any data type, primitive or class)
– method name
– parameter signature

CS 307 Fundamentals of
Computer Science

Java Basics 59

p g

More on Methods
�l l i bl b d l d ithi th d�local variables can be declared within methods.

– Their scope is from the point of declaration until the
end of the methods unless declared inside aend of the methods, unless declared inside a
smaller block like a loop

�methods contain statementsmethods contain statements
�methods can call other methods

– in the same class: foo();– in the same class: foo();
– methods to perform an operation on an object that

is in scope within the method: obj.foo();p j ();
– static methods in other classes:

double x = Math.sqrt(1000);

CS 307 Fundamentals of
Computer Science

Java Basics 60

static methods
� the main method is where a stand alone Java program

ll b i tinormally begins execution
�common compile error, trying to call a non static method

from a static one
public class StaticExample
{ public static void main(String[] args)

{ //starting point of execution
S t t i tl ("I i th d")System.out.println("In main method");
method1();
method2(); //compile error;

}

public static void method1()
{ System.out.println("method 1"); }

public void method2()
{ System.out.println("method 2"); }

CS 307 Fundamentals of
Computer Science

Java Basics 61

}

Method Overloading and Return
� l h l i l h d i h h�a class may have multiple methods with the same

name as long as the parameter signature is unique
may not overload on return type– may not overload on return type

�methods in different classes may have same name
and signatureand signature
– this is a type of polymorphism, not method overloading

�if a method has a return value other than void itif a method has a return value other than void it
must have a return statement with a variable or
expression of the proper typep p p yp

�multiple return statements allowed, the first one
encountered is executed and method ends

CS 307 Fundamentals of
Computer Science

Java Basics 62
– style considerations

Method Parameters
��a method may have any number of

parameters
�each parameter listed separately
�no VAR (Pascal), &, or const & (C++)o (asca), &, o co st & (C)
�final can be applied, but special meaning
�all parameters are pass by value�all parameters are pass by value
�Implications of pass by value???

CS 307 Fundamentals of
Computer Science

Java Basics 63

Value Parameters vs.
R f P tReference Parameters

�A value parameter makes a copy of theA value parameter makes a copy of the
argument it is sent.
– Changes to parameter do not affect theChanges to parameter do not affect the

argument.
�A reference parameter is just another nameA reference parameter is just another name

for the argument it is sent.
– changes to the parameter are really changes to– changes to the parameter are really changes to

the argument and thus are permanent

CS 307 Fundamentals of
Computer Science

Java Basics 64

Value vs. Reference
// l // C++ reference// value
void add10(int x)
{ x += 10; }

// C++, reference
void add10(int& x)
{ x += 10; }

void calls()
{ int y = 12;

void calls()
{ int y = 12;{ int y 12;

add10(y);
// y = ?

}

y
add10(y);
// y = ?

}} }

12 12 1212

y

12

x y x

CS 307 Fundamentals of
Computer Science

Java Basics 65

Programming for CorrectnessProgramming for Correctness

CS 307 Fundamentals of
Computer Science

Java Basics 66

Creating Correct Programs
� th d h ld i l d diti d t diti�methods should include pre conditions and post conditions
�Preconditions are things that must be true before a method

is calledis called
�Postconditions are things that will be true after a method is

complete if the preconditions were met
� it is the responsibility of the caller of a method to ensure the

preconditions are met
– the class must provide a way of ensuring the precondition is truethe class must provide a way of ensuring the precondition is true
– the preconditions must be stated in terms of the interface, not the

implementation

� it i th ibilit f th l (li) t� it is the responsibility of the class (supplier, server) to
ensure the postconditions are met

CS 307 Fundamentals of
Computer Science

Java Basics 67

Programming by Contract
�preconditions and postconditions create a contract betweenpreconditions and postconditions create a contract between

the client (class or object user) and a supplier (the class or
object itself)
– example of a contract between you and me for a test

Obligations Benefits

Client
(Student)

(Must ensure preconditions)
Be at test on time, bring pencil
and eraser, write legibly,

ti i

(May benefit from postcondition)
Receive fair and accurate
evaluation of test to help formulate

ianswer questions in space
provided

progress in course

Supplier
(Mik)

(Must ensure postcondition)
F i l d t l d

(May assume preconditions)
N d t d t t ti(Mike) Fairly and accurately grade

test based on universal
guidelines applied to all tests

No need to grade test or questions
that are illegible, on wrong part of
exam, or give makeup exams for
unexcused absences

CS 307 Fundamentals of
Computer Science

Java Basics 68

Thinking about pre and
postconditionspostconditions

�pre and postconditions are part of design
� i i h d di i h�coming up with pre and postconditions at the

time of implementation is too late
�the pre and post conditions drive the

implementation and so must exist before the
implementation can start
– The sooner you start to code, the longer your

program will take.
-Roy Carlson, U Wisconsin

CS 307 Fundamentals of
Computer Science

Java Basics 69
�You must spend time on design

Precondition Example
/**
* Find all indices in <tt>source</tt> that are the start of a complete
* match of <tt>target</tt>.
* @param source != null source length() > 0 @param source != null, source.length() > 0
* @param target != null, target.length() > 0
* @return an ArrayList that contains the indices in source that are the
* start of a complete match of target. The indices are stored in
* ascending order in the ArrayList
*/
public static ArrayList<Integer> matches(String source, String target) {

// check preconditions
assert (source != null) && (source.length() > 0)

&& (target != null) && (target length() > 0)&& (target != null) && (target.length() > 0)
: "matches: violation of precondition";

CS 307 Fundamentals of
Computer Science

Java Basics 70

Creating Correct Programs
�J f h h i h k h�Java features has a mechanism to check the

correctness of your program called assertions
�A ti t t t th t t d�Assertions are statements that are executed as

normal statements if assertion checking is on
you should always have assertion checking on when– you should always have assertion checking on when
writing and running your programs

�Assertions are boolean expressions that are p
evaluated when reached. If they evaluate to true
the program continues, if they evaluate to false
then the program halts

�logical statements about the condition or state of

CS 307 Fundamentals of
Computer Science

Java Basics 71
your program

Assertions
�A ti h th f�Assertions have the form

assert boolean expression : what to output
if assertion is false

�Example
if ((x < 0) || (y < 0))
{ // we know either x or y is < 0y

assert x < 0 || y < 0 : x + " " + y;
x += y;

}
else
{ // we know both x and y are not less than zero

assert x >= 0 && y >= 0 : x + " " + y;
y += x;

}}

�Use assertion liberally in your code
– part of style guide

CS 307 Fundamentals of
Computer Science

Java Basics 72

Assertions Uncover Errors in
Your LogicYour Logic

if (a < b)
{ // we a is less than b{ // we a is less than b

assert a < b : a + " " + b;
System.out.println(a + " is smaller than " + b);

}
lelse

{ // we know b is less than a
assert b < a : a + " " + b;
System.out.println(b + " is smaller than " + a);y p ()

}

�Use assertions in code that other
i tprogrammers are going to use.

�In the real world this is the majority of your
d !

CS 307 Fundamentals of
Computer Science

Java Basics 73

code!

javadoc
� j d i th t t k th t i J� javadoc is a program that takes the comments in Java

source code and creates the html documentation pages
�Open up Java source code. (Found in the src.zip file when

you download the Java sdk.)
�Basic Format
/** Summary sentence for method foo More details More/ Summary sentence for method foo. More details. More

details.
pre: list preconditions
post: list postconditionspost: list postconditions
@param x describe what x is
@param y describe what y is
@return describe what the method returns@return describe what the method returns

*/
public int foo(int x, double y)

CS 307 Fundamentals of
Computer Science

Java Basics 74
�Comments interpreted as html

Topic 3
References and Object Variables

"Thou shalt not follow the NULLThou shalt not follow the NULL
pointer, for chaos and madness await
th t it d "thee at its end."

- Henry SpencerHenry Spencer

CS 307 Fundamentals of
Computer Science References and Object Variables

1

Object Variables
object variables are declared by stating the class
name / data type and then the variable name
– same as primitives
– in Java there are hundreds of built in classes.

h th API• show the API page

– don't learn the classes, learn how to read and use a class
interface (the users manual)()

objects are complex variables.
– They have an internal state and various behaviors that can

either change the state or simply tell something about the
object

CS 307 Fundamentals of
Computer Science

References and Object Variables 2

Object Variables
public void objectVaraiables()public void objectVaraiables()
{ Rectangle rect1;

Rectangle rect2;
// 2 Rectangle objects exist??// 2 Rectangle objects exist??
// more code to follow

}

So now there are 2 Rectangle objects right?
Not so much.
Object variables in Java are actually references to
objects, not the objects themselves!
– object variables store the memory address of an object of

the proper type not an object of the proper type.
contrast this with primitive variables

CS 307 Fundamentals of
Computer Science

References and Object Variables 3

– contrast this with primitive variables

The Pointer Sidetrack
IMPORTANT!! This material mayIMPORTANT!! This material may
seem a bit abstract, but it is often the
cause of many a programmers logic error
A pointer is a variable that stores the
memory address of where another
variable is storeda ab e s sto ed
In some languages you can have bound variables
and dynamic variables of any type

b d i bl i th t i i t d ith– a bound variable is one that is associated with a
particular portion of memory that cannot be changed

Example C++, can have an integer variable or a
i t i t (hi h i till i bl)integer pointer (which is still a variable)
int intVar; // a int var
int * intPtr; //pointer to an int var

CS 307 Fundamentals of
Computer Science

References and Object Variables 4

i i 5 // i
Pointer Variables in C++

int intVar = 5; // a int var
int * intPtr; //pointer to an int var
intPtr = new int;
/* d i ll ll i/* dynamically allocate an space to store an int.
intPtr holds the memory address of this space*/

5 ?? ??0x00122155

i tV i tPt

??
space for an int in

??
intVar intPtr space for an int in

memory
assume memory
dd

CS 307 Fundamentals of
Computer Science

References and Object Variables 5

address
0x00122155

Pointer Complications
C++ allows actual variables and pointers to
variables of any type. Things get complicated and
confusing very quickly
i t i tV 5 // i tint intVar = 5; // a int var
int * intPtr; //pointer to an int var
intPtr = new int; // allocate memory
intPtr = 12; / assign the integer being*intPtr = 12; /* assign the integer being

pointed to the value of 12. Must
dereference the pointer. i.e. get to
the thing being pointed at*/the thing being pointed at /

cout << intPtr << "\t" << *intPtr << "\t"
<< &intPtr << endl;

// 3 different ways of manipulating intPtr
In C++ you can work directly with the memory
address stored in intPtr

// 3 different ways of manipulating intPtr

CS 307 Fundamentals of
Computer Science

References and Object Variables 6
– increment it, assign it other memory addresses, pointer “arithmetic”

Attendance Question 1
Given the following C++ declarations how
would the variable intPtr be made to refer
t th i bl ?to the variable intVar?
intVar = 5;
intPtr = new int;t t e t;

A. intPtr = intVar;
B intPtr = *intVar;B. intPtr = *intVar;
C. *intPtr = intVar;
D. intPtr = &intVar;
E. intPtr = intVar;

CS 307 Fundamentals of
Computer Science

References and Object Variables 7

And Now for Something
Completely DifferentCompletely Different…

Thanks Nick…
Link to Bink

CS 307 Fundamentals of
Computer Science

References and Object Variables 8

Benefit of Pointers
Why have pointers?Why have pointers?
To allow the sharing of a variable
– If several variables(objects, records, structs) need accessIf several variables(objects, records, structs) need access

to another single variable two alternatives
1. keep multiple copies of variable.
2. share the data with each variable keeping a reference to
the needed data

ptr ptrother
data

t h

other
data

not shown

shared variableh 2

p
not shown not shown

CS 307 Fundamentals of
Computer Science

References and Object Variables 9

shared variablesharer 2 sharer 1

Time Space Trade Off
Often the case that algorithms / solutions an
be made faster by using more space
(memory) or can use less space at the
expense of being slower.

space
used

BAD
used

GOOD

time to complete

GOOD

CS 307 Fundamentals of
Computer Science

References and Object Variables 10

time to complete

More Benefits
Allow dynamic allocation of memoryAllow dynamic allocation of memory
– get it only when needed (stack memory and heap

memory)
Allow linked data structures such as linked lists and
binary trees

i dibl f l f t i t f bl– incredibly useful for certain types of problems
Pointers are in fact necessary in a language like
Java where polymorphism is so prevalent (more onJava where polymorphism is so prevalent (more on
this later)
Now the good news
– In Java most of the complications and difficulties inherent

with dealing with pointers are removed by some
simplifications in the language

CS 307 Fundamentals of
Computer Science

References and Object Variables 11

simplifications in the language

Dynamic Memory Allocation
Your program has two chunks of memory to work
with: Stack memory (or the runtime Stack) and
Heap memoryHeap memory

When a Java program starts it receives two chunksp g
of memory one for the Stack and one for the Heap.

Things that use Stack memory: local variablesThings that use Stack memory: local variables,
parameters, and information about methods that are
in progress.

Things that use Heap memory: everything that is
allocated using the new operator
CS 307 Fundamentals of
Computer Science

References and Object Variables 12

allocated using the new operator.

The Picture
Stack Memory Heap MemoryStack Memory Heap Memory

String Object

x
s

g j

myChars

y H e l l o

void toyCodeForMemory(int x)
{ int y = 10;{ y ;

x += y;
String s = new String("Hello");
System.out.println(x + " " + y + s);

CS 307 Fundamentals of
Computer Science

References and Object Variables 13

Syste .out.p t (y s);
}

How Much Memory?

How big is the Heap?g p
System.out.println("Heap size is " +
Runtime.getRuntime().totalMemory());
How much of the Heap is available?
System.out.println("Available memory: " + y p (y
Runtime.getRuntime().freeMemory());

CS 307 Fundamentals of
Computer Science

References and Object Variables 14

References in Java
In Java all primitive variables are value
variables. (real, actual, direct?)
– it is impossible to have an integer pointer or a

pointer to any variable of one of the primitive
d t tdata types

All object variables are actually reference
i bl (i llvariables (essentially store a memory

address) to objects.
– it is impossible to have anything but references

to objects. You can never have a plain object
i bl

CS 307 Fundamentals of
Computer Science

References and Object Variables 15

variable

Back to the Rectangle Objects
t1 d t2 i bl th t t threct1 and rect2 are variables that store the memory

addresses of Rectangle objects
right now they are uninitialized and since they are local,right now they are uninitialized and since they are local,
variables may not be used until they are given some value

public void objectVaraiables()
{ Rectangle rect1;

Rectangle rect2;
// rect1 = 0; // syntax error, C++ style
// rect1 = rect2; // syntax error unitialized// rect1 = rect2; // syntax error, unitialized
rect1 = null; // pointing at nothing
rect2 = null; // pointing at nothing

}
null is used to indicate an object variable is not pointing /
naming / referring to any Rectangle object.

CS 307 Fundamentals of
Computer Science

References and Object Variables 16

Creating Objects
Declaring object variables does not create objects.g j j
– It merely sets aside space to hold the memory address of an

object.
– The object must be created by using the new operator and

calling a constructor for that object

public void objectVaraiables()
{ Rectangle rect1;{ Rectangle rect1;

rect1 = new Rectangle();
Rectangle rect2 = new Rectangle(5,10,20,30);
// (x, y, width, height)
//

For all objects the memory needed to store the objects

// rect1 and rect2 now refer to Rectangle objects
}

For all objects, the memory needed to store the objects,
is allocated dynamically using the new operator and a
constructor call. (Strings are a special case.)

constructors are similar to methods but they are used to

CS 307 Fundamentals of
Computer Science

References and Object Variables 17

– constructors are similar to methods, but they are used to
initialize objects

The Yellow Sticky Analogy

Rectangle Object

t1

g j

x: 0
y: 0

rect1 width: 0
height: 0

Rectangle Object

x: 5

rect2

x: 5
y: 10
width: 20
h i ht 30

CS 307 Fundamentals of
Computer Science

References and Object Variables 18

rect2 height: 30

Pointers in Java
Is this easier?
– primitives one thing, objects another?

can't get at the memory address the pointer stores as in
C++C++
although try this:
Object obj = new Object();
System.out.println(obj.toString());

dereferencing occurs automatically
because of the consistency the distinction between anbecause of the consistency the distinction between an
object and an object reference can be blurred
– "pass an object to the method" versus "pass an object reference to

th th dthe method

Need to be clear when dealing with memory address of
object and when dealing with the object itself

CS 307 Fundamentals of
Computer Science

References and Object Variables 19

j g j

Working with Objects
O bj i d d bj i blOnce an object is created and an object variable
points to it then Object may be manipulated via its
methodsmethods
Rectangle r1 = new Rectangle();
r1.resize(100, 200);
r1 setLocation(10 20);r1.setLocation(10, 20);
int area = r1.getWidth() * r1.getHeight();
Rectangle r2 = null;
r2.resize(r1.getWidth(), r1.getHeight() * 2);

Use the dot operator to deference an object
variable and invoke one of the objects behaviors

(g (), g g ());
// uh-oh!

variable and invoke one of the objects behaviors
Available behaviors are spelled out in the class of
the object (the data type of the object)

CS 307 Fundamentals of
Computer Science

References and Object Variables 20

the object, (the data type of the object)

What's the Output?
public void objectVariables()public void objectVariables()
{ Rectangle rect1 = new Rectangle(5, 10, 15, 20);

Rectangle rect2 = new Rectangle(5, 10, 15, 20);;
System.out.println("rect 1: " + rect1.toString());
System.out.println("rect 2: " + rect2.toString());y p g
// Line 1
System.out.println("rect1 == rect2: " + (rect1 == rect2));
rect1 = rect2;
rect2.setSize(50, 100); // (newWidth, newHeight)
// Line 2// Line 2
System.out.println("rect 1: " + rect1.toString());
System.out.println("rect 2: " + rect2.toString());
System.out.println("rect1 == rect2: " + (rect1 == rect2));
int x = 12;;
int y = 12;
// Line 3
System.out.println("x == y: " + (x == y));
x = 5;
y = x;
x = 10;
System.out.println("x == y: " + (x == y));
// Line 4
System.out.println("x value: " + x + ", y value: " + y);

CS 307 Fundamentals of
Computer Science

References and Object Variables 21

System.out.println(x value: + x + , y value: + y);
}

Attendance Question 2
What is output by the line of code marked
Line 1?

A. rect1 == rect2: true
B rect1 == rect2: rect1 == rect2B. rect1 == rect2: rect1 == rect2
C. rect1 == rect2: false
D. intPtr = &intVar;
E. rect1 == rect2: 0

CS 307 Fundamentals of
Computer Science

References and Object Variables 22

Attendance Question 3
What will be the width and height of the
Rectangle object rect1 refers to at the line of
code marked Line 2?code marked Line 2?

A idth 15 h i ht 20A. width = 15, height = 20
B. width = 20, height = 15
C. width = -1, height = -1
D width = 0 height = 0D. width 0, height 0
E. width = 50, height = 100

CS 307 Fundamentals of
Computer Science

References and Object Variables 23

Attendance Question 4
What is output by the line of code marked
Line 3?

A. x == y: 0
B x == y: 1B. x == y: 1
C. x == y: true
D. x == y: x == y
E. x == y: false

CS 307 Fundamentals of
Computer Science

References and Object Variables 24

Attendance Question 5
What is output by the line of code marked
Line 4?

A. x value: 5, y value: 5
B x value: 10 y value: 5B. x value: 10, y value: 5
C. x value: 0, y value: 0
D. x value: 5, y value: 10;
E. x value: 10, y value: 10

CS 307 Fundamentals of
Computer Science

References and Object Variables 25

Equality versus Identity
A man walks into a pizza parlor sits down and tellsA man walks into a pizza parlor, sits down, and tells
the waiter, "I'll have what that lady over there is
eating." The waiter walks over to the indicated lady,
picks up the pizza that is resting in front of her and

confusion over equality and identity

picks up the pizza that is resting in front of her, and
sets it back down in from of the man's table.

q y y
identity: two things are in fact the same thing
equality: two things are for all practical purposesequality: two things are for all practical purposes
alike, but not the exact same thing
== versus the .equals methodq
– use the .equals method when you want to check the

contents of the pointee, use == when you want to
h k dd

CS 307 Fundamentals of
Computer Science

References and Object Variables 26

check memory addresses

Just Like the Real World
Objects variables are merely names for objectsObjects variables are merely names for objects
Objects may have multiple names
– meaning there are multiple object variables

referring to the same object (sharing)
P f

Michael!
Professor
Scott (Ha Ha)

Mike
Mr.
S ttMike Scott

dd
CS 307 Fundamentals of
Computer Science

References and Object Variables 27
Daddydada

The Garbage Collector
Rectangle rect1 = new Rectangle(2,4,10,10);Rectangle rect1 new Rectangle(2,4,10,10);
Rectangle rect2 = new Rectangle(5,10,20,30);
// (x, y, width, height)
rect1 = rect2;
/* what happened to the Rectangle Object

If objects are allocated d namicall ith ne ho

/* what happened to the Rectangle Object
rect1 was pointing at?

*/

If objects are allocated dynamically with new how
are they deallocated?
– delete in C++delete in C++

If an object becomes isolated (no longer is in
scope), that is has no references to it, it is garbagescope), that is has no references to it, it is garbage
and the Java Virtual Machine garbage collector will
reclaim this memory AUTOMATICALLY!

CS 307 Fundamentals of
Computer Science

References and Object Variables 28

Objects as Parameters
All t i J l tAll parameters in Java are value parameters
The method receives a copy of the parameter,
not the actual variable passed
Makes it impossible to change a primitivep g p
parameter
implications for objects? (which areimplications for objects? (which are
references)
– behavior that is similar to a reference parameter, with a p ,

few minor, but crucial differences
– "Reference parameter like behavior for the pointee."

CS 307 Fundamentals of
Computer Science

References and Object Variables 29

Immutable Objects
Some classes create immutable objectsSome classes create immutable objects
Once created these objects cannot be changed
– note the difference between objects and object variablesnote the difference between objects and object variables

Most immediate example is the String class
String objects are immutableString objects are immutable
Why might this be useful?

St i "Mik "String name = "Mike";
String sameName = name;
name + " " + "David" + " " + "Scott";name += " " + "David" + " " + "Scott";
System.out.println(name);
System out println(sameName);
CS 307 Fundamentals of
Computer Science

References and Object Variables 30

System.out.println(sameName);

Topic 4
E ti d Fil I/OExceptions and File I/O

"A slipping gear could let your M203A slipping gear could let your M203
grenade launcher fire when you least
expect it. That would make you quite
unpopular in what's left of your unit "unpopular in what s left of your unit.

- THE U.S. Army's PS magazine, August
1993, quoted in The Java Programming
Language, 3rd edition

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 1

When Good Programs Go Bad
�A i t f h�A variety of errors can occur when a

program is running. For example:
(l) i t b d l– (real) user input error. bad url

– device errors. remote server unavailable
physical limitations full disk– physical limitations. full disk

– code errors. interact with code that does not fulfill
its contact (pre and post conditions)its contact (pre and post conditions)

�when an error occurs
– return to safe state save work exit gracefullyreturn to safe state, save work, exit gracefully

�error handling code may be far removed
from code that caused the error

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 2

from code that caused the error

How to Handle Errors?
��It is possible to detect and handle errors of

various types.
�Problem: this complicates the code and

makes it harder to understand.
– the error detection and error handling code have

little or nothing to do with the real code is trying
to do.

�A tradeoff between ensuring correct behavior
under all possible circumstances and clarity
of the code

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 3

Exceptions
��Many languages, including Java use a

mechanism know as Exceptions to handle
errors at runtime
– In Java Exception is a class with many

descendants.
– ArrayIndexOutOfBoundsException
– NullPointerException
– FileNotFoundException
– ArithmeticException
– IllegalArgumentException

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 4

Partial Exceptions Hierarchy
Th blThrowable

Error E ception

IOE ti R ti E ti

Error Exception

IOException RuntimeException

EOFException FileNotFound
Exception

A d
Arithmetic
Exception

NullPointer
Exception

IndexOut
ofBounds

Illegal
Argument

And many,
many, many
more

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 5

Exception Exceptionmore…

Creating Exceptions
��As a program runs, if a situation occurs that

is handled by exceptions then an Exception
is thrown.
– An Exception object of the proper type is created
– flow of control is transferred from the current

block of code to code that can handle or deal
ith th tiwith the exception

– the normal flow of the program stops and error
handling code takes o er (if it e ists)handling code takes over (if it exists.)

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 6

Attendance Question 1
Is it possible for the following method to
result in an exception?
// pre: word != null
public static void printLength(String word){

String output = "Word length is " + word.length();
S t t i tl (t t)System.out.println(output);

}

A. YesA. Yes
B. No

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 7

Unchecked Exceptions
�Exceptions in Java fall into two different categories

– checked (other than Runtime) and unchecked (Runtime)
�unchecked exceptions are completely preventable and u c ec ed e cept o s a e co p ete y p e e tab e a d

should never occur.
– They are caused by logic errors, created by us, the programmers.

�Descendents of the RuntimeException class�Descendents of the RuntimeException class
�Examples: ArrayIndexOutOfBoundsException,

NullPointerException, ArithmeticException
�There does not need to be special error handling code

– just regular error prevention code
� If error handling code was required programs would be e o a d g code as equ ed p og a s ou d be

unwieldy because so many Java statements have the
possibility of generating or causing an unchecked Exception

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 8

Checked Exceptions
�"Ch k d ti t diti�"Checked exceptions represent conditions

that, although exceptional, can reasonably
be expected to occur and if they do occurbe expected to occur, and if they do occur
must be dealt with in some way.[other than
the program terminating]"the program terminating.]
– Java Programming Language third edition

�Unchecked exceptions are due to aUnchecked exceptions are due to a
programming logic error, our fault and
preventable if coded correctly.p y

�Checked exceptions represent errors that
are unpreventable by us!

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 9

p y

Required Error Handling Code
�If ll th d th t t�If you call a method that can generate a

checked exception you must choose how to
d l ith th t ibldeal with that possible error

�For example one class for reading from files is
the FileReader class

public FileReader(String fileName)
throws FileNotFoundException

�This constructor has the possibility of throwing a p y g
FileNotFoundException

�FileNotFoundException is a checked exception

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 10

Checked Exceptions in Code
�If we have code that tries to build a FileReader we

must deal with the possibility of the exception
import java.io.FileReader;

public class Tester
{

public int countChars(String fileName)
{ FileReader r = new FileReader(fileName);

int total = 0;
while(r.ready())
{ r.read();

total++;
}}
r.close();
return total;

}
}

�The code contains a syntax error. "unreported exception
java.io.FileNotFoundException; must be caught or declared

}

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 11

j p ; g
to be thrown."

Handling Checked Exceptions
�I th d th i lid th i�In the code on the previous slide there are in

fact 4 statements that can generate checked
exceptionsexceptions.
– The FileReader constructor

the ready method– the ready method
– the read method
– the close method– the close method

�To deal with the exceptions we can either
state this method throws an Exception of thestate this method throws an Exception of the
proper type or handle the exception within
the method itself

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 12

Methods that throw Exceptions
��It may be that we don't know how to deal

with an error within the method that can
generate it

�In this case we will pass the buck to the
method that called us

�The keyword throws is used to indicate a y
method has the possibility of generating an
exception of the stated typep yp

�Now any method calling ours must also
throw an exception or handle it

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 13

throw an exception or handle it

Using the throws Keyword
bli i t tCh (St i fil N)public int countChars(String fileName)

throws FileNotFoundException, IOException
{ int total = 0;

FileReader r = new FileReader(fileName);
while(r.ready())
{ r read();{ r.read();

total++;
}

l ()r.close();
return total;

}

�Now any method calling ours must also
throw an exception or handle it

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 14

throw an exception or handle it

Using try-catch Blocks
��If you want to handle the a checked

exception locally then use use the keywords
dtry and catch

�the code that could cause an exception is
placed in a block of code preceded by the
keyword try

�the code that will handle the exception if it
occurs is placed in a block of code preceded p p
by the keyword catch

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 15

Sample try and catch Blocks
public int countChars(String fileName)
{ int total = 0;{ int total = 0;

try
{ FileReader r = new FileReader(fileName);

while(r.ready())
{ d(){ r.read();

total++;
}
r.close();

}
catch(FileNotFoundException e)
{ System.out.println("File named "

+ fileName + "not found. " + e);)
total = -1;

}
catch(IOException e)
{ System out println("IOException occured " +{ System.out.println(IOException occured +

"while counting chars. " + e);
total = -1;

}
return total;

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 16

return total;
}

Mechanics of try and catch
��Code that could cause the checked

exception is placed in a try block
– note how the statements are included in one try block.
– Each statement could be in a separate try block with an

associated catch block but that is very unwieldy (seeassociated catch block, but that is very unwieldy (see
next slide)

�Each try block must have 1 or moreEach try block must have 1 or more
associated catch blocks
– code here to handle the error. In this case we just printcode here to handle the error. In this case we just print

out the error and set result to -1

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 17

Gacky try catch Block
public int countChars3(String fileName)
{ i t t t l 0{ int total = 0;

FileReader r = null;
try
{ r = new FileReader(fileName); }
catch(FileNotFoundException e)
{ System.out.println("File named "

+ fileName + "not found. " + e);
total = -1; }

try
{ while(r.ready())

{ try
{ r.read(); }{ r.read(); }
catch(IOException e)
{ System.out.println("IOException "

+ "occurred while counting "
+ "chars. " + e);

total = -1;
}}
total++;

}
}
catch(IOException e)
{ System.out.println("IOException occurred while counting chars. " + e);

t t l 1 }total = -1;}
try
{ r.close();
}
catch(IOException e)
{ System.out.println("IOException occurred while counting chars. " + e);

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 18

y p p g
total = -1;}

return total;
}

More try catch Mechanics
��If you decide to handle the possible

exception locally in a method with the try
bl k t h diblock you must have a corresponding catch
block

�the catch blocks have a parameter list of 1
�the parameter must be Exception or a p p

descendant of Exception
�Use multiple catch blocks with one tryUse multiple catch blocks with one try

block in case of multiple types of
Exceptions

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 19

Exceptions

What Happens When
Exceptions OccurExceptions Occur

�If an exception is thrown then the normal flow of
control of a program haltscontrol of a program halts

�Instead of executing the regular statements the
Java Runtime System starts to search for aJava Runtime System starts to search for a
matching catch block

�The first matching catch block based on data type
is executed

�When the catch block code is completed the
program does not "go back" to where the exceptionprogram does not go back to where the exception
occurred.
– It finds the next regular statement after the catch block

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 20

g

Counting Chars Again
public int countChars(String fileName)public int countChars(String fileName)
{ int total = 0;

try
{ FileReader r = new FileReader(fileName);

while(r ready())while(r.ready())
{ r.read();// what happens in an exception occurs?

total++;
}
r.close();();

}
catch(FileNotFoundException e)
{ System.out.println("File named "

+ fileName + "not found. " + e);
total = -1;

}
catch(IOException e)
{ System.out.println("IOException occured " +

" hil ti h " +)"while counting chars. " + e);
total = -1;

}
return total;

}

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 21

}

Throwing Exceptions Yourself
�if you wish to throw an exception in your code youif you wish to throw an exception in your code you

use the throw keyword
�Most common would be for an unmet preconditionMost common would be for an unmet precondition
public class Circle
{ private int iMyRadius;

/** pre: radius > 0
*/

public Circle(int radius)public Circle(int radius)
{ if (radius <= 0)

throw new IllegalArgumentException
("radius must be > 0. "(
+ "Value of radius: " + radius);

iMyRadius = radius;
}

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 22

}

Attendance Question 2
What is output by the method badUse if it is called with the
following code?
int[] nums = {3, 2, 6, 1};
badUse(nums);

public static void badUse(int[] vals){
int total = 0;
try{

for(int i = 0; i < vals.length; i++){
int index = vals[i];
total += vals[index];

}
}
catch(Exception e){

total = -1;
}
System.out.println(total);

}

A 1 B 0 C 3 D -1 E 5

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 23

A. 1 B. 0 C. 3 D. 1 E. 5

Attendance Question 3
Is the use of a try-catch block on the
previous question a proper use of try-catch
blocks?

A. Yes
B. No

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 24

Error Handling, Error Handling
Everywhere!Everywhere!

�Seems like a lot of choices for errorSeems like a lot of choices for error
prevention and error handling
– normal program logic e g if’s for loop countersnormal program logic, e.g. if s for loop counters
– assertions
– try – catch block– try – catch block

�When is it appropriate to use each kind?

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 25

Error Prevention
�U l i (if f) t t l i�Us program logic, (ifs , fors) to prevent logic errors

and unchecked exceptions
– dereferencing a null pointer, going outside the bounds ofdereferencing a null pointer, going outside the bounds of

an array, violating the preconditions of a method you are
calling. e.g. the charAt method of the String class
use assertions as checks on your logic– use assertions as checks on your logic

• you checked to ensure the variable index was within the array
bounds with an if 10 lines up in the program and you are SURE
you didn’t alter it.you didn t alter it.

• Use an assert right before you actually access the array

if(inbounds(index))
{ // l t f l t d d{ // lots of related code

// use an assertion before accessing
arrayVar[index] = foo;

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 26

}

Error Prevention
�i 307 t b d t h k�in 307 asserts can be used to check

preconditions
St d d J t l i t E ti– Standard Java style is to use Exceptions

�Use try/catch blocks on checked exceptions
I l d ’t th t h dl h k d– In general, don’t use them to handle unchecked
exceptions like NPE or AIOBE

�One place it is reasonable to use try / catch�One place it is reasonable to use try / catch
is in testing suites.
– put each test in a try / catch If an exception– put each test in a try / catch. If an exception

occurs that test fails, but other tests can still be
run

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 27

File Input and Output
�P f d f d i fil�Programs must often read from and write to files

– large amounts of data
– data not known at runtime
– data that changes over time

�Each programming language has its own way of
handling input and output
– involves dealing with the operating system
– if possible try to hide that fact as much as possible

�J tt t t t d di i t d t t ith�Java attempts to standardize input and output with
the notion of a stream, an ordered sequence of
data that has a source or destination

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 28

data that has a source or destination.

Streams?

Dr Egon Spengler: Don't cross the streamsDr. Egon Spengler: Don't cross the streams.
Dr: Peter Venkman: Why not?
Dr. Egon Spengler: It would be bad.
Dr. Peter Venkman: I'm fuzzy on the whole good/bad thing.

what do you mean by "bad"?
Dr. Egon Spengler: Try to imagine all life as you know itDr. Egon Spengler: Try to imagine all life as you know it

stopping instantaneously and every
molecule in your body exploding at
the speed of lightthe speed of light.

Dr. Peter Venkman: That's bad. Okay. Alright, important
safety tip. Thanks Egon.

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 29

Streams
��A stream serves as a connection between

your program and an external source or
destination for bytes and bits
– could be standard input or output, files, network

connections, or other programs

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 30

Lots of Streams
��Java has over sixty (60!) different stream

types in its java.io package
�part of the reason input and output are so

difficult to understand in Java is the size and
diversity of the IO library

�The type of stream you use depends on e ype o s ea you use depe ds o
what you are trying to do
– even then there are multiple optionseven then there are multiple options

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 31

Working with Files in Java
�D i d i di i l f 1 d 0�Data is stored in digital form, 1s and 0s
�Work with these in packages of 8, the byte
�The IO library creates higher level abstractions so

we think we are working with characters, Strings, or
whole objectswhole objects

�Some abstract classes
InputStream OutputStream Reader and Writer– InputStream, OutputStream, Reader, and Writer

– InputStream and OutputStream represent the flow of data
(a stream)()

– Reader and Writer are used to read the data from a
stream or put the data in a stream

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 32

– convenience classes exist to make things a little easier

The Scanner class
��A class to make reading from source of input

easier. New in Java 5.0
�Constructors

Scanner(InputStream)(p)
Scanner(File)

�Methods to read lines from inputMethods to read lines from input
boolean hasNextLine()
String nextLine()String nextLine()

�Methods to read ints
int readInt() boolean hasNext()

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 33

int readInt(), boolean hasNext()

Scanner and Keyboard Input
�No exceptions thrown!

– no try – catch block necessary!
�Set delimiters with regular expressions,

default is whitespace
Scanner s = new Scanner(System.in);Sca e s e Sca e (Syste .);

System.out.print("Enter your name: ");
String name s nextLine();String name = s.nextLine();

System.out.print("Press Enter to continue: ");

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 34

s.nextLine();

Hooking a Scanner up to a File
import java.util.Scanner;
import java.io.File;
import java.io.IOException;

public class ReadAndPrintScores
{

public static void main(String[] args)
{ try{ try

{ Scanner s = new Scanner(new File("scores.dat"));
while(s.hasNextInt())
{ System.out.println(s.nextInt());
}

12 35 12
}
s.close();

}
catch(IOException e)
{ System out println(e);

12 45
12

12{ System.out.println(e);
}

}
}

12

13 57

scores.dat

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 35

Writing to a File
//sample code to write 100 random ints to a file, 1 per line

import java.io.PrintStream;
import java.io.IOException;
import java.io.File;

import java.util.Random;

public class WriteToFile
{ public static void main(String[] args)

{ try{ try
{ PrintStream writer = new PrintStream(new

File("randInts.txt"));
Random r = new Random();
final int LIMIT = 100;

for(int i = 0; i < LIMIT; i++)
{ writer.println(r.nextInt());
}
writer.close();

}
catch(IOException e)
{ System.out.println("An error occurred ” +

+ “while trying to write to the file");
}

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 36

}
}

}

Reading From a Web Page
public static void main(String[] args) {public static void main(String[] args) {

try {

String siteUrl = "http://www.cs.utexas.edu/~scottm/cs307");
URL mySite = new URL(siteURL);y ();

URLConnection yc = mySite.openConnection();

Scanner in =
new Scanner(new InputStreamReader(yc.getInputStream()));

int count = 0;

while (in.hasNext()) {

System.out.println(in.next());

count++;

}

System.out.println("Number of tokens: " + count);

in.close();

} catch (Exception e) {

e.printStackTrace();

CS 307 Fundamentals of
Computer Science Java Basics - Exceptions and File I/O 37

p

}

}

Topic 5
Implementing ClassesImplementing Classes

“And so, from Europe, we get things such , p , g g
... object-oriented analysis and design (a
clever way of breaking up software
programming instructions and data into
small, reusable objects, based on certain
b t ti i i l d d iabstraction principles and design

hierarchies.)”
-Michael A Cusumano-Michael A. Cusumano,

The Business Of Software

CS 307 Fundamentals of
Computer Science

Implementing Classes 1

DefinitionsDefinitions

CS 307 Fundamentals of
Computer Science

Implementing Classes 2

Object Oriented Programming
�Wh i bj i d i ?�What is object oriented programming?
�"Object-oriented programming is a method of

i b d hi h f l dprogramming based on a hierarchy of classes, and
well-defined and cooperating objects. "

�What is a class?�What is a class?
�"A class is a structure that defines the data and the

methods to work on that data When you writemethods to work on that data. When you write
programs in the Java language, all program data is
wrapped in a class, whether it is a class you writewrapped in a class, whether it is a class you write
or a class you use from the Java platform API
libraries."

CS 307 Fundamentals of
Computer Science

Implementing Classes 3
– Sun code camp

Classes Are ...
��Another, simple definition:
�A class is a programmer defined data type.
�A data type is a set of possible values and

the operations that can be performed on t e ope at o s t at ca be pe o ed o
those values

�Example:Example:
– single digit positive base 10 ints

1 2 3 4 5 6 7 8 9– 1, 2, 3, 4, 5, 6, 7, 8, 9
– operations: add, subtract

bl ?
CS 307 Fundamentals of
Computer Science

Implementing Classes 4

– problems?

Data Types
��Computer Languages come with built in data

types
�In Java, the primitive data types, native arrays
�Most computer languages provide a way for the ost co pute a guages p o de a ay o t e

programmer to define their own data types
– Java comes with a large library of classesJava comes with a large library of classes

�So object oriented programming is a way of
programming that is dominated by creating newprogramming that is dominated by creating new
data types to solve a problem.

�We will look at how to create a new data type
CS 307 Fundamentals of
Computer Science

Implementing Classes 5

�We will look at how to create a new data type

A Very Short and Incomplete
History of Object OrientedHistory of Object Oriented

Programming. (OOP)

CS 307 Fundamentals of
Computer Science

Implementing Classes 6

OOP is not new.
�Si l 1 (1962 1965) d Si l 67�Simula 1 (1962 - 1965) and Simula 67

(1967) Norwegian Computing Center, Oslo,
N b Ol J h D hl d K i tNorway by Ole-Johan Dahl and Kristen
Nygaard.

T i A d Wi 2001
CS 307 Fundamentals of
Computer Science

Implementing Classes 7
Turing Award Winners - 2001

OOP Languages
��Smalltalk (1970s), Alan Kay's group at Xerox

PARC

�C++ (early 1980s) Bjarne Stroustrup Bell�C++ (early 1980s), Bjarne Stroustrup, Bell
Labs

CS 307 Fundamentals of
Computer Science

Implementing Classes 8

OOP Languages
�M d l 3 Ob Eiff l J C#�Modula – 3, Oberon, Eiffel, Java, C#,

Python
– many languages have some Object

Oriented version or capability
�One of the dominant styles for

implementing complex programs with p g p p g
large numbers of interacting
componentsp
– … but not the only programming paradigm and

there are variations on object oriented
i

CS 307 Fundamentals of
Computer Science

Implementing Classes 9

programming

Program Design in OOP
��OOP breaks up problems based on the data

types found in the problem
– as opposed to breaking up the problem based on

the algorithms involved
�Given a problem statement, what things

appear in the problem?
�The nouns of the problem are candidate

classes.
�The actions and verbs of the problems are

candidate methods of the classes
CS 307 Fundamentals of
Computer Science

Implementing Classes 10

candidate methods of the classes

Short Object Oriented
Programming Design Example

CS 307 Fundamentals of
Computer Science

Implementing Classes 11

Attendance Question 1
The process of taking a large problem and
breaking it up into smaller parts is known as:

A. Functional programming
B. Object oriented programming
C Top down designC. Top down design
D. Bottom up design
E W f ll h dE. Waterfall method

CS 307 Fundamentals of
Computer Science

Implementing Classes 12

Monopoly

If we had to start
f h hfrom scratch what
classes would we
need to create?need to create?

CS 307 Fundamentals of
Computer Science

Implementing Classes 13

Individual Class DesignIndividual Class Design

CS 307 Fundamentals of
Computer Science

Implementing Classes 14

The Steps of Class Design
�RequirementsRequirements

– what is the problem to be solved
– detailed requirements lead to specificationsdetailed requirements lead to specifications

�Nouns may be classes
�Verbs signal behavior and thus methods (alsoVerbs signal behavior and thus methods (also

defines a classes responsibilities)
�walkthrough scenarios to find nouns and verbswalkthrough scenarios to find nouns and verbs
�implementing and testing of classes
�design rather than implementation is normally thedesign rather than implementation is normally the

hardest part
– planning for reuse

CS 307 Fundamentals of
Computer Science

Implementing Classes 15

p g

Class Design
�Cl h ld b h i�Classes should be cohesive.

– They should be designed to do one thing well.

�Classes should be loosely coupled.
– Changing the internal implementation details of a class

should not affect other classes.
– loose coupling can also be achieved within a class itself

CS 307 Fundamentals of
Computer Science

Implementing Classes 16

Encapsulation
�Al k i f d�Also know as separation of concerns and

information hiding
�Wh ti d t t (l) th d t il�When creating new data types (classes) the details

of the actual data and the way operations work is
hidden from the other programmers who will usehidden from the other programmers who will use
those new data types
– So they don't have to worry about themy y
– So they can be changed without any ill effects (loose

coupling)
�Encapsulation makes it easier to be able to use

something
i di i d th J St i l

CS 307 Fundamentals of
Computer Science

Implementing Classes 17

– microwave, radio, ipod, the Java String class

Design to Implementation
��Design must me implemented using the

syntax of the programming language
�In class example with a list of integers
�Slides include another example of creating a S des c ude a ot e e a p e o c eat g a

class to represent a playing die

CS 307 Fundamentals of
Computer Science

Implementing Classes 18

A List of intsA List of ints

CS 307 Fundamentals of
Computer Science

Implementing Classes 19

The Problem with Arrays
�S I d t t b h f fil titl�Suppose I need to store a bunch of film titles

from a file
The Godfather
The Princess Bride
The Incredible

String[] titles = new String[100];
// I never know how much
// space I need!
�I want the array to grow and shrink

CS 307 Fundamentals of
Computer Science

Implementing Classes 20

y g

Lists
��I need a list.
�A list is a collection of items with a definite

order.
�Our example will be a list of integers.Ou e a p e be a st o tege s
�Design and then implement to demonstrate

the Java syntax for creating a classthe Java syntax for creating a class.

CS 307 Fundamentals of
Computer Science

Implementing Classes 21

Attendance Question 2
When adding a new element to a list
what should be the default location towhat should be the default location to
add?

A. The beginning
B. The end
C The middleC. The middle
D. A random location

CS 307 Fundamentals of
Computer Science

Implementing Classes 22

IntList Design
�C I Li�Create a new, empty IntList
new IntList -> []

�The above is not code. It is a notation that shows
what the results of operations. [] is an empty list.

��add to a list.
[].add(1) -> [1]

[1].add(5) -> [1, 5]

[1, 5].add(4) -> [1, 5, 4]

�elements in a list have a definite order and a
position.

CS 307 Fundamentals of
Computer Science

Implementing Classes 23

– zero based position or 1 based positioning?

Instance Variables
�I t l d t�Internal data

– also called instance variables because every
instance (object) of this class has its own copy ofinstance (object) of this class has its own copy of
these

– something to store the elements of the listsomething to store the elements of the list
– size of internal storage container?
– if not what else is needed

�Must be clear on the difference between the
internal data of an IntList object and the j
IntList that is being represented

�Why make internal data private?
CS 307 Fundamentals of
Computer Science

Implementing Classes 24

y p

Attendance Question 3
Our IntList class will have an instance variable
of ints (int[] container). What should the
capacity of this internal array be?

A. less than or equal to the size of the list
B. greater than or equal to the size of the listg ea e a o equa o e s e o e s
C. equal to the size of the list
D some fixed amount that never changesD. some fixed amount that never changes
E. 0

CS 307 Fundamentals of
Computer Science

Implementing Classes 25

IntList aList = new IntList();
aList.add(42);
aList.add(12);

aList.add(37); aList

Abstract view of IntList

[42 12 37]

list of integers size

container

3

[42, 12, 37]

The wall of
abstraction.

42 12 37 0 0 0 0 0 0 0

CS 307 Fundamentals of
Computer Science

Implementing Classes 26

0 1 2 3 4 5 6 7 8 9

Constructors
��For initialization of objects
�IntList constructors

– default
– initial capacity?p y

�redirecting to another constructor
this(10);this(10);

�class constants
what t ti means– what static means

CS 307 Fundamentals of
Computer Science

Implementing Classes 27

Default add method
��where to add?
�what if not enough space?
[].add(3) -> [3]

[3] add(5) -> [3 5][3].add(5) > [3, 5]

[3, 5].add(3) -> [3, 5, 3]

�Testing, testing, testing!
– a toString method would be useful

CS 307 Fundamentals of
Computer Science

Implementing Classes 28

toString method
��return a Java String of list
�empty list -> []
�one element -> [12]
�multiple elements -> [12 0 5 4]multiple elements > [12, 0, 5, 4]
�Beware the performance of String

concatenationconcatenation.
�StringBuffer alternative

CS 307 Fundamentals of
Computer Science

Implementing Classes 29

Attendance Question 4
What is output by the following code?
IntList list = new IntList();();
System.out.println(list.size());

A 10A. 10
B. 0
C. -1
D unknownD. unknown
E. No output due to runtime error.

CS 307 Fundamentals of
Computer Science

Implementing Classes 30

get and size methods
� t�get

– access element from list
diti ?– preconditions?

[3, 5, 2].get(0) returns 3
[3, 5, 2].get(1) returns 5
�size

– number of elements in the list
– Do not confuse with the capacity of the internal

t t istorage container
– The array is not the list!

[4 5 2] i () ret rns 3
CS 307 Fundamentals of
Computer Science

Implementing Classes 31

[4, 5, 2].size() returns 3

insert method
��add at someplace besides the end
[3, 5].insert(1, 4) -> [3, 4, 5]

where what

[3, 4, 5].insert(0, 4) -> [4, 3, 4, 5]

�preconditions?�preconditions?
�overload add?
�chance for internal loose coupling

CS 307 Fundamentals of
Computer Science

Implementing Classes 32

Attendance Question 5
What is output by the following code?What is output by the following code?
IntList list = new IntList();
list.add(3);
list.insert(0, 4);
list.insert(1, 1);
list.add(5);();
list.insert(2, 9);
System.out.println(list.toString());

A [4 1 3 9 5]A. [4, 1, 3, 9, 5]
B. [3, 4, 1, 5, 9]
C. [4, 1, 9, 3, 5]C. [4, 1, 9, 3, 5]
D. [3, 1, 4, 9, 5]
E. No output due to runtime error.

CS 307 Fundamentals of
Computer Science

Implementing Classes 33

remove method
��remove an element from the list based on

location
[3, 4, 5].remove(0) -> [4, 5]

[3, 5, 6, 1, 2].remove(2) ->[, , , ,] ()

[3, 5, 1, 2]

�preconditions?�preconditions?
�return value?

– accessor methods, mutator methods, and
mutator methods that return a value

CS 307 Fundamentals of
Computer Science

Implementing Classes 34

Attendance Question 6
What is output by the following code?
IntList list = new IntList();
li t dd(12)list.add(12);
list.add(15);
list.add(12);
li t dd(17)list.add(17);
list.remove(1);
System.out.println(list);

A. [15, 17]
B. [12, 17]
C [12 0 12 17]C. [12, 0, 12, 17]
D. [12, 12, 17]
E. [15, 12, 17]

CS 307 Fundamentals of
Computer Science

Implementing Classes 35

insertAll method
��add all elements of one list to another

starting at a specified location
[5, 3, 7].insertAll(2, [2, 3]) ->

[5, 3, 2, 3, 7][, , , ,]

The parameter [2, 3] would be unchanged.
�Working with other objects of the same type�Working with other objects of the same type

– this?
h i i t i t ?– where is private private?

– loose coupling vs. performance

CS 307 Fundamentals of
Computer Science

Implementing Classes 36

Class Design and Implementation –
Another Example

This example will not be covered
in class.

CS 307 Fundamentals of
Computer Science

Implementing Classes 37

The Die Class
�Consider a class used�Consider a class used

to model a die
�Wh t i th i t f ? Wh t�What is the interface? What

actions should a die be able
t f ?to perform?

�The methods or behaviors can be broken up
into constructors mutators accessors

CS 307 Fundamentals of
Computer Science

Implementing Classes 38

into constructors, mutators, accessors

The Die Class Interface
��Constructors (used in creation of objects)

– default, single int parameter to specify the
number of sides, int and boolean to determine if
should roll

� (f)�Mutators (change state of objects)
– roll

�Accessors (do not change state of objects)
– getResult, getNumSides, toStringg , g , g

�Public constants
– DEFAULT SIDES

CS 307 Fundamentals of
Computer Science

Implementing Classes 39

DEFAULT_SIDES

Visibility Modifiers
�All parts of a class have visibility modifiers�All parts of a class have visibility modifiers

– Java keywords
– public, protected, private, (no modifier means package p , p , p , (p g

access)
– do not use these modifiers on local variables (syntax error)

�public means that constructor method or field may�public means that constructor, method, or field may
be accessed outside of the class.
– part of the interfacepa o e e ace
– constructors and methods are generally public

�private means that part of the class is hidden and
inaccessible by code outside of the class
– part of the implementation

data fields are generally private
CS 307 Fundamentals of
Computer Science

Implementing Classes 40

– data fields are generally private

The Die Class Implementation
�Implementation is made up of constructor code, p p ,

method code, and private data members of the
class.

�scope of data members / instance variables�scope of data members / instance variables
– private data members may be used in any of the

constructors or methods of a class
�I l t ti i hidd f f l d�Implementation is hidden from users of a class and

can be changed without changing the interface or
affecting clients (other classes that use this class)affecting clients (other classes that use this class)
– Example: Previous version of Die class,

DieVersion1.java
�Once Die class completed can be used in anythingOnce Die class completed can be used in anything

requiring a Die or situation requiring random
numbers between 1 and N

Di T t l Wh t d it d ?
CS 307 Fundamentals of
Computer Science

Implementing Classes 41

– DieTester class. What does it do?

DieTester method

public static void main(String[] args) {
final int NUM ROLLS = 50;final int NUM_ROLLS 50;
final int TEN_SIDED = 10;
Die d1 = new Die();
Die d2 = new Die();
Die d3 = new Die(TEN SIDED);_
final int MAX_ROLL = d1.getNumSides() +

d2.getNumSides() + d3.getNumSides();

for(int i = 0; i < NUM_ROLLS; i++)
{ d1.roll();

d2.roll();
System.out.println("d1: " + d1.getResult()

+ " d2 " + d2 tR lt() + " T t l "+ " d2: " + d2.getResult() + " Total: "
+ (d1.getResult() + d2.getResult()));

}

CS 307 Fundamentals of
Computer Science

Implementing Classes 42

DieTester continued
int total = 0;
int numRolls = 0;
do
{ d1 ll(){ d1.roll();

d2.roll();
d3.roll();
total = d1.getResult() + d2.getResult()

+ d3 getResult();+ d3.getResult();
numRolls++;

}
while(total != MAX_ROLL);

System.out.println("\n\nNumber of rolls to get "
+ MAX_ROLL + " was " + numRolls);

CS 307 Fundamentals of
Computer Science

Implementing Classes 43

Correctness Sidetrack
�Wh ti th bli i t f f l i�When creating the public interface of a class give

careful thought and consideration to the contract
you are creating between yourself and users (other you a e c ea g be ee you se a d use s (o e
programmers) of your class

�Use preconditions to state what you assume to be
ftrue before a method is called

– caller of the method is responsible for making sure these
are trueare true

�Use postconditions to state what you guarantee to
be true after the method is done if the preconditions
are met
– implementer of the method is responsible for making

sure these are true

CS 307 Fundamentals of
Computer Science

Implementing Classes 44

sure these are true

Precondition and
P t diti E lPostcondition Example

/* pre: numSides > 1
post: getResult() = 1, getNumSides() = sides

*/
bli Di (i t Sid)public Die(int numSides)

{ assert (numSides > 1) : “Violation of precondition: Die(int)”;
iMyNumSides = numSides;iMyNumSides = numSides;
iMyResult = 1;
assert getResult() == 1 && getNumSides() == numSides;assert getResult() 1 && getNumSides() numSides;

}

CS 307 Fundamentals of
Computer Science

Implementing Classes 45

Object Behavior - Instantiation
�C id h Di T l�Consider the DieTester class

Die d1 = new Die();
Die d2 = new Die();Die d2 new Die();
Die d3 = new Die(10);

�When the new operator is invoked control is p
transferred to the Die class and the specified
constructor is executed, based on parameter matching

�Space(memory) is set aside for the new object's fields
�The memory address of the new object is passed

back and stored in the object variable (pointer)
�After creating the object, methods may be called on it.

CS 307 Fundamentals of
Computer Science

Implementing Classes 46

Creating Dice Objects
a Die object

6 1
d1

memory
address

iMySides iMyResult

a Die object

d1
DieTester class. Sees
interface of Die class

Die class.
Sees

a Die object

6 1
memory
address

implementation.
(of Die class.)

iMySides iMyResult

a Die object
d2

address

j

10 1
memory
address

CS 307 Fundamentals of
Computer Science

Implementing Classes 47
iMySides iMyResultd3

Objects
�E Di bj t t d h it�Every Die object created has its own

instance of the variables declared in the
class blueprintclass blueprint

private int iMySides;
private int iMyResult;private int iMyResult;

�thus the term instance variable
�the instance vars are part of the hidden�the instance vars are part of the hidden

implementation and may be of any data type
– unless they are public which is almost always a– unless they are public, which is almost always a

bad idea if you follow the tenets of information
hiding and encapsulation

CS 307 Fundamentals of
Computer Science

Implementing Classes 48

Complex Objects
�What if one of the instance variables is itself

an object?
�add to the Die classadd to the Die class

private String myName;
a Die objecta Die object

6 1
d1

memory
address memory

address

iMySides iMyResultd1 myName

d1 can hold the memory address
a String object

implementation
details not shown

d1 can hold the memory address
of a Die object. The instance variable
myName inside a Die object can hold
the memory address of a String object

CS 307 Fundamentals of
Computer Science

Implementing Classes 49

details not shownthe memory address of a String object

The Implicit Parameter
�Consider this code from the Die class�Consider this code from the Die class

public void roll()
{ iMyResult =

ourRandomNumGen.nextInt(iMySides) + 1;
}

�Taken in isolation this code is rather confusing.Taken in isolation this code is rather confusing.
�what is this iMyResult thing?

– It's not a parameter or local variablep
– why does it exist?
– it belongs to the Die object that called this method
– if there are numerous Die objects in existence
– Which one is used depends on which object called

the method
CS 307 Fundamentals of
Computer Science

Implementing Classes 50

the method.

The this Keyword
�When a method is called it may be necessary

for the calling object to be able to refer to itself
– most likely so it can pass itself somewhere as a

parameter
� hen an object calls a method an implicit�when an object calls a method an implicit

reference is assigned to the calling object
�the name of this implicit reference is this�the name of this implicit reference is this
�this is a reference to the current calling object

and may be used as an object variable (may notand may be used as an object variable (may not
declare it)

CS 307 Fundamentals of
Computer Science

Implementing Classes 51

this Visually
// i l th th Di

memory
dd// in some class other than Die

Die d3 = new Die();
d3.roll(); d3

address

// in the Die class
public void roll()
{ iMyResult ={ iMyResult =

ourRandomNumGen.nextInt(iMySides) + 1;

/* OR

thi iM R ltthis.iMyResult…

*/

}

a Die object

6 1
memory

iMySides iMyResult

6 1

this

address

CS 307 Fundamentals of
Computer Science

Implementing Classes 52

An equals methodq

�working with objects of the same type in aworking with objects of the same type in a
class can be confusing

�write an equals method for the Die classwrite an equals method for the Die class.
assume every Die has a myName instance
variable as well as iMyNumber and iMySidesvariable as well as iMyNumber and iMySides

CS 307 Fundamentals of
Computer Science

Implementing Classes 53

A Possible Equals Method
public boolean equals(Object otherObject)p q j j
{ Die other = (Die)otherObject;

return iMySides == other.iMySides
&& iMyResult== other iMyResult&& iMyResult== other.iMyResult
&& myName.equals(other.myName);

}
�Declared Type of Parameter is Object not Die�Declared Type of Parameter is Object not Die
�override (replace) the equals method instead of

overload (present an alternate version)overload (present an alternate version)
– easier to create generic code

�we will see the equals method is inherited from
the Object class

�access to another object's private instance
variables?

CS 307 Fundamentals of
Computer Science

Implementing Classes 54

variables?

Another equals Methods
public boolean equals(Object otherObject)
{ Die other = (Die)otherObject;

return this.iMySides == other.iMySides
&& this.iMyNumber == other.iMyNumber
&& this.myName.equals(other.myName);y q (y);

}

Using the this keyword / reference to access the implicit parameters
instance variables is unnecessary.
If th d ithi th l i ll d ithi th d thIf a method within the same class is called within a method, the
original calling object is still the calling object

CS 307 Fundamentals of
Computer Science

Implementing Classes 55

A "Perfect" Equals Method
��From Cay Horstmann's Core Java

public boolean equals(Object otherObject)
{ // check if objects identical{ // check if objects identical

if(this == otherObject)
return true;

// must return false if explicit parameter null// ust etu a se e p c t pa a ete u
if(otherObject == null)

return false;
// if objects not of same type they cannot be equal
if(getClass() != otherObject.getClass())

return false;
// we know otherObject is a non null Die
Die other = (Die)otherObject;
return iMySides == other.iMySides

&& iMyNumber == other.iMyNumber
&& m Name eq als(other m Name)

CS 307 Fundamentals of
Computer Science

Implementing Classes 56

&& myName.equals(other.myName);
}

the instanceof Operator
� i J k d�instanceof is a Java keyword.
�part of a boolean statement
public boolean equals(Object otherObj)
{ if otherObj instanceof Die

{ //now go and cast
// rest of equals method

}}
}

�Should not use instanceof in equals methods�Should not use instanceof in equals methods.
�instanceof has its uses but not in equals

b f th t t f th l th d
CS 307 Fundamentals of
Computer Science

Implementing Classes 57

because of the contract of the equals method

Class Variables and Class Methods
�Sometimes every object of a class does not

need its own copy of a variable or constantneed its own copy of a variable or constant
�The keyword static is used to specify

class variables, constants, and methodsclass variables, constants, and methods
private static Random ourRandNumGen

= new Random();
public static final int DEFAULT SIDES = 6;public static final int DEFAULT_SIDES = 6;

�The most prevalent use of static is for class
constantsconstants.
– if the value can't be changed why should every

object have a copy of this non changing value

CS 307 Fundamentals of
Computer Science

Implementing Classes 58

j py g g

Class Variables and Constants
the Die class

DEFAULT_SIDES

6

ourRandNumGen

memory
address

a Random object

implementation
All objects of type Die have

t th l i bl implementation
details not shown

access to the class variables
and constants.

A public class variable or constant
may be referred to via the class name.

CS 307 Fundamentals of
Computer Science

Implementing Classes 59

Syntax for Accessing Class Variables
public class UseDieStaticpublic class UseDieStatic
{ public static void main(String[] args)

{ System.out.println("Die.DEFAULT_SIDES "
+ Die.DEFAULT_SIDES);

//// Any attempt to access Die.ourRandNumGen
// would generate a syntax error

Die d1 = new Die(10);();

System.out.println("Die.DEFAULT_SIDES "
+ Die.DEFAULT_SIDES);

S t t i tl ("d1 DEFAULT SIDES "System.out.println("d1.DEFAULT_SIDES "
+ d1.DEFAULT_SIDES);

// regardless of the number of Die objects in
// existence, there is only one copy of DEFAULT_SIDES
// in the Die class

} // end of main method

CS 307 Fundamentals of
Computer Science

Implementing Classes 60

} // end of main method
} // end of UseDieStatic class

Static Methods
��static has a somewhat different

meaning when used in a method
d l tideclaration

�static methods may not manipulate any
i t i blinstance variables

�in non static methods, some object
i k th th dinvokes the method
d3.roll();

��the object that makes the method call is
an implicit parameter to the method

CS 307 Fundamentals of
Computer Science

Implementing Classes 61

Static Methods Continued
�Since there is no implicit object parameter

sent to the static method it does not have
access to a copy of any objects instance
variables

l f th t bj t i t– unless of course that object is sent as an
explicit parameter

�Static methods are normally utility methods�Static methods are normally utility methods
or used to manipulate static variables
(class variables)(class variables)

�The Math and System classes are nothing
but static methods

CS 307 Fundamentals of
Computer Science

Implementing Classes 62

but static methods

static and this
�Why does this work (added to Die class)Why does this work (added to Die class)
public class Die
{

public void outputSelf()
{ System.out.println(this);
}

}

�but this doesn't?

}

but this doesn t?
public class StaticThis
{

public static void main(String[] args)public static void main(String[] args)
{ System.out.println(this);
}

}

CS 307 Fundamentals of
Computer Science

Implementing Classes 63

}

Topic 6Topic 6
Inheritance andInheritance and
Polymorphism

"Question: What is the object oriented way of
getting rich?
Answer: Inheritance.“

“Inheritance is new code that reuses old codeInheritance is new code that reuses old code.
Polymorphism is old code that reuses new code.”

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

1

Outline
��Explanation of inheritance.
�Using inheritance to create a SortedIntList.
�Explanation of polymorphism.
�Using polymorphism to make a more genericUsing polymorphism to make a more generic

List class.

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

2

Explanation of InheritanceExplanation of Inheritance

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

3

Main Tenets of OO Programming
�Encapsulation

– abstraction, information hidingabs ac o , o a o d g
�Inheritance

code reuse specialization "New code using old– code reuse, specialization New code using old
code."

�Polymorphism�Polymorphism
– do X for a collection of various types of objects,

where X is different depending on the type ofwhere X is different depending on the type of
object

– "Old code using new code "
CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

4

Old code using new code.

Things and Relationships
�Obj t i t d i l d t�Object oriented programming leads to

programs that are models
ti d l f thi i th l ld– sometimes models of things in the real world

– sometimes models of contrived or imaginary things
�There are many types of relationships between�There are many types of relationships between

the things in the models
chess piece has a position– chess piece has a position

– chess piece has a color
chess piece moves (changes position)– chess piece moves (changes position)

– chess piece is taken
– a rook is a type of chess piece
CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

5

a rook is a type of chess piece

The “has-A” Relationship
��Objects are often made up of many parts or

have sub data.
– chess piece: position, color
– die: result, number of sides

�This “has-a” relationship is modeled by
compositionp
– the instance variables or fields internal to objects

�Encapsulation captures this conceptEncapsulation captures this concept

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

6

The “is-a” relationship
��Another type of relationship found in the real

world
– a rook is a chess piece
– a queen is a chess piece
– a student is a person
– a faculty member is a person
– an undergraduate student is a student

�“is-a” usually denotes some form ofis a usually denotes some form of
specialization

�it is not the same as “has-a”
CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

7

it is not the same as has-a

Inheritance
��The “is-a” relationship, and the specialization

that accompanies it, is modeled in object
oriented languages via inheritance

�Classes can inherit from other classes
– base inheritance in a program on the real world

things being modeled
– does “an A is a B” make sense? Is it logical?

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

8

Nomenclature of Inheritance
�I J th t d k d i d i th�In Java the extends keyword is used in the

class header to specify which preexisting class
a new class is inheriting froma e c ass s e g o
public class Student extends Person

�Person is said to be
h l f S d– the parent class of Student

– the super class of Student
– the base class of Student
– an ancestor of Student

�Student is said to be
– a child class of Person
– a sub class of Person
– a derived class of Person
– a descendant of Person

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

9

Results of Inheritance
public class A
public class B extends A
�the sub class inherits (gains) all instance

variables and instance methods of the super a ab es a d sta ce et ods o t e supe
class, automatically

�additional methods can be added to class Badditional methods can be added to class B
(specialization)

�the sub class can replace (redefine�the sub class can replace (redefine,
override) methods from the super class

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

10

Attendance Question 1
What is the primary reason for using
inheritance when programming?

A. To make a program more complicated
B. To duplicate code between classes
C To reuse pre-existing codeC. To reuse pre-existing code
D. To hide implementation details of a class
EE. To ensure pre conditions of methods are met.

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

11

Inheritance in Java
� Java is a pure object oriented languageJava is a pure object oriented language
� all code is part of some class
� all classes except one must inherit from� all classes, except one, must inherit from

exactly one other class
� The Object class is the cosmic super classThe Object class is the cosmic super class

– The Object class does not inherit from any other class
– The Object class has several important methods:

toString, equals, hashCode, clone, getClass
� implications:

all classes are descendants of Object– all classes are descendants of Object
– all classes and thus all objects have a toString,

equals, hashCode, clone, and getClass method

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

12

• toString, equals, hashCode, clone normally overridden

Inheritance in Java
�If l h d d t i l d th�If a class header does not include the

extends clause the class extends the
Obj t class by defaultObject class by default
public class Die

i ll l– Object is an ancestor to all classes
– it is the only class that does not extend some

th lother class
�A class extends exactly one other class

– extending two or more classes is multiple
inheritance. Java does not support this directly,

th it I t f
CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

13

rather it uses Interfaces.

Overriding methods
�any method that is not final may be

overridden by a descendant classy
�same signature as method in ancestor
�may not reduce visibility�may not reduce visibility
�may use the original method if simply want to

dd b h i t i tiadd more behavior to existing

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

14

Attendance Question 2
What is output when the main method is run?
public class Foo{

public static void main(String[] args){
Foo f1 = new Foo();
System.out.println(f1.toString());

}
}}

A. 0
B nullB. null
C. Unknown until code is actually run.
D. No output due to a syntax error.
E. No output due to a runtime error.

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

15

p

Shape Classes
�D l l ll d�Declare a class called ClosedShape

– assume all shapes have x and y coordinates
– override Object's version of toString

�Possible sub classes of ClosedShape
– Rectangle

– Circle

– Ellipse

– SquareSquare

�Possible hierarchy
ClosedShape < Rectangle < Square

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

16

ClosedShape <- Rectangle <- Square

A ClosedShape class
public class ClosedShape p p
{ private double myX;

private double myY;

public ClosedShape()public ClosedShape()
{ this(0,0); }

public ClosedShape (double x, double y)
{ myX x;{ myX = x;

myY = y;
}

bli i i ()public String toString()
{ return "x: " + getX() + " y: " + getY(); }

public double getX(){ return myX; }p g y
public double getY(){ return myY; }

}
// Other methods not shown

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

17

Constructors
�Constructors handle initialization of objects�Constructors handle initialization of objects
�When creating an object with one or more ancestors (every

type except Object) a chain of constructor calls takes placeyp p j) p
�The reserved word super may be used in a constructor to

call a one of the parent's constructors
t b fi t li f t t– must be first line of constructor

� if no parent constructor is explicitly called the default, 0
parameter constructor of the parent is calledp p
– if no default constructor exists a syntax error results

� If a parent constructor is called another constructor in the
same class ma no be calledsame class may no be called
– no super();this(); allowed. One or the other, not both
– good place for an initialization method

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

18

A Rectangle Constructor
public class Rectangle extends ClosedShape
{ private double myWidth;

private double myHeight;

public Rectangle(double x, double y,
double width, double height)g

{ super(x,y);
// calls the 2 double constructor in
// ClosedShapep
myWidth = width;
myHeight = height;

}

// other methods not shown

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

19
}

A Rectangle Class
public class Rectangle extends ClosedShape
{ private double myWidth;

private double myHeight;

public Rectangle()
{ this(0 0);{ this(0, 0);
}

public Rectangle(double width, double height)
{ myWidth = width;

myHeight = height;
}

public Rectangle(double x, double y,
double width double height)double width, double height)

{ super(x, y);
myWidth = width;
myHeight = height;

}

public String toString()
{ return super.toString() + " width " + myWidth

+ " height " + myHeight;
}

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

20

}
}

The Keyword super
�super is used to access something (any protected or

public field or method) from the super class that has
been overriddenbeen overridden

�Rectangle's toString makes use of the toString in
ClosedShape my calling super.toString()

�without the super calling toString would result in
infinite recursive calls

�J d t ll t d�Java does not allow nested supers
super.super.toString()

results in a syntax error even though technically thisresults in a syntax error even though technically this
refers to a valid method, Object's toString

�Rectangle partially overrides ClosedShapes toString

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

21

Initialization method
public class Rectangle extends ClosedShapepublic class Rectangle extends ClosedShape
{ private double myWidth;

private double myHeight;

public Rectangle()public Rectangle()
{ init(0, 0);
}

public Rectangle(double width, double height)public Rectangle(double width, double height)
{ init(width, height);
}

public Rectangle(double x double ypublic Rectangle(double x, double y,
double width, double height)

{ super(x, y);
init(width, height);

}}

private void init(double width, double height)
{ myWidth = width;

myHeight = height;

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

22

myHeight = height;
}

Result of Inheritance
Do an of these ca se a s nta error?Do any of these cause a syntax error?
What is the output?
Rectangle r = new Rectangle(1, 2, 3,
4);
ClosedShape s = new CloseShape(2, 3);p p ,
System.out.println(s.getX());
System.out.println(s.getY());
System out println(s toString());System.out.println(s.toString());
System.out.println(r.getX());
System.out.println(r.getY());y p (g ())
System.out.println(r.toString());
System.out.println(r.getWidth());

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

23

The Real Picture
Fields from Object classFields from Object class

Instance variables
declared in Object

Fields from ClosedShape class

declared in Object

A
Instance Variables declared in
ClosedShape

A
Rectangle
object p

Available
methods Fields from Rectangle class
are all methods
from Object,
ClosedShape,
and Rectangle

Instance Variables declared in
Rectangle

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

24

and Rectangle

Access Modifiers and
InheritanceInheritance

�public
– accessible to all classesaccessible to all classes

�private
– accessible only within that class. Hidden from all sub y

classes.
�protected

ibl b l ithi th k d ll– accessible by classes within the same package and all
descendant classes

�Instance variables should be privatep
�protected methods are used to allow descendant

classes to modify instance variables in ways other
l 't

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

25

classes can't

Why private Vars and not protected?
�In general it is good practice to make

instance variables privateinstance variables private
– hide them from your descendants

if thi k d d t ill d t– if you think descendants will need to access
them or modify them provide protected methods
to do thisto do this

�Why?
��Consider the following example

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

26

Required update
public class GamePiece
{ private Board myBoard;

private Position myPos;private Position myPos;

// whenever my position changes I musty p g
// update the board so it knows about the change

protected void alterPos(Position newPos)
{ Position oldPos = myPos;

myPos = newPos;myPos newPos;
myBoard.update(oldPos, myPos);

}

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

27

Creating a SortedIntListCreating a SortedIntList

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

28

A New Class
��Assume we want to have a list of ints, but

that the ints must always be maintained in
ascending order
[-7, 12, 37, 212, 212, 313, 313, 500]

sortedList.get(0) returns the min
sortedList.get(list.size() – 1)

returns the max

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

29

Implementing SortedIntList
��Do we have to write a whole new class?
�Assume we have an IntList class.
�Which of the following methods would have

to be changed?to be c a ged
add(int value)

int get(int location)int get(int location)

String toString()

int size()int size()

int remove(int location)

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

30

Overriding the add Method
��First attempt
�Problem?
�solving with protected

– What protected really meansWhat protected really means

�solving with insert method
double edged sort– double edged sort

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

31

Problems
��What about this method?
void insert(int location, int val)

�What about this method?
void insertAll(int locationvoid insertAll(int location,

IntList otherList)

�SortedIntList is not the cleanest�SortedIntList is not the cleanest
application of inheritance.

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

32

Explanation of PolymorphismExplanation of Polymorphism

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

33

Polymorphism
�A th f t f OOP�Another feature of OOP
�literally “having many forms”
�object variables in Java are polymorphic
�object variables can refer to objects or their

declared type AND any objects that are
descendants of the declared type
ClosedShape s = new
ClosedShape();

R t l () // l l!s = new Rectangle(); // legal!
s = new Circle(); //legal!
Obj t bj1 // h t?

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

34

Object obj1; // = what?

Data Type
� bj t i bl h�object variables have:

– a declared type. Also called the static type.
d i t Wh t i th t l t f th– a dynamic type. What is the actual type of the

pointee at run time or when a particular
statement is executed.statement is executed.

�Method calls are syntactically legal if the
method is in the declared type or any e od s e dec a ed ype o a y
ancestor of the declared type

�The actual method that is executed at
runtime is based on the dynamic type
– dynamic dispatch

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

35

y p

Attendance Question 3
Consider the following class declarations:
public class BoardSpace
public class Property extends BoardSpacepublic class Property extends BoardSpace
public class Street extends Property
public class Railroad extends Property

Which of the following statements would cause a syntaxWhich of the following statements would cause a syntax
error? Assume all classes have a default constructor.

A. Object obj = new Railroad();
B. Street s = new BoardSpace();
C. BoardSpace b = new Street();
D. Railroad r = new Street();
E. More than one of these

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

36

What’s the Output?
ClosedShape s = new ClosedShape(1,2);
System.out.println(s.toString());
s ne Rectangle(2 3 4 5)s = new Rectangle(2, 3, 4, 5);
System.out.println(s.toString());
s = new Circle(4, 5, 10);s new Circle(4, 5, 10);
System.out.println(s.toString());
s = new ClosedShape();
System.out.println(s.toString());

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

37

Method LookUp
�To determine if a method is legal the compiler looks in the

class based on the declared type
– if it finds it great, if not go to the super class and look thereif it finds it great, if not go to the super class and look there
– continue until the method is found, or the Object class is reached

and the method was never found. (Compile error)
�To determine which method is actually executed the runTo determine which method is actually executed the run

time system
– starts with the actual run time class of the object that is calling the

methodmethod
– search the class for that method
– if found, execute it, otherwise go to the super class and keep looking
– repeat until a version is foundrepeat until a version is found

� Is it possible the runtime system won’t find a method?

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

38

Attendance Question 4
What is output by theWhat is output by the
code to the right when
run?

public class Animal{
public String bt(){ return "!"; }

}

A. !!live
B. !eggegg

public class Mammal extends Animal{

public String bt(){ return "live"; }

}gg gg
C. !egglive
D !!!

public class Platypus extends Mammal{
public String bt(){ return "egg";}

}D. !!!
E. eggegglive

}

Animal a1 = new Animal();
Animal a2 = new Platypus();

Mammal m1 = new Platypus();
System.out.print(a1.bt());
System.out.print(a2.bt());

System.out.print(m1.bt());

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

39

Why Bother?
�I h it ll t d l�Inheritance allows programs to model

relationships in the real world
if th f ll th d l it b i– if the program follows the model it may be easier
to write

�Inheritance allows code reuse�Inheritance allows code reuse
– complete programs faster (especially large

programs)programs)
�Polymorphism allows code reuse in another

way (We will explore this next time)y (p)
�Inheritance and polymorphism allow

programmers to create generic algorithms
CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

40

p g g g

Genericity
�O f th l f OOP i th t f�One of the goals of OOP is the support of

code reuse to allow more efficient program
developmentdevelopment

�If a algorithm is essentially the same, but the
code would vary based on the data typecode would vary based on the data type
genericity allows only a single version of that
code to existcode to exist
– some languages support genericity via templates
– in Java, there are 2 ways of doing thisin Java, there are 2 ways of doing this

• polymorphism and the inheritance requirement
• generics

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

41

the createASet example
public Object[] createASet(Object[] items)
{ /*

pre: items != null, no elements
of items = null
post: return an array of Objectspost: return an array of Objects
that represents a set of the elements
in items. (all duplicates removed)
/*/

{5, 1, 2, 3, 2, 3, 1, 5} -> {5, 1, 2, 3}

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

42

createASet examples
String[] sList = {"Texas", "texas", "Texas",

"Texas", "UT", "texas"};

Object[] sSet = createASet(sList);

for(int i = 0; i < sSet.length; i++)

System.out.println(sSet[i]);

Object[] list = {"Hi", 1, 4, 3.3, true,
new ArrayList(), "Hi", 3.3, 4};

Object[] set createASet(list);Object[] set = createASet(list);

for(int i = 0; i < set.length; i++)

System.out.println(set[i]);

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

43

A Generic List ClassA Generic List Class

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

44

Back to IntList
�W fi d f l b t h t if�We may find IntList useful, but what if we

want a List of Strings? Rectangles?
?Lists?

– What if I am not sure?
�Are the List algorithms going to be very

different if I am storing Strings instead of
ints?

�How can we make a generic List class?How can we make a generic List class?

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

45

Generic List Class
��required changes
�How does toString have to change?

– why?!?!
– A good example of why keyword this is g p y y

necessary from toString
�What can a List hold now?
�How many List classes do I need?

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

46

Writing an equals Method
��How to check if two objects are equal?
if(objA == objA)

// does this work?

�Why not thisWhy not this
public boolean equals(List other)

�B�Because
public void foo(List a, Object b)

if(a.equals(b))
System.out.println(same)

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

47
– what if b is really a List?

equals method
��read the javadoc carefully!
�don't rely on toString and String's equal
�lost of cases

CS 307 Fundamentals of
Computer Science Inheritance and Polymorphism

48

T i 7Topic 7
Interfaces and AbstractInterfaces and Abstract

Classes

“I prefer Agassiz in the abstract,
rather than in the concrete.”

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

1

InterfacesInterfaces

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

2

Multiple Inheritance
��The are classes where the “is-a” test is true

for more than one other class
– a graduate teaching assistant is a graduate

students
– a graduate teaching assistant is a faculty

member
��Java requires all classes to inherit from

exactly one other class
– does not allow multiple inheritance
– some object oriented languages do

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

3

Problems with Multiple Inheritance
�S lti l i h it ll d�Suppose multiple inheritance was allowed
public class GradTA extends Faculty, GradStudent

�Suppose Faculty overrides toString and that�Suppose Faculty overrides toString and that
GradStudent overrides toString as well
GradTA ta1 = new GradTA();GradTA ta1 = new GradTA();
System.out.println(ta1.toString());

�What is the problemWhat is the problem
�Certainly possible to overcome the problem

– provide access to both (scope resolution in C++)– provide access to both (scope resolution in C++)
– require GradTA to pick a version of toString or

override it itself (Eiffel)

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

4

()

Interfaces – Not quite Multiple Inheritance

��Java does not allow multiple inheritance
– syntax headaches not worth the benefits

�Java has a mechanism to allow specification
of a data type with NO implementationyp p
– interfaces

�Pure DesignPure Design
– allow a form of multiple inheritance without the

possibility of conflicting implementationspossibility of conflicting implementations

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

5

A List Interface
��What if we wanted to specify the operations

for a List, but no implementation?
�Allow for multiple, different implementations.
�Provides a way of creating abstractions.o des a ay o c eat g abst act o s

– a central idea of computer science and
programming. p g g

– specify "what" without specifying "how"
– "Abstraction is a mechanism and practice toAbstraction is a mechanism and practice to

reduce and factor out details so that one can
focus on a few concepts at a time. "

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

6

Interface Syntax
i i ipublic interface List{

public void add(Object val);

public int size();

public Object get(int location);

public void insert(int location,

Object val);

public void addAll(List other);
public Object remove(int location);

}

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

7

Interfaces
��All methods in interfaces are public and

abstract
– can leave off those modifiers in method headers

�No constructors
�No instance variables
�can have class constants�can have class constants

public static final int DEFAULT_SIDES = 6

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

8

Implementing Interfaces
��A class inherits (extends) exactly one other

class, but …
�A class can implement as many interfaces

as it likes
public class ArrayList implements List

�A class that implements an interface mustA class that implements an interface must
provide implementations of all method
declared in the interface or the class must bedeclared in the interface or the class must be
abstract

�interfaces can extend other interfaces
CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

9

interfaces can extend other interfaces

Why interfaces?
�I f ll h i f b t t d t t�Interfaces allow the creation of abstract data types

– "A set of data values and associated operations that are
precisely specified independent of any particularprecisely specified independent of any particular
implementation. "

– multiple implementations allowed
�Interfaces allow a class to be specified without

worrying about the implementation
– do design first
– What will this data type do?

D ’t b t i l t ti til d i i d– Don’t worry about implementation until design is done.
– separation of concerns

�allow a form of multiple inheritance
CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

10

�allow a form of multiple inheritance

The Comparable Interface
��The Java Standard Library

contains a number of interfaces
– names are italicized in the class

listing
�One of the most important

interfaces is the Comparable
interface

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

11

Comparable Interface version 1.4
package java.lang

public interface Comparable
{

public int compareTo(Object other);public int compareTo(Object other);
}

�compareTo should return an int <0 if the calling
object is less than the parameter, 0 if they areobject is less than the parameter, 0 if they are
equal, and an int >0 if the calling object is greater
than the parameter

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

12

Implementing Comparable
��Any class that has a natural ordering of its

objects (that is objects of that type can be
sorted based on some internal attribute)
should implement the Comparable interface

�Back to the ClosedShape example
�Suppose we want to be able to sort Suppose e a o be ab e o so
ClosedShapes and it is to be based on area

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

13

Example compareTo
��Suppose we have a class to

model playing cards
– Ace of Spades, King of Hearts,

Two of Clubs
�each card has a suit and a

value, represented by ints
�this version of compareTo will

compare values first and then p
break ties with suits

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

14

compareTo in a Card class
public class Card implements Comparable
{

public int compareTo(Object otherObject)
{ C d th (C d) th Obj t{ Card other = (Card)otherObject;

int result = this.myRank - other.myRank;
if(result == 0)

result = this mySuit - other mySuit;result = this.mySuit - other.mySuit;
return result

}
// other methods not shown// ot e et ods ot s o

}

Assume ints for ranks (2, 3, 4, 5, 6,...) and suits (0 is
clubs, 1 is diamonds, 2 is hearts, 3 is spades).

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

15

Interfaces and Polymorphism
��Interfaces may be used as the data type

for object variables
�Can’t simply create objects of that type
�Can refer to any objects that implement the�Can refer to any objects that implement the

interface or descendants
�Ass me C d implements C bl�Assume Card implements Comparable
Card c = new Card();
Comparable comp1 = new Card();
Comparable comp2 = c;

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

16

Polymorphism Again!
What can this Sort?What can this Sort?

public static void SelSort(Comparable[] list)
{ Comparable temp;p p

int smallest;
for(int i = 0; i < list.length - 1; i++)
{ small = i;{ ;

for(int j = i + 1; j < list.length; j++)

{ if(list[j].compareTo(list[small]) < 0)

ll jsmall = j;
} // end of j loop
temp = list[i];

list[i] = list[small];
list[small] = temp;

} // end of i loop

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

17
}

Abstract ClassesAbstract Classes

Part Class, part Interface

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

18

Back to the ClosedShape Example
��One behavior we might want in

ClosedShapes is a way to get the area
�problem: How do I get the area of something

that is “just a ClosedShape”?

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

19

The ClosedShape class
public class ClosedShape
{ private double myX;

private double myY;

public double getArea()
{ //Hmmmm?!?!
}

//

}}
// Other methods not shown

Doesn’t seem like we have enough information to
get the area if all we know is it is a ClosedShape.

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

20

Options
1. Just leave it for the sub classes.

� Have each sub class define getArea() if they
want to.

2. Define getArea() in ClosedShape and
simply return 0.
� Sub classes can override the method with more

meaningful behavior.

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

21

Leave it to the Sub - Classes
// no getArea() in ClosedShape

public void printAreas(ClosedShape[] shapes)
{

f (Cl dSh h)for(ClosedShape s : shapes)
{ System.out.println(s.getArea());
}

}}

ClosedShape[] shapes = new ClosedShape[2];
shapes[0] = new Rectangle(1 2 3 4);shapes[0] = new Rectangle(1, 2, 3, 4);
shapes[1] = new Circle(1, 2, 3);
printAreas(shapes);

Will the above code compile?

How does the compiler determine if a method
ll i ll d?

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

22

call is allowed?

Fix by Casting
// tA () i Cl dSh// no getArea() in ClosedShape

public void printAreas(ClosedShape[] shapes)
{

for(ClosedShape s : shapes)
{ if(s instanceof Rectangle)

System.out.println(((Rectangle)s).getArea());
else if(s instanceof Circle)e se (s sta ceo C c e)

System.out.println(((Circle)s).getArea());
}

}

ClosedShape[] shapes = new ClosedShape[2];
shapes[0] = new Rectangle(1, 2, 3, 4);
shapes[1] = new Circle(1, 2, 3);

i tA (h)printAreas(shapes);

What happens as we add more sub classes of ClosedShape?

Wh t h if f th bj t i j t ?
CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

23

What happens if one of the objects is just a ClosedShape?

Fix with Dummy Method
// getArea() in ClosedShape returns 0// getArea() in ClosedShape returns 0

public void printAreas(ClosedShape[] shapes)
{{

for(ClosedShape s : shapes)
{ System.out.println(s.getArea());
}}

}

ClosedShape[] shapes = new ClosedShape[2];
shapes[0] = new Rectangle(1, 2, 3, 4);
shapes[1] = new Circle(1, 2, 3);
printAreas(shapes);

What happens if sub classes don’t override getArea()?

Does that make sense?

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

24

Does that make sense?

A Better Fix
��We know we want to be able to find the area

of objects that are instances of
ClosedShape

�The problem is we don’t know how to do that
if all we know is it a ClosedShape

�Make getArea an abstract method g

�Java keyword

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

25

Making getArea Abstract
bli l Cl dShpublic class ClosedShape

{ private double myX;
private double myY;

public abstract double getArea();
// I know I want it.// I know I want it.
// Just don’t know how, yet…

}}
// Other methods not shown

M th d th t d l d b t t h b dMethods that are declared abstract have no body
an undefined behavior.

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

26
All methods in an interface are abstract.

Problems with Abstract Methods

Given getArea() is now an abstract method
what is wrong with the following code?what is wrong with the following code?

ClosedShape s = new ClosedShape();p p ()
System.out.println(s.getArea());

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

27

Undefined Behavior = Bad
��Not good to have undefined behaviors
�If a class has 1 or more abstract methods,

the class must also be declared abstract.
– version of ClosedShape shown would cause a

compile error
�Even if a class has zero abstract methods a

programmer can still choose to make it
abstract
– if it models some abstract thing
– is there anything that is just a “Mammal”?

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

28

is there anything that is just a Mammal ?

Abstract Classes
public abstract class ClosedShapepublic abstract class ClosedShape
{ private double myX;

private double myY;

public abstract double getArea();
// I know I want it.
// Just don’t know how, yet…, y

}
// Other methods not shown

if a class is abstract the compiler will not allow
constructors of that class to be calledconstructors of that class to be called
ClosedShape s = new ClosedShape(1,2);
//syntax error

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

29

y

Abstract Classes
��In other words you can’t create instances of

objects where the lowest or most specific
class type is an abstract class

�Prevents having an object with an undefined
behavior

�Why would you still want to have y ou d you s a o a e
constructors in an abstract class?

�Object variables of classes that are abstractObject variables of classes that are abstract
types may still be declared
ClosedShape s; //okay

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

30

ClosedShape s; //okay

Sub Classes of Abstract Classes
��Classes that extend an abstract class must

provided a working version of any abstract
methods from the parent class
– or they must be declared to be abstract as well
– could still decide to keep a class abstract

regardless of status of abstract methods

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

31

Implementing getArea()
public class Rectangle extends ClosedShapep g p
{ private double myWidth;

private double myHeight;

public double getArea()public double getArea()
{ return myWidth * myHeight; }

// other methods not shown
}

public class Square extends Rectangle
{ public Square(){ public Square()

{ }

public Square(double side)
{ (id id) }{ super(side, side); }

public Square(double x, double y, double side)
{ super(side, side, x, y); }

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

32

{ p (, , , y); }
}

A Circle Class
public class Circle extends ClosedShape
{ d bl dM R di{ double dMyRadius;

public Circle()
{ super(0,0); }

public Circle(double radius)
{ super(0,0);

dMyRadius = radius;y ;
}

public Circle(double x, double y, double radius)
{ super(x y);{ super(x,y);

dMyRadius = radius;
}

public double getArea()public double getArea()
{ return Math.PI * dMyRadius * dMyRadius; }

public String toString()

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

33

{ return super.toString() + " radius: " + dMyRadius; }
}

Polymorphism in Action
public class UsesShapes
{ public static void go(){ public static void go()

{ ClosedShape[] sList = new ClosedShape[10];
double a, b, c, d;
int x;
for(int i = 0; i < 10; i++)()
{ a = Math.random() * 100;

b = Math.random() * 100;
c = Math.random() * 100;
d = Math.random() * 100;
x = (int)(Math.random() * 3);
if(x == 0)

sList[i] = new Rectangle(a,b,c,d);
else if(x == 1)

Li t[i] S (d)sList[i] = new Square(a, c, d);
else

sList[i] = new Circle(a, c, d);
}
double total = 0 0;double total = 0.0;
for(int i = 0; i < 10; i++)
{ total += sList[i].getArea();

System.out.println(sList[i]);
}

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

34

}
}

}

The Kicker
�We want to expand our pallet of shapes�We want to expand our pallet of shapes
�Triangle could also be a sub class of ClosedShape.

it would inherit from ClosedShape– it would inherit from ClosedShape
public double getArea()
{ return 0.5 * dMyWidth * dMyHeight;}

�What changes do we have to make to the code on
the previous slide for totaling area so it will now
handle Triangles as well?

�Inheritance is can be described as new code using
old code.

�Polymorphism can be described as old code
i d

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

35

using new code.

Comparable in ClosedShape
public abstract class ClosedShape implements Comparablepublic abstract class ClosedShape implements Comparable
{ private double myX;

private double myY;

public abstract double getArea();

public int compareTo(Object other)
{ int result;{ int result;

ClosedShape otherShape = (ClosedShape)other;
double diff = getArea() – otherShape.getArea();
if(diff == 0)

result = 0;result = 0;
else if(diff < 0)

result = -1;
else

result = 1;
return result

}
}

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

36

}

About ClosedShapes compareTo
��don’t have to return -1, 1.

– Any int less than 0 or int greater than 0 based on
2 objects

�the compareTo method makes use of the
getArea() method which is abstract in
ClosedShape
– how is that possible?

CS 307 Fundamentals of
Computer Science Interfaces and Abstract Classes

37

Topic Number 8op c u be 8
Algorithm Analysis

"bit twiddling: 1. (pejorative) An exercise in tuning
(see tune) in which incredible amounts of time and
effort go to produce little noticeable improvement,

ft ith th lt th t th d boften with the result that the code becomes
incomprehensible."

The Hackers Dictionary version 4 4 7- The Hackers Dictionary, version 4.4.7

CS 307 Fundamentals of
Computer Science Algorithm Analysis

1

Is This Algorithm Fast?
��Problem: given a problem, how fast does this

code solve that problem?
�Could try to measure the time it takes, but

that is subject to lots of errors
– multitasking operating system
– speed of computerp p
– language solution is written in

CS 307 Fundamentals of
Computer Science Algorithm Analysis

2

Attendance Question 1
��"My program finds all the primes between 2

and 1,000,000,000 in 1.37 seconds."
– how good is this solution?

A. Good
B. Bad
C It dependsC. It depends

CS 307 Fundamentals of
Computer Science Algorithm Analysis

3

Grading Algorithms
��What we need is some way to grade

algorithms and their representation via
computer programs for efficiency
– both time and space efficiency are concerns
– are examples simply deal with time, not space

�The grades used to characterize the g
algorithm and code should be independent of
platform, language, and compilerp , g g , p
– We will look at Java examples as opposed to

pseudocode algorithms

CS 307 Fundamentals of
Computer Science Algorithm Analysis

4

Big O
��The most common method and notation for

discussing the execution time of algorithms is
"Big O"

�Big O is the asymptotic execution time of the
algorithm

�Big O is an upper boundsg O s a uppe bou ds
�It is a mathematical tool
�Hide a lot of unimportant details by assigning�Hide a lot of unimportant details by assigning

a simple grade (function) to algorithms

CS 307 Fundamentals of
Computer Science Algorithm Analysis

5

Typical Big O Functions – "Grades"
Function Common NameFunction Common Name

N! factorial

2N Exponential2 Exponential

Nd, d > 3 Polynomial

N3 Cubic

N2 Quadratic

N N N Square root N

N log N N log N

N Linear

N Root - n

log N Logarithmic

CS 307 Fundamentals of
Computer Science Algorithm Analysis

6

1 Constant

Big O Functions
��N is the size of the data set.
�The functions do not include less dominant

terms and do not include any coefficients.
�4N2 + 10N – 100 is not a valid F(N).0 00 s ot a a d ()

– It would simply be O(N2)
�It is possible to have two independent�It is possible to have two independent

variables in the Big O function.
example O(M + log N)– example O(M + log N)

– M and N are sizes of two different, but interacting
data sets

CS 307 Fundamentals of
Computer Science Algorithm Analysis

7

data sets

Actual vs. Big O

Simplified
Time
for

p

algorithm
to

l t

Actual

complete

Amount of data

CS 307 Fundamentals of
Computer Science Algorithm Analysis

8

Formal Definition of Big O
��T(N) is O(F(N)) if there are positive

constants c and N0 such that T(N) < cF(N)
when N > N0
– N is the size of the data set the algorithm works on
– T(N) is a function that characterizes the actual

running time of the algorithm
– F(N) is a function that characterizes an upper

bounds on T(N). It is a limit on the running time of
the algorithm (The t pical Big f nctions table)the algorithm. (The typical Big functions table)

– c and N0 are constants

CS 307 Fundamentals of
Computer Science Algorithm Analysis

9

What it Means
��T(N) is the actual growth rate of the

algorithm
– can be equated to the number of executable

statements in a program or chunk of code
�F(N) is the function that bounds the growth

rate
– may be upper or lower bound

�T(N) may not necessarily equal F(N)() y y q ()
– constants and lesser terms ignored because it is

a bounding function

CS 307 Fundamentals of
Computer Science Algorithm Analysis

10

g

Yuck
�H d l h d fi i i ?�How do you apply the definition?
�Hard to measure time without running programs

d th t i f ll f i iand that is full of inaccuracies
�Amount of time to complete should be directly

proportional to the number of statements executedproportional to the number of statements executed
for a given amount of data

�Count up statements in a program or method or�Count up statements in a program or method or
algorithm as a function of the amount of data
– This is one techniqueThis is one technique

�Traditionally the amount of data is signified by the
variable N

CS 307 Fundamentals of
Computer Science Algorithm Analysis

11

Counting Statements in Code
��So what constitutes a statement?
�Can’t I rewrite code and get a different

answer, that is a different number of
statements?

�Yes, but the beauty of Big O is, in the end
you get the same answeryou ge e sa e a s e
– remember, it is a simplification

CS 307 Fundamentals of
Computer Science Algorithm Analysis

12

Assumptions in For Counting Statements
�Once found accessing the value of a primitive isOnce found accessing the value of a primitive is

constant time. This is one statement:
x = y; //one statement

�mathematical operations and comparisons in
boolean expressions are all constant time.
x = y * 5 + z % 3; // one statement

�if statement constant time if test and maximum time
for each alternative are constants
if(iMySuit == DIAMONDS || iMySuit == HEARTS)

return RED;return RED;

else

return BLACK;

// 2 t t t (b l i 1 t)

CS 307 Fundamentals of
Computer Science Algorithm Analysis

13

// 2 statements (boolean expression + 1 return)

Counting Statements in Loops
Attendenance Question 2Attendenance Question 2

�Counting statements in loops often requires
a bit of informal mathematical induction

�What is output by the following code?
int total = 0;
for(int i = 0; i < 2; i++)

total += 5;
System.out.println(total);

A. 2 B. 5 C. 10 D. 15 E. 20

CS 307 Fundamentals of
Computer Science Algorithm Analysis

14

Attendances Question 3
�What is output by the following code?What is output by the following code?
int total = 0;
// assume limit is an int >= 0
for(int i = 0; i < limit; i++)

total += 5;
System.out.println(total);

A. 0
B. limit
C limit * 5C. limit 5
D. limit * limit
E li it5E. limit5

CS 307 Fundamentals of
Computer Science Algorithm Analysis

15

Counting Statements
in Nested Loopsin Nested Loops

Attendance Question 4
�What is output by the following code?What is output by the following code?
int total = 0;
for(int i = 0; i < 2; i++)

for(int j 0; j < 2; j++)for(int j = 0; j < 2; j++)
total += 5;

System.out.println(total);
A. 0
B. 10
C 20C. 20
D. 30
E. 40

CS 307 Fundamentals of
Computer Science Algorithm Analysis

16

Attendance Question 5
�What is output by the following code?What is output by the following code?
int total = 0;
// assume limit is an int >= 0
f (i t i 0 i < li it i++)for(int i = 0; i < limit; i++)

for(int j = 0; j < limit; j++)
total += 5;

System.out.println(total);

A. 5
B. limit * limit
C limit * limit * 5C. limit limit 5
D. 0
E li it5E. limit5

CS 307 Fundamentals of
Computer Science Algorithm Analysis

17

Loops That Work on a Data Set
��The number of executions of the loop

depends on the length of the array, values.
public int total(int[] values)
{ int result = 0;

for(int i = 0; i < values length; i++)for(int i = 0; i < values.length; i++)
result += values[i];

return result;
}

�How many many statements are executed
b h b h d

}

by the above method
�N = values.length. What is T(N)? F(N)?

CS 307 Fundamentals of
Computer Science Algorithm Analysis

18

Counting Up Statements
�int result = 0; 1 time
�int i = 0; 1 time
�i < values.length; N + 1 times
�i++ N timesi++ N times
�result += values[i]; N times

1 i�return total; 1 time
�T(N) = 3N + 4
�F(N) = N
�Big O = O(N)

CS 307 Fundamentals of
Computer Science Algorithm Analysis

19

Big O = O(N)

Showing O(N) is Correct
��Recall the formal definition of Big O

– T(N) is O(F(N)) if there are positive constants c
and N0 such that T(N) < cF(N) when N > N0

�In our case given T(N) = 3N + 4, prove the
method is O(N).
– F(N) is N

�We need to choose constants c and N0

�how about c = 4 N0 = 5 ?how about c 4, N0 5 ?

CS 307 Fundamentals of
Computer Science Algorithm Analysis

20

vertical axis: time for algorithm to complete. (approximate with
number of executable statements)

c * F(N) in this casec F(N), in this case,
c = 4, c * F(N) = 4N

T(N), actual function of time.
In this case 3N + 4In this case 3N + 4

F(N), approximate function
of time. In this case N

horizontal axis: N number of elements in data set

No = 5

CS 307 Fundamentals of
Computer Science Algorithm Analysis

21

horizontal axis: N, number of elements in data set

Attendance Question 6
��Which of the following is true?
A. Method total is O(N)
B. Method total is O(N2)
C Method total is O(N!)C. Method total is O(N!)
D. Method total is O(NN)
E All f h bE. All of the above are true

CS 307 Fundamentals of
Computer Science Algorithm Analysis

22

Just Count Loops, Right?
// assume mat is a 2d array of booleans
// assume mat is square with N rows,
// and N columns

int numThings = 0;g ;
for(int r = row - 1; r <= row + 1; r++)

for(int c = col - 1; c <= col + 1; c++)
if(mat[][c])if(mat[r][c])

numThings++;

What is the order of the above code?
A. O(1) B. O(N) C. O(N2) D. O(N3) E. O(N1/2)

CS 307 Fundamentals of
Computer Science Algorithm Analysis

23

It is Not Just Counting Loops
// S d l f i lid ld b// Second example from previous slide could be

// rewritten as follows:

int numThings = 0;int numThings = 0;

if(mat[r-1][c-1]) numThings++;

if(mat[r-1][c]) numThings++;([][]) g ;

if(mat[r-1][c+1]) numThings++;

if(mat[r][c-1]) numThings++;

if(mat[r][c]) numThings++;

if(mat[r][c+1]) numThings++;

if(mat[r+1][c-1]) numThings++;

if(mat[r+1][c]) numThings++;

if(mat[r+1][c+1]) numThings++;

CS 307 Fundamentals of
Computer Science Algorithm Analysis

24

if(mat[r+1][c+1]) numThings++;

Sidetrack, the logarithm
�Th k t D M th�Thanks to Dr. Math
�32 = 9
�likewise log3 9 = 2

– "The log to the base 3 of 9 is 2."
�The way to think about log is:

– "the log to the base x of y is the number you can
raise x to to get y."

– Say to yourself "The log is the exponent." (and say
it over and over until you believe it)it over and over until you believe it.)

– In CS we work with base 2 logs, a lot
� log 32 = ? log 8 = ? log 1024 = ? log 1000 = ?

CS 307 Fundamentals of
Computer Science Algorithm Analysis

25

log2 32 = ? log2 8 = ? log2 1024 = ? log10 1000 = ?

When Do Logarithms Occur
�Algorithms have a logarithmic term when they useAlgorithms have a logarithmic term when they use

a divide and conquer technique
�the data set keeps getting divided by 2the data set keeps getting divided by 2
public int foo(int n)
{ // pre n > 0

int total = 0;int total 0;
while(n > 0)
{ n = n / 2;

total++;
}
return total;

}

�What is the order of the above code?
A. O(1) B. O(logN) C. O(N)

CS 307 Fundamentals of
Computer Science Algorithm Analysis

26
D. O(Nlog N) E. O(N2)

Dealing with other methods
�Wh t d I d b t th d ll ?�What do I do about method calls?
double sum = 0.0;
for(int i = 0; i < n; i++)for(int i = 0; i < n; i++)

sum += Math.sqrt(i);

�Long wayLong way
– go to that method or constructor and count

statements
�Short way

– substitute the simplified Big O function for that p g
method.

– if Math.sqrt is constant time, O(1), simply count
M th t(i) t t t

CS 307 Fundamentals of
Computer Science Algorithm Analysis

27

sum += Math.sqrt(i); as one statement.

Dealing With Other Methods
bli i t f (i t[] li t){public int foo(int[] list){
int total = 0;
for(int i = 0; i < list.length; i++){g

total += countDups(list[i], list);
}

t t t lreturn total;
}
// method countDups is O(N) where N is thep
// length of the array it is passed

What is the Big O of foo?g
A. O(1) B. O(N) C. O(NlogN)
D O(N2) E O(N!)

CS 307 Fundamentals of
Computer Science Algorithm Analysis

28

D. O(N2) E. O(N!)

Quantifiers on Big O
�It i ft f l t di diff t f�It is often useful to discuss different cases for

an algorithm
�Best Case: what is the best we can hope for?

– least interesting
�Average Case (a.k.a. expected running time):

what usually happens with the algorithm?y pp g
�Worst Case: what is the worst we can expect

of the algorithm?of the algorithm?
– very interesting to compare this to the average case

CS 307 Fundamentals of
Computer Science Algorithm Analysis

29

Best, Average, Worst Case
�T D t i th b t d t�To Determine the best, average, and worst

case Big O we must make assumptions
about the data setabout the data set

�Best case -> what are the properties of the data set
that will lead to the fewest number of executablethat will lead to the fewest number of executable
statements (steps in the algorithm)

�Worst case -> what are the properties of the data
set that will lead to the largest number of
executable statements

�Average case > Usually this means assuming the�Average case -> Usually this means assuming the
data is randomly distributed
– or if I ran the algorithm a large number of times with different sets of

CS 307 Fundamentals of
Computer Science Algorithm Analysis

30

data what would the average amount of work be for those runs?

Another Example
public double minimum(double[] values)
{ int n = values.length;

d bl i V l l [0]double minValue = values[0];
for(int i = 1; i < n; i++)

if(values[i] < minValue)if(values[i] < minValue)
minValue = values[i];

return minValue;
}

�T(N)? F(N)? Big O? Best case? Worst Case?
Average Case?

�If no other information, assume asking average case

CS 307 Fundamentals of
Computer Science Algorithm Analysis

31

Independent Loops
// from the Matrix class

public void scale(int factor){

for(int r = 0; r < numRows(); r++)

for(int c = 0; c < numCols(); c++)

iCells[r][c] *= factor;iCells[r][c] *= factor;

}

Assume an numRows() = N and numCols() = N.Assume an numRows() N and numCols() N.
In other words, a square Matrix.
What is the T(N)? What is the Big O?() g
A. O(1) B. O(N) C. O(NlogN)
D. O(N2) E. O(N!)

CS 307 Fundamentals of
Computer Science Algorithm Analysis

32

() ()

Significant Improvement – Algorithm
with Smaller Big O functionwith Smaller Big O function

�P bl Gi f i t l�Problem: Given an array of ints replace any
element equal to 0 with the maximum value
t th i ht f th t l tto the right of that element.

Given:
[0, 9, 0, 8, 0, 0, 7, 1, -1, 0, 1, 0]

Becomes:
[9, 9, 8, 8, 7, 7, 7, 1, -1, 1, 1, 0]

CS 307 Fundamentals of
Computer Science Algorithm Analysis

33

Replace Zeros – Typical Solution
public void replace0s(int[] data){
int max;
for(int i = 0; i < data length 1; i++){for(int i = 0; i < data.length -1; i++){
if(data[i] == 0){
max = 0;
for(int j = i+1; j<data.length;j++)
max = Math.max(max, data[j]);

data[i] = max;data[i] = max;
}

}
}
Assume most values are zeros.
Example of a dependent loops

CS 307 Fundamentals of
Computer Science Algorithm Analysis

34

Example of a dependent loops.

Replace Zeros – Alternate Solution
public void replace0s(int[] data){
int max =

Math.max(0, data[data.length – 1]);(, [g]);
int start = data.length – 2;
for(int i = start; i >= 0; i--){
if(data[i] == 0)([])

data[i] = max;
else

max = Math.max(max, data[i]);(, []);
}

}
Big O of this approach?Big O of this approach?
A.O(1) B. O(N) C. O(NlogN)
D O(N2) E O(N!)
CS 307 Fundamentals of
Computer Science Algorithm Analysis

35

D. O(N2) E. O(N!)

A Caveat
��What is the Big O of this statement in Java?

int[] list = new int[n];

A. O(1) B. O(N) C. O(NlogN)
D O(N2) E O(N!)D. O(N2) E. O(N!)

�Why?

CS 307 Fundamentals of
Computer Science Algorithm Analysis

36

Summing Executable Statements
� 2�If an algorithms execution time is N2 + N the

it is said to have O(N2) execution time not
2O(N2 + N)

�When adding algorithmic complexities the
larger value dominates

�formally a function f(N) dominates a function o a y a u c o () do a es a u c o
g(N) if there exists a constant value n0 such
that for all values N > N0 it is the case that 0
g(N) < f(N)

CS 307 Fundamentals of
Computer Science Algorithm Analysis

37

Example of Dominance
��Look at an extreme example. Assume the

actual number as a function of the amount of
data is:

N2/10000 + 2Nlog10 N+ 10000010

�Is it plausible to say the N2 term dominates
even though it is divided by 10000 and that e e oug s d ded by 0000 a d a
the algorithm is O(N2)?

�What if we separate the equation intoWhat if we separate the equation into
(N2/10000) and (2N log10 N + 100000) and
graph the results

CS 307 Fundamentals of
Computer Science Algorithm Analysis

38

graph the results.

Summing Execution Times

red line is
2Nlog10 N + 100000

blue line isblue line is
N2/10000

�For large values of N the N2 term dominates so theFor large values of N the N term dominates so the
algorithm is O(N2)

�When does it make sense to use a computer?

CS 307 Fundamentals of
Computer Science Algorithm Analysis

39

Comparing Grades
��Assume we have a problem
�Algorithm A solves the problem correctly and

is O(N2)
�Algorithm B solves the same problem go t so es t e sa e p ob e

correctly and is O(N log2N)
�Which algorithm is faster?Which algorithm is faster?
�One of the assumptions of Big O is that the

data set is largedata set is large.
�The "grades" should be accurate tools if this

i t
CS 307 Fundamentals of
Computer Science Algorithm Analysis

40
is true

Running Times
��Assume N = 100,000 and processor speed

is 1,000,000,000 operations per second
Function Running Time
2N 3.2 x 1030086 years
N4 3171 years
N3 11.6 days
N2 10 secondsN 10 seconds
N N 0.032 seconds
N log N 0.0017 seconds
N 0.0001 seconds

N 3.2 x 10-7 seconds
log N 1 2 x 10-8 seconds

CS 307 Fundamentals of
Computer Science Algorithm Analysis

41

log N 1.2 x 10 seconds

Theory to Practice OR
Dykstra says: "Pictures are for the Weak "Dykstra says: Pictures are for the Weak.

1000 2000 4000 8000 16000 32000 64000 128K

O(N) 2.2x10-5 2.7x10-5 5.4x10-5 4.2x10-5 6.8x10-5 1.2x10-4 2.3x10-4 5.1x10-4

O(NlogN) 8.5x10-5 1.9x10-4 3.7x10-4 4.7x10-4 1.0x10-3 2.1x10-3 4.6x10-3 1.2x10-2(g)

O(N3/2) 3.5x10-5 6.9x10-4 1.7x10-3 5.0x10-3 1.4x10-2 3.8x10-2 0.11 0.30

(55)O(N2) ind. 3.4x10-3 1.4x10-3 4.4x10-3 0.22 0.86 3.45 13.79 (55)

O(N2)
dep 1.8x10-3 7.1x10-3 2.7x10-2 0.11 0.43 1.73 6.90 (27.6)
dep.

O(N3) 3.40 27.26 (218)
(1745)
29 min.

(13,957)
233 min

(112k)
31 hrs

(896k)
10 days

(7.2m)
80 days

CS 307 Fundamentals of
Computer Science Algorithm Analysis

42
Times in Seconds. Red indicates predicated value.

Change between Data Points

1000 2000 4000 8000 16000 32000 64000 128K 256k 512k

1 21 2 02 0 78 1 62 1 76 1 89 2 24 2 11 1 62O(N) - 1.21 2.02 0.78 1.62 1.76 1.89 2.24 2.11 1.62

O(NlogN) - 2.18 1.99 1.27 2.13 2.15 2.15 2.71 1.64 2.40

O(N3/2) - 1.98 2.48 2.87 2.79 2.76 2.85 2.79 2.82 2.81

O(N2) i d - 4 06 3 98 3 94 3 99 4 00 3 99O(N2) ind - 4.06 3.98 3.94 3.99 4.00 3.99 - - -

O(N2)
dep

- 4.00 3.82 3.97 4.00 4.01 3.98 - - -
p

O(N3) - 8.03 - - - - - - - -

V l bt i d b Ti / Ti
CS 307 Fundamentals of
Computer Science Algorithm Analysis

43

Value obtained by Timex / Timex-1

Okay, Pictures
Results on a 2GhZ laptop

4.0

3.0

3.5

2.0

2.5
Ti

m
e

N
NlogN
NsqrtN
N^2

0 5

1.0

1.5 N^2

0.0

0.5

0 5000 10000 15000 20000 25000 30000 35000

V l f N

CS 307 Fundamentals of
Computer Science Algorithm Analysis

44

Value of N

Put a Cap on Time
Results on a 2GhZ laptop

0.20

0.14

0.16

0.18

0 08

0.10

0.12

Ti
m

e

N
NlogN
NsqrtN
N^2

0.04

0.06

0.08 N^2

0.00

0.02

0 5000 10000 15000 20000 25000 30000 35000

V l f N

CS 307 Fundamentals of
Computer Science Algorithm Analysis

45

Value of N

No O(N^2) Data
Results on a 2GhZ laptop

3.00

2 00

2.50

1.50

2.00

Ti
m

e N
NlogN
NsqrtN

0.50

1.00

0.00
0 100000 200000 300000 400000 500000 600000

Value of N

CS 307 Fundamentals of
Computer Science Algorithm Analysis

46

Value of N

Just O(N) and O(NlogN)

Results on a 2GhZ laptop

0.05

0.06

0.03

0.04

Ti
m

e N
NlogN

0.01

0.02

0.00
0 100000 200000 300000 400000 500000 600000

Value of N

CS 307 Fundamentals of
Computer Science Algorithm Analysis

47

Just O(N)
N

0.0020

0.0016

0.0018

0.0010

0.0012

0.0014

N

0 0004

0.0006

0.0008

0.0000

0.0002

0.0004

0 100000 200000 300000 400000 500000 600000

CS 307 Fundamentals of
Computer Science Algorithm Analysis

48

0 100000 200000 300000 400000 500000 600000

Reasoning about algorithms
�W h O(N) l i h�We have an O(N) algorithm,

– For 5,000 elements takes 3.2 seconds
For 10 000 elements takes 6 4 seconds– For 10,000 elements takes 6.4 seconds

– For 15,000 elements takes ….?
– For 20 000 elements takes ?For 20,000 elements takes ….?

�We have an O(N2) algorithmWe have an O(N) algorithm
– For 5,000 elements takes 2.4 seconds
– For 10,000 elements takes 9.6 seconds
– For 15,000 elements takes …?
– For 20,000 elements takes …?

CS 307 Fundamentals of
Computer Science Algorithm Analysis

49

A Useful Proportion
��Since F(N) is characterizes the running time

of an algorithm the following proportion
should hold true:

F(N0) / F(N1) ~= time0 / time10 1 0 1

�An algorithm that is O(N2) takes 3 seconds
to run given 10,000 pieces of data. o u g e 0,000 p eces o da a
– How long do you expect it to take when there are

30,000 pieces of data?, p
– common mistake
– logarithms?

CS 307 Fundamentals of
Computer Science Algorithm Analysis

50

logarithms?

109 instructions/sec, runtimes
N O(log N) O(N) O(N log N) O(N2)

10 0.000000003 0.00000001 0.000000033 0.0000001

100 0.000000007 0.00000010 0.000000664 0.0001000

1,000 0.000000010 0.00000100 0.000010000 0.001

10,000 0.000000013 0.00001000 0.000132900 0.1 min

100,000 0.000000017 0.00010000 0.001661000 10 seconds

1,000,000 0.000000020 0.001 0.0199 16.7 minutes

1,000,000,000 0.000000030 1.0 second 30 seconds 31.7 years

CS 307 Fundamentals of
Computer Science Algorithm Analysis

51

Why Use Big O?
�A b ild d t t t Bi O i th t l ill�As we build data structures Big O is the tool we will

use to decide under what conditions one data
structure is better than anothers uc u e s be e a a o e

�Think about performance when there is a lot of
data.
– "It worked so well with small data sets..."
– Joel Spolsky, Schlemiel the painter's Algorithm

�Lots of trade offs�Lots of trade offs
– some data structures good for certain types of problems,

bad for other types
– often able to trade SPACE for TIME.
– Faster solution that uses more space

Slower solution that uses less space
CS 307 Fundamentals of
Computer Science Algorithm Analysis

52

– Slower solution that uses less space

Big O Space
��Less frequent in early analysis, but just as

important are the space requirements.
�Big O could be used to specify how much

space is needed for a particular algorithm

CS 307 Fundamentals of
Computer Science Algorithm Analysis

53

Formal Definition of Big O (repeated)
��T(N) is O(F(N)) if there are positive

constants c and N0 such that T(N) < cF(N)
when N > N0
– N is the size of the data set the algorithm works on
– T(N) is a function that characterizes the actual

running time of the algorithm
– F(N) is a function that characterizes an upper

bounds on T(N). It is a limit on the running time of
the algorithmthe algorithm

– c and N0 are constants

CS 307 Fundamentals of
Computer Science Algorithm Analysis

54

More on the Formal Definition
�Th i i N h h f ll l f N h�There is a point N0 such that for all values of N that

are past this point, T(N) is bounded by some
multiple of F(N)multiple of F(N)

�Thus if T(N) of the algorithm is O(N^2) then,
ignoring constants at some point we can bound theignoring constants, at some point we can bound the
running time by a quadratic function.

�given a linear algorithm it is technically correct togiven a linear algorithm it is technically correct to
say the running time is O(N ^ 2). O(N) is a more
precise answer as to the Big O of the linear
algorithm
– thus the caveat “pick the most restrictive function” in Big

O t ti
CS 307 Fundamentals of
Computer Science Algorithm Analysis

55

O type questions.

What it All Means
��T(N) is the actual growth rate of the

algorithm
– can be equated to the number of executable

statements in a program or chunk of code
�F(N) is the function that bounds the growth

rate
– may be upper or lower bound

�T(N) may not necessarily equal F(N)() y y q ()
– constants and lesser terms ignored because it is

a bounding function

CS 307 Fundamentals of
Computer Science Algorithm Analysis

56

g

Other Algorithmic Analysis Tools
��Big Omega T(N) is �(F(N)) if there are

positive constants c and N0 such that
T(N) > cF(N)) when N > N0
– Big O is similar to less than or equal, an upper

bounds
– Big Omega is similar to greater than or equal, a

l b dlower bound
�Big Theta T(N) is �(F(N)) if and only if T(N)

is O(F(N))and T(N) is �(F(N)).
– Big Theta is similar to equals

CS 307 Fundamentals of
Computer Science Algorithm Analysis

57

Relative Rates of Growth
Analysis Mathematical RelativeAnalysis

Type
Mathematical
Expression

Relative
Rates of
Growth

Big O T(N) = O(F(N)) T(N) < F(N)

Big � T(N) = �(F(N)) T(N) > F(N)

Big � T(N) = �(F(N)) T(N) = F(N)

"In spite of the additional precision offered by Big Theta,
Big O is more commonly used except by researchers

CS 307 Fundamentals of
Computer Science Algorithm Analysis

58

Big O is more commonly used, except by researchers
in the algorithms analysis field" - Mark Weiss

Topic 9
I t d ti t R iIntroduction to Recursion

"T ith h"To a man with a hammer,
everything looks like a nail"everything looks like a nail
-Mark TwainMark Twain

CS 307 Fundamentals of
Computer Science Introduction to Recursion

1

Underneath the Hood.

CS 307 Fundamentals of
Computer Science Introduction to Recursion

2

The Program Stack
��When you invoke a method in your code

what happens when that method is
completed?
FooObject f = new FooObject();
int x = 3;
f.someFooMethod(x);
f.someBarMethod(x);

�How does that happen? pp
�What makes it possible?

CS 307 Fundamentals of
Computer Science Introduction to Recursion

3

Methods for Illustration
200 bli id F M th d(i t)200 public void someFooMethod(int z)
201{ int x = 2 * z;
202 i l ()202 System.out.println(x);

}

300 public void someBarMethod(int y)
301 { i 3 *301 { int x = 3 * y;
302 someFooMethod(x);
303 System.out.println(x);

}

CS 307 Fundamentals of
Computer Science Introduction to Recursion

4

The Program Stack
��When your program is executed on a

processor the commands are converted into
another set of instructions and assigned
memory locations.
– normally a great deal of expansion takes place
101 FooObject f = new FooObject();
102 int x = 3;
103 f.someFooMethod(x);
104 f h d()104 f.someBarMethod(x);

�Von Neumann Architecture

CS 307 Fundamentals of
Computer Science Introduction to Recursion

5

Basic CPU Operations
�A CPU k i f t h�A CPU works via a fetch

command / execute command
loop and a program counterloop and a program counter

�Instructions stored in memory
(Just like data!)(Just like data!)

101 FooObject f = new FooObject();j j ();
102 int x = 3;
103 f.someFooMethod(x);
104 f B M th d()104 f.someBarMethod(x);

�What if someFooMethod is stored at
memory location 200?

CS 307 Fundamentals of
Computer Science Introduction to Recursion

6

memory location 200?

More on the Program Stack
101 FooObject f = new FooObject();
102 int x = 3;
103 f.someFooMethod(x);
104 f.someBarMethod(x);

�Line 103 is really saying go to line 200 with f
as the implicit parameter and x as the explicit
parameter

�When someFooMethod is done what happens?pp
A. Program ends B. goes to line 103
C Goes back to whatever method called it

CS 307 Fundamentals of
Computer Science Introduction to Recursion

7

C. Goes back to whatever method called it

Activation Records and the
Program StackProgram Stack

�When a method is invoked all the relevant
i f ti b t th t th dinformation about the current method
(variables, values of variables, next line of

d t b t d) i l d icode to be executed) is placed in an
activation record

�The activation record is pushed onto the
program stack

�A stack is a data structure with a single
access point, the top.

CS 307 Fundamentals of
Computer Science Introduction to Recursion

8

p , p

The Program Stack
��Data may either be

added (pushed) or
removed (popped) from
a stack but it is always
f

top

from the top.
– A stack of dishes
– which dish do we have

easy access to?

CS 307 Fundamentals of
Computer Science Introduction to Recursion

9

Using RecursionUsing Recursion

CS 307 Fundamentals of
Computer Science Introduction to Recursion

10

A Problem
�W it th d th t d t i h h i t k�Write a method that determines how much space is take up

by the files in a directory
�A directory can contain files and directoriesA directory can contain files and directories
�How many directories does our code have to examine?
�How would you add up the space taken up by the files in a

single directory
– Hint: don't worry about any sub directories at first

�Directory and File classes�Directory and File classes
� in the Directory class:

public File[] getFiles()
public Directory[] getSubdirectories()

� in the File class
bli i t tSi ()

CS 307 Fundamentals of
Computer Science Introduction to Recursion

11

public int getSize()

Attendance Question 2
��How many levels of directories have to be

visited?
A. 0
B. UnknownU o
C. Infinite
D 1D. 1
E. 8

CS 307 Fundamentals of
Computer Science Introduction to Recursion

12

Sample Directory Structure

scottm

cs307 AP

m1.txt m2.txt
A.pdf

hw AB.pdf

a1.htm a2.htm a3.htm a4.htm

CS 307 Fundamentals of
Computer Science Introduction to Recursion

13

Code for getDirectorySpace()
bli i t tDi t S (Di t d)public int getDirectorySpace(Directory d)

{ int total = 0;
File[] fileList = d.getFiles();e[] e st d.get es();
for(int i = 0; i < fileList.length; i++)

total += fileList[i].getSize();
Directory[] dirList = d.getSubdirectories();
for(int i = 0; i < dirList.length; i++)

t t l + tDi t S (di Li t[i])total += getDirectorySpace(dirList[i]);
return total;

}}

CS 307 Fundamentals of
Computer Science Introduction to Recursion

14

Attendance Question 3
��Is it possible to write a non recursive method

to do this?
A. Yes
B. Noo

CS 307 Fundamentals of
Computer Science Introduction to Recursion

15

Iterative getDirectorySpace()
public int getDirectorySpace(Directory d)public int getDirectorySpace(Directory d)
{ ArrayList dirs = new ArrayList();

File[] fileList;
Directory[] dirList;y
dirs.add(d);
Directory temp;
int total = 0;
hil (! di i ())while(! dirs.isEmpty())
{ temp = (Directory)dirs.remove(0);

fileList = temp.getFiles();
for(int i = 0; i < fileList length; i++)for(int i 0; i < fileList.length; i++)

total += fileList[i].getSize();
dirList = temp.getSubdirectories();
for(int i =0; i < dirList.length; i++)

dirs.add(dirList[i]);
}
return total;

}
CS 307 Fundamentals of
Computer Science Introduction to Recursion

16

}

Simple Recursion ExamplesSimple Recursion Examples

CS 307 Fundamentals of
Computer Science Introduction to Recursion

17

Wisdom for Writing Recursive
Methods

CS 307 Fundamentals of
Computer Science Introduction to Recursion

18

The 3 plus 1 rules of Recursion
1. Know when to stop
2. Decide how to take one step
3. Break the journey down into that step and a

smaller journeys a e jou ey
4. Have faith

From Common Lisp: A Gentle
Introduction toIntroduction to
Symbolic Computation
by David Touretzky

CS 307 Fundamentals of
Computer Science Introduction to Recursion

19

Writing Recursive Methods
� R l f R i� Rules of Recursion

1. Base Case: Always have at least one case that
can be solved without using recursioncan be solved without using recursion

2. Make Progress: Any recursive call must
progress toward a base case.progress toward a base case.

3. "You gotta believe." Always assume that the
recursive call works. (Of course you will have to
design it and test it to see if it works or prove
that it always works.)

A recursive solution solves a small part ofA recursive solution solves a small part of
the problem and leaves the rest of the
problem in the same form as the original

CS 307 Fundamentals of
Computer Science Introduction to Recursion

20

problem in the same form as the original

N!
��the classic first recursion problem / example
�N!

5! = 5 * 4 * 3 * 2 * 1 = 120
int res = 1;
for(int i = 2; i <= n; i++)

res *= i;

CS 307 Fundamentals of
Computer Science Introduction to Recursion

21

Factorial Recursively
��Mathematical Definition of Factorial
0! = 1
N! = N * (N - 1)!
The definition is recursive.
// pre n >= 0
public int fact(int n)
{ if(n == 0){ ()

return 1;
else

return n * fact(n 1);return n * fact(n-1);
}

CS 307 Fundamentals of
Computer Science Introduction to Recursion

22

Big O and Recursion
��Determining the Big O of recursive methods

can be tricky.
�A recurrence relation exits if the function is

defined recursively.
�The T(N), actual running time, for N! is

recursiveecu s e
�T(N)fact = T(N-1)fact + O(1)
�This turns out to be O(N)�This turns out to be O(N)

– There are N steps involved

CS 307 Fundamentals of
Computer Science Introduction to Recursion

23

Common Recurrence Relations
�T(N) T(N/2) + O(1) > O(l N)�T(N) = T(N/2) + O(1) -> O(logN)

– binary search
�T(N) = T(N-1) + O(1) -> O(N)T(N) = T(N-1) + O(1) -> O(N)

– sequential search, factorial
�T(N) = T(N/2) + T(N/2) + O(1) -> O(N),() () () () (),

– tree traversal
�T(N) = T(N-1) + O(N) -> O(N^2)

– selection sort
�T(N) = T(N/2) + T(N/2) + O(N) -> O(NlogN)

t– merge sort
�T(N) = T(N-1) + T(N-1) + O(1) -> O(2^N)

– Fibonacci

CS 307 Fundamentals of
Computer Science Introduction to Recursion

24

– Fibonacci

Tracing Fact With the
Program StackProgram Stack

System.out.println(fact(4));System.out.println(fact(4));

CS 307 Fundamentals of
Computer Science Introduction to Recursion

25
System.out.println(fact(4));top

Calling fact with 4

4 in method factn 4
partial result = n * fact(n-1)

in method fact

CS 307 Fundamentals of
Computer Science Introduction to Recursion

26
System.out.println(fact(4));top

Calling fact with 3

n 3 in method fact

4 i th d f t

n
partial result = n * fact(n-1)

top n 4
partial result = n * fact(n-1)

in method fact

CS 307 Fundamentals of
Computer Science Introduction to Recursion

27
System.out.println(fact(4));

Calling fact with 2

n 2 in method fact

top n 3 in method fact

partial result = n * fact(n-1)

top

4 i h d f

n
partial result = n * fact(n-1)

in method fact

n 4
partial result = n * fact(n-1)

in method fact

CS 307 Fundamentals of
Computer Science Introduction to Recursion

28
System.out.println(fact(4));

Calling fact with 1
n 1
partial result = n * fact(n-1)

in method fact

top n 2 in method fact

partial result n fact(n 1)

n 3 in method fact

partial result = n * fact(n-1)

4 i h d f

n
partial result = n * fact(n-1)

in method fact

n 4
partial result = n * fact(n-1)

in method fact

CS 307 Fundamentals of
Computer Science Introduction to Recursion

29
System.out.println(fact(4));

Calling fact with 0 and returning 1
n 0 in method fact

t n 1 in method fact

n
returning 1 to whatever method called me

top

n 2 in method fact

n 1
partial result = n * fact(n-1)

in method fact

n 2
partial result = n * fact(n-1)

in method fact

n 3
partial result = n * fact(n-1)

in method fact

n 4
partial result = n * fact(n 1)

in method fact

CS 307 Fundamentals of
Computer Science Introduction to Recursion

30System.out.println(fact(4));

partial result = n * fact(n-1)

Returning 1 from fact(1)
n 1

partial result = n * 1,
1 h h d ll d

in method fact

top n 2 in method fact

return 1 to whatever method called me

n 3 in method fact

partial result = n * fact(n-1)

n 3
partial result = n * fact(n-1)

in method fact

n 4
partial result = n * fact(n-1)

in method fact

CS 307 Fundamentals of
Computer Science Introduction to Recursion

31
System.out.println(fact(4));

Returning 2 from fact(2)

n 2 in method fact
partial result = 2 * 1,
return 2 to whatever method called me

top n 3
partial result = n * fact(n-1)

in method fact

n 4
ti l lt * f t(1)

in method fact

p ()

System.out.println(fact(4));

partial result = n * fact(n-1)

CS 307 Fundamentals of
Computer Science Introduction to Recursion

32

Returning 6 from fact(3)

n 3 in method factn 3 in method fact

partial result = 3 * 2,
return 6 to whatever method called me

top n 4
ti l lt * f t(1)

in method fact

return 6 to whatever method called me

System.out.println(fact(4));

partial result = n * fact(n-1)

CS 307 Fundamentals of
Computer Science Introduction to Recursion

33

Returning 24 from fact(4)

n 4 in method fact
partial result = 4 * 6,

System.out.println(fact(4));top
return 24 to whatever method called me

CS 307 Fundamentals of
Computer Science Introduction to Recursion

34

Calling System.out.println

System.out.println(24);

top ??

CS 307 Fundamentals of
Computer Science Introduction to Recursion

35

Evaluating Recursive MethodsEvaluating Recursive Methods

CS 307 Fundamentals of
Computer Science Introduction to Recursion

36

Evaluating Recursive Methods
��you must be able to evaluate recursive

methods
public static int mystery (int n){

if(n == 0)()
return 1;

elseelse
return 3 * mystery(n-1);

}}
// what is returned by mystery(5)

CS 307 Fundamentals of
Computer Science Introduction to Recursion

37

Evaluating Recursive Methods
��Draw the program stack!

m(5) = 3 * m(4)() ()
m(4) = 3 * m(3)
m(3) = 3 * m(2)m(3) 3 m(2)
m(2) = 3 * m(1)
m(1) = 3 * m(0)m(1) 3 m(0)
m(0) = 1
-> 3^5 = 243

�with practice you can see the result
-> 3 5 = 243

CS 307 Fundamentals of
Computer Science Introduction to Recursion

38

Attendance Question 4
�Wh t i t d b ?�What is returned by mystery(-3) ?
A. 0
B. 1
C Infinite loopC. Infinite loop
D. Syntax error
E R i d k flE. Runtime error due to stack overflow

CS 307 Fundamentals of
Computer Science Introduction to Recursion

39

Evaluating Recursive Methods
��What about multiple recursive calls?
public static int bar(int n){

if(n <= 0)
return 2;

else
return 3 + bar(n-1) + bar(n-2);

}
�Draw the program stack and REMEMBERDraw the program stack and REMEMBER

your work

CS 307 Fundamentals of
Computer Science Introduction to Recursion

40

Evaluating Recursive Methods
�Wh t i t d b ?�What is returned by bar(5)?
b(5) = 3 + b(4) + b(3)
b(4) = 3 + b(3) + b(2)
b(3) = 3 + b(2) + b(1)b(3) = 3 + b(2) + b(1)
b(2) = 3 + b(1) + b(0)
b(1) 3 b(0) b(1)b(1) = 3 + b(0) + b(-1)
b(0) = 2
b(-1) = 2

CS 307 Fundamentals of
Computer Science Introduction to Recursion

41

Evaluating Recursive Methods
�Wh t i t d b ?�What is returned by bar(5)?
b(5) = 3 + b(4) + b(3)
b(4) = 3 + b(3) + b(2)
b(3) = 3 + b(2) + b(1)b(3) = 3 + b(2) + b(1)
b(2) = 3 + b(1) + b(0) //substitute in results
b(1) 3 2 2b(1) = 3 + 2 + 2 = 7
b(0) = 2
b(-1) = 2

CS 307 Fundamentals of
Computer Science Introduction to Recursion

42

Evaluating Recursive Methods
�Wh t i t d b ?�What is returned by bar(5)?
b(5) = 3 + b(4) + b(3)
b(4) = 3 + b(3) + b(2)
b(3) = 3 + b(2) + b(1)b(3) = 3 + b(2) + b(1)
b(2) = 3 + 7 + 2 =12
b(1)b(1) = 7
b(0) = 2
b(-1) = 2

CS 307 Fundamentals of
Computer Science Introduction to Recursion

43

Evaluating Recursive Methods
�Wh t i t d b ?�What is returned by bar(5)?
b(5) = 3 + b(4) + b(3)
b(4) = 3 + b(3) + b(2)
b(3) = 3 + 12 + 7 = 22b(3) = 3 + 12 + 7 = 22
b(2) = 12
b(1)b(1) = 7
b(0) = 2
b(-1) = 2

CS 307 Fundamentals of
Computer Science Introduction to Recursion

44

Evaluating Recursive Methods
�Wh t i t d b ?�What is returned by bar(5)?
b(5) = 3 + b(4) + b(3)
b(4) = 3 + 22 + 12 = 37
b(3) = 22b(3) = 22
b(2) = 12
b(1)b(1) = 7
b(0) = 2
b(-1) = 2

CS 307 Fundamentals of
Computer Science Introduction to Recursion

45

Evaluating Recursive Methods
�Wh t i t d b ?�What is returned by bar(5)?
b(5) = 3 + 37 + 22 = 62
b(4) = 37
b(3) = 22b(3) = 22
b(2) = 12
b(1)b(1) = 7
b(0) = 2
b(-1) = 2

CS 307 Fundamentals of
Computer Science Introduction to Recursion

46

Unplugged Activity
��Double the number of pieces of candy in a

bowl.
�Only commands we know are:

– take one candy out of bowl and put into infinite supply
– take one candy from infinite supply and place in bowl
– do nothing

d bl h b f i f d i h b l– double the number of pieces of candy in the bowl

�Thanks Stuart Reges

CS 307 Fundamentals of
Computer Science Introduction to Recursion

47

g

Recursion Practice
�W it th d i T P (i t b�Write a method raiseToPower(int base,

int power)
�// 0�//pre: power >= 0

�Tail recursion refers to a method where the
recursive call is the last thing in the method

CS 307 Fundamentals of
Computer Science Introduction to Recursion

48

g

Finding the Maximum in an Array
��public int max(int[] values){
�Helper method or create smaller arrays each

time

CS 307 Fundamentals of
Computer Science Introduction to Recursion

49

Attendance Question 5
��When writing recursive methods what should

be done first?
A. Determine recursive case
B. Determine recursive stepete e ecu s e step
C. Make recursive call
D Determine base case(s)D. Determine base case(s)
E. Determine Big O

CS 307 Fundamentals of
Computer Science Introduction to Recursion

50

Your Meta Cognitive State
��Remember we are learning to use a tool.
�It is not a good tool for all problems.

– In fact we will implement several algorithms and
methods where an iterative (looping without
recursion) solution would work just fine

�After learning the mechanics and basics of
recursion the real skill is knowing what
problems or class of problems to apply it to

CS 307 Fundamentals of
Computer Science Introduction to Recursion

51

A Harder(??) Problem

CS 307 Fundamentals of
Computer Science Introduction to Recursion

52

Mine Sweeper
��Game made popular due to its inclusion with

Windows (from 3.1 on)
�What happens when you click on a cell that

has 0 (zero) mines bordering it?

Result ofResult of
clicking
markedmarked
cell.

CS 307 Fundamentals of
Computer Science Introduction to Recursion

53

The update method
��Initially called with the x and y coordinates of

a cell with a 0 inside it meaning the cell does
not have any bombs bordering it.

�Must reveal all cells neighboring this one and
if any of them are 0s do the same thing

2 -1 2 0 0 02 1 2 0 0 0
2 -1 3 2 2 1
1 1 3 -1 -1 1-1 indicates a
0 0 2 -1 3 1
0 0 1 1 1 0
0 0 0 0 0 0

mine in that cell

CS 307 Fundamentals of
Computer Science Introduction to Recursion

54

0 0 0 0 0 0

Update Code

CS 307 Fundamentals of
Computer Science Introduction to Recursion

55

Topic 10
R i B kt kiRecursive Backtracking

"In ancient times, before computers were invented,In ancient times, before computers were invented,
alchemists studied the mystical properties of
numbers. Lacking computers, they had to rely on
dragons to do their work for them The dragonsdragons to do their work for them. The dragons
were clever beasts, but also lazy and bad-tempered.
The worst ones would sometimes burn their keeper
to a crisp with a single fiery belch But most dragonsto a crisp with a single fiery belch. But most dragons
were merely uncooperative, as violence required too
much energy. This is the story of how Martin, an
alchemist’s apprentice discovered recursion byalchemist s apprentice, discovered recursion by
outsmarting a lazy dragon."

- David S. Touretzky, Common Lisp: A Gentle Introduction to
Symbolic Computation

CS 307 Fundamentals of
Computer Science Recursive Backtracking

1

Symbolic Computation

Backtracking
Start

Success!

Success!

Failure
Problem space consists of states (nodes) and actionsp ()
(paths that lead to new states). When in a node can
can only see paths to connected nodes

If a node only leads to failure go back to its "parent"
node. Try other alternatives. If these all lead to failure

CS 307 Fundamentals of
Computer Science Recursive Backtracking

2

y
then more backtracking may be necessary.

A More Concrete Example
�S d k�Sudoku
�9 by 9 matrix with some

b fill d inumbers filled in
�all numbers must be between

1 and 91 and 9
�Goal: Each row, each column,

and each mini matrix mustand each mini matrix must
contain the numbers between
1 and 9 once each1 and 9 once each
– no duplicates in rows, columns,

or mini matrices

CS 307 Fundamentals of
Computer Science Recursive Backtracking

3

Solving Sudoku – Brute Force
��A brute force algorithm is a

simple but general
approach

�Try all combinations until
you find one that works

�This approach isn’t clever, s app oac s c e e ,
but computers are fast

�Then try and improve onThen try and improve on
the brute force resuts

CS 307 Fundamentals of
Computer Science Recursive Backtracking

4

Solving Sudoku
��Brute force Sudoku Soluton

– if not open cells, solved 1
– scan cells from left to right,

top to bottom for first open
llcell

– When an open cell is found
t t li th h di it 1start cycling through digits 1

to 9.
When a digit is placed check– When a digit is placed check
that the set up is legal
now solve the board

CS 307 Fundamentals of
Computer Science Recursive Backtracking

5

– now solve the board

Attendance Question 1
��After placing a number in a cell is the

remaining problem very similar to the original
problem?

A. Yes
B. No

CS 307 Fundamentals of
Computer Science Recursive Backtracking

6

Solving Sudoku – Later Steps
1 1 2 1 2 4

1 2 4 8 1 2 4 8 91 2 4 8 9

uh oh!uh oh!

CS 307 Fundamentals of
Computer Science Recursive Backtracking

7

Sudoku – A Dead End
��We have reached a dead end in our search

1 2 4 8 9

�With the current set up none of the nine
digits work in the top right corner

CS 307 Fundamentals of
Computer Science Recursive Backtracking

8

g p g

Backing Up
�Wh h h h d d�When the search reaches a dead

end in backs up to the previous
cell it was trying to fill and goes

1 2 4 8 9

cell it was trying to fill and goes
onto to the next digit

�We would back up to the cell withWe would back up to the cell with
a 9 and that turns out to be a dead
end as well so we back up again

1 2 4 9
p g

– so the algorithm needs to remember
what digit to try next

1 2 4 9

�Now in the cell with the 8. We try
and 9 and move forward again.

CS 307 Fundamentals of
Computer Science Recursive Backtracking

9

Characteristics of Brute Force
and Backtrackingand Backtracking

�Brute force algorithms are slowg
�The don't employ a lot of logic

– For example we know a 6 can't go in the last 3For example we know a 6 can t go in the last 3
columns of the first row, but the brute force
algorithm will plow ahead any wayg p y y

�But, brute force algorithms are fairly easy to
implement as a first pass solutionimplement as a first pass solution
– backtracking is a form of a brute force algorithm

CS 307 Fundamentals of
Computer Science Recursive Backtracking

10

Key Insights
�Af i l i di i i ll l�After trying placing a digit in a cell we want to solve

the new sudoku board
Isn't that a smaller (or simpler version) of the same– Isn't that a smaller (or simpler version) of the same
problem we started with?!?!?!?

�After placing a number in a cell the we need toAfter placing a number in a cell the we need to
remember the next number to try in case things
don't work out.

�We need to know if things worked out (found a
solution) or they didn't, and if they didn't try the next
number

�If we try all numbers and none of them work in our

CS 307 Fundamentals of
Computer Science Recursive Backtracking

11
cell we need to report back that things didn't work

Recursive Backtracking
��Problems such as Suduko can be solved

using recursive backtracking
�recursive because later versions of the

problem are just slightly simpler versions of
the original

�backtracking because we may have to try bac ac g because e ay a e o y
different alternatives

CS 307 Fundamentals of
Computer Science Recursive Backtracking

12

Recursive Backtracking
P d d f i b kt kiPseudo code for recursive backtracking

algorithms

If at a solution, report success
for(every possible choice from current state /for(every possible choice from current state /

node)
Make that choice and take one step along path
U i t l th bl f th d / t tUse recursion to solve the problem for the new node / state
If the recursive call succeeds, report the success to the next

high level
B k t f th t h i t t th t t t thBack out of the current choice to restore the state at the

beginning of the loop.
Report failure

CS 307 Fundamentals of
Computer Science Recursive Backtracking

13

p

Goals of Backtracking
�Possible goalsPossible goals

– Find a path to success
Find all paths to success– Find all paths to success

– Find the best path to success
�N t ll bl tl lik d�Not all problems are exactly alike, and

finding one success node may not be the
d f th hend of the search

Start
Success!

Success!

CS 307 Fundamentals of
Computer Science Recursive Backtracking

14

The 8 Queens ProblemThe 8 Queens Problem

CS 307 Fundamentals of
Computer Science Recursive Backtracking

15

The 8 Queens Problem
��A classic chess puzzle

– Place 8 queen pieces on a chess board so that
none of them can attack one another

CS 307 Fundamentals of
Computer Science Recursive Backtracking

16

The N Queens Problem
�Pl N Q N b N h b d th t�Place N Queens on an N by N chessboard so that

none of them can attack each other
�Number of possible placements?Number of possible placements?
�In 8 x 8

64 * 63 * 62 * 61 * 60 * 59 * 58 * 57
= 178,462, 987, 637, 760 / 8!
= 4,426,165,368

n choose k
– How many ways can you choose k things from ay y y g
set of n items?
– In this case there are 64 squares and we want to choose

8 of them to put queens on
CS 307 Fundamentals of
Computer Science Recursive Backtracking

17

8 of them to put queens on

Attendance Question 2
��For valid solutions how many queens can be

placed in a give column?
A. 0
B. 1
C. 2
D 3D. 3
E. 4
F. Any number

CS 307 Fundamentals of
Computer Science Recursive Backtracking

18

Reducing the Search Space
�Th i l l ti i l d t lik thi�The previous calculation includes set ups like this

one
Q
Q

�Includes lots of set ups with
multiple queens in the same

Q

Q
Q
Qp q

column
�How many queens can there be

i l ?

Q
Q
Q

in one column?
�Number of set ups

8 * 8 * 8 * 8 * 8 * 8 * 8 * 8 = 16 777 216

Q

8 8 8 8 8 8 8 8 = 16,777,216
�We have reduced search space by two orders of

magnitude by applying some logic

CS 307 Fundamentals of
Computer Science Recursive Backtracking

19

g y pp y g g

A Solution to 8 Queens
� If b f i fi d d I li th 't b� If number of queens is fixed and I realize there can't be

more than one queen per column I can iterate through the
rows for each column

for(int c0 = 0; c0 < 8; c0++){
board[c0][0] = 'q';
for(int c1 = 0; c1 < 8; c1++){

board[c1][1] = 'q';
for(int c2 = 0; c2 < 8; c2++){

board[c2][2] = 'q';
// a little later
for(int c7 = 0; c7 < 8; c7++){

board[c7][7] = 'q';
if(queensAreSafe(board))

printSolution(board);
board[c7][7] = ' '; //pick up queen

}

CS 307 Fundamentals of
Computer Science Recursive Backtracking

20

}
board[c6][6] = ' '; // pick up queen

N Queens
��The problem with N queens is you don't

know how many for loops to write.
�Do the problem recursively
�Write recursive code with class and demote ecu s e code t c ass a d de o

– show backtracking with breakpoint and
debugging optiongg g p

CS 307 Fundamentals of
Computer Science Recursive Backtracking

21

Recursive Backtracking
��You must practice!!!
�Learn to recognize problems that fit the

pattern
�Is a kickoff method needed?s a c o et od eeded
�All solutions or a solution?
�Reporting results and acting on results�Reporting results and acting on results

CS 307 Fundamentals of
Computer Science Recursive Backtracking

22

Another Backtracking Problem
A Simple MazeA Simple Maze

Search maze until waySearch maze until way
out is found. If no way
out possible report that.

CS 307 Fundamentals of
Computer Science Recursive Backtracking

23

The Local View
Whi h dWhich way do
I go to get

t? North
West

out?

East

Behind me, to the South

CS 307 Fundamentals of
Computer Science Recursive Backtracking

24
is a door leading South

Modified Backtracking
Algorithm for MazeAlgorithm for Maze

� If the current square is outside, return TRUE to indicate that a solution has been
foundfound.

If the current square is marked, return FALSE to indicate that this path has been
tried.

Mark the current square.
for (each of the four compass directions)
{ if (this direction is not blocked by a wall)

{ Move one step in the indicated direction from the current square.
Try to solve the maze from there by making a recursive callTry to solve the maze from there by making a recursive call.
If this call shows the maze to be solvable, return TRUE to indicate that

fact.
}

}
Unmark the current square.
Return FALSE to indicate that none of the four directions led to a solution.

CS 307 Fundamentals of
Computer Science Recursive Backtracking

25

Backtracking in Action
The crucial part of the
algorithm is the for loop g
that takes us through the
alternatives from the curren

H hsquare. Here we have move
to the North.

for (dir = North; dir <= West; dir++)for (dir = North; dir <= West; dir++)
{ if (!WallExists(pt, dir))

{if (SolveMaze(AdjacentPoint(pt, dir)))
return(TRUE);

CS 307 Fundamentals of
Computer Science Recursive Backtracking

26

return(TRUE);
}

Backtracking in Action

Here we have moved
North again, but there is
a wall to the North .
E i lEast is also
blocked, so we try South.
That call discovers thatThat call discovers that
the square is marked, so
it just returns.t just etu s

CS 307 Fundamentals of
Computer Science Recursive Backtracking

27

So the next move we
can make is West.

Wh i thi l di ?Where is this leading?

CS 307 Fundamentals of
Computer Science Recursive Backtracking

28

This path reachesThis path reaches
a dead end.

Time to backtrack!

Remember the
program stack!program stack!

CS 307 Fundamentals of
Computer Science Recursive Backtracking

29

The recursive calls
end and return untilend and return until
we find
ourselves back hereourselves back here.

CS 307 Fundamentals of
Computer Science Recursive Backtracking

30

And now we try
South

CS 307 Fundamentals of
Computer Science Recursive Backtracking

31

Path Eventually Found

CS 307 Fundamentals of
Computer Science Recursive Backtracking

32

More Backtracking ProblemsMore Backtracking Problems

CS 307 Fundamentals of
Computer Science Recursive Backtracking

33

Other Backtracking Problems
��Knight's Tour
�Regular Expressions
�Knapsack problem / Exhaustive Search

– Filling a knapsack Given a choice of items withFilling a knapsack. Given a choice of items with
various weights and a limited carrying capacity
find the optimal load out. 50 lb. knapsack. items
are 1 40 lb, 1 32 lb. 2 22 lbs, 1 15 lb, 1 5 lb. A
greedy algorithm would choose the 40 lb item
fi t Th th 5 lb L d t 45lb E h tifirst. Then the 5 lb. Load out = 45lb. Exhaustive
search 22 + 22 + 5 = 49.

CS 307 Fundamentals of
Computer Science Recursive Backtracking

34

The CD problem
��We want to put songs on a Compact Disc.

650MB CD and a bunch of songs of various
sizes.

If there are no more songs to consider return resultIf there are no more songs to consider return result
else{

Consider the next song in the list.
Try not adding it to the CD so far and use recursion to evaluate best

without it.
Try adding it to the CD, and use recursion to evaluate best with it
Whichever is better is returned as absolute best from here

}}

CS 307 Fundamentals of
Computer Science Recursive Backtracking

35

Another Backtracking Problem
�Ai li i f fli il�Airlines give out frequent flier miles as a way to get

people to always fly on their airline.
�Ai li l h t i li A if�Airlines also have partner airlines. Assume if you

have miles on one airline you can redeem those
miles on any of its partnersmiles on any of its partners.

�Further assume if you can redeem miles on a
partner airline you can redeem miles on any of itspartner airline you can redeem miles on any of its
partners and so forth...
– Airlines don't usually allow this sort of thing.y g

�Given a list of airlines and each airlines partners
determine if it is possible to redeem miles on a

CS 307 Fundamentals of
Computer Science Recursive Backtracking

36
given airline A on another airline B.

Airline List – Part 1
�D lt�Delta

– partners: Air Canada, Aero Mexico, OceanAir

�UnitedUnited
– partners: Aria, Lufthansa, OceanAir, Quantas, British Airways

�Northwest
– partners: Air Alaska, BMI, Avolar, EVA Air

�Canjet
– partners: Girjetpartners: Girjet

�Air Canda
– partners: Areo Mexico, Delta, Air Alaska

�Aero Mexico
– partners: Delta, Air Canda, British Airways

CS 307 Fundamentals of
Computer Science Recursive Backtracking

37

Airline List - Part 2
�O Ai�Ocean Air

– partners: Delta, United, Quantas, Avolar
�AlohaAir

– partners: Quantas
�Aria

– partners: United Lufthansapartners: United, Lufthansa
�Lufthansa

– partners: United, Aria, EVA Air
�Q t�Quantas

– partners: United, OceanAir, AlohaAir
�BMI

– partners: Northwest, Avolar
�Maxair

– partners: Southwest Girjet

CS 307 Fundamentals of
Computer Science Recursive Backtracking

38

partners: Southwest, Girjet

Airline List - Part 3
�Gi j t�Girjet

– partners: Southwest, Canjet, Maxair
�British AirwaysBritish Airways

– partners: United, Aero Mexico
�Air Alaska

– partners: Northwest, Air Canada
�Avolar

– partners: Northwest, Ocean Air, BMI
�EVA Air

t N th t L ft– partners: Northwest, Luftansa
�Southwest

– partners: Girjet Maxair

CS 307 Fundamentals of
Computer Science Recursive Backtracking

39

– partners: Girjet, Maxair

Problem Example
� If I h il N th t I d th A i ?� If I have miles on Northwest can I redeem them on Aria?
�Partial graph:

Ocean Air

BMI Avolar

Northwest

Air Alaska

EVA Air

CS 307 Fundamentals of
Computer Science Recursive Backtracking

40

Topic 11
S ti d S hiSorting and Searching

"There's nothing in your head theThere s nothing in your head the
sorting hat can't see. So try me
on and I will tell you where youon and I will tell you where you
ought to be."

The Sorting Hat Harry Potter-The Sorting Hat, Harry Potter
and the Sorcerer's Stone

CS 307 Fundamentals of
Computer Science Sorting and Searching

1

Sorting and Searching
��Fundamental problems in computer science

and programming
�Sorting done to make searching easier
�Multiple different algorithms to solve the u t p e d e e t a go t s to so e t e

same problem
– How do we know which algorithm is "better"?How do we know which algorithm is better ?

�Look at searching first
�E amples ill se arra s of ints to ill strate�Examples will use arrays of ints to illustrate

algorithms

CS 307 Fundamentals of
Computer Science Sorting and Searching

2

Searching

CS 307 Fundamentals of
Computer Science Sorting and Searching

3

Searching
�Gi li t f d t fi d th l ti f�Given a list of data find the location of a

particular value or report that value is not
presentpresent

�linear search
int iti e approach– intuitive approach

– start at first item
is it the one I am looking for?– is it the one I am looking for?

– if not go to next item
repeat until found or all items checked– repeat until found or all items checked

�If items not sorted or unsortable this
approach is necessary

CS 307 Fundamentals of
Computer Science Sorting and Searching

4

approach is necessary

Linear Search
/* pre: list != nullp

post: return the index of the first occurrence
of target in list or -1 if target not present in
list

//
public int linearSearch(int[] list, int target) {

for(int i = 0; i < list.length; i++)
if(list[i] == target)if(list[i] target)

return i;
return -1;

}

CS 307 Fundamentals of
Computer Science Sorting and Searching

5

Linear Search, Generic
//* pre: list != null, target != null

post: return the index of the first occurrence
of target in list or -1 if target not present in
listlist

*/
public int linearSearch(Object[] list, Object target) {

for(int i = 0; i < list.length; i++)
i i i i iif(list[i] != null && list[i].equals(target))

return i;
return -1;

}}

T(N)? Big O? Best case, worst case, average case?

CS 307 Fundamentals of
Computer Science Sorting and Searching

6

Attendance Question 1
��What is the average case Big O of linear

search in an array with N items, if an item is
present?

A. O(N)
B. O(N2)
C O(1)C. O(1)
D. O(logN)
E O(Nl N)E. O(NlogN)

CS 307 Fundamentals of
Computer Science Sorting and Searching

7

Searching in a Sorted List
�If it t d th di id d�If items are sorted then we can divide and

conquer
�di idi k i h lf ith h t�dividing your work in half with each step

– generally a good thing
�Th Bi S h Li t i A di d�The Binary Search on List in Ascending order

– Start at middle of list
i th t th it ?– is that the item?

– If not is it less than or greater than the item?
l th t d h lf f li t– less than, move to second half of list

– greater than, move to first half of list
repeat until found or sub list size = 0

CS 307 Fundamentals of
Computer Science Sorting and Searching

8

– repeat until found or sub list size = 0

Binary Search
list

low item middle item high item
Is middle item what we are looking for? If not is itIs middle item what we are looking for? If not is it
more or less than the target item? (Assume lower)

list

low middle high
item item item

CS 307 Fundamentals of
Computer Science Sorting and Searching

9
and so forth…

Binary Search in Action
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 3 5 7 11 13 17 19 23 29 31 37 41 4743 53

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

public static int bsearch(int[] list, int target)public static int bsearch(int[] list, int target)
{ int result = -1;

int low = 0;
int high = list.length - 1;
int mid;
while(result == -1 && low <= high)
{ mid = low + ((high - low) / 2);

if(list[mid] == target)
result = mid;

else if(list[mid] < target)
low = mid + 1;

else
high = mid - 1;

}}
return result;

}
// mid = (low + high) / 2; // may overflow!!!
// id (l hi h) 1 i bi i

CS 307 Fundamentals of
Computer Science Sorting and Searching

10

// or mid = (low + high) >>> 1; using bitwise op

Trace When Key == 3
Trace When Key == 30

Variables of Interest?

CS 307 Fundamentals of
Computer Science Sorting and Searching

11

Attendance Question 2
What is the worst case Big O of binary search in
an array with N items, if an item is present?
A. O(N)
B. O(N2)
C. O(1)
D. O(logN)
E. O(NlogN)

CS 307 Fundamentals of
Computer Science Sorting and Searching

12

Generic Binary Search
public static int bsearch(Comparable[] list, Comparable target)
{ int result = -1;

int low = 0;
int high = list.length - 1;g g
int mid;
while(result == -1 && low <= high)
{ mid = low + ((high - low) / 2);

if(target equals(list[mid]))if(target.equals(list[mid]))
result = mid;

else if(target.compareTo(list[mid]) > 0)
low = mid + 1;

lelse
high = mid - 1;

}
return result;

}

CS 307 Fundamentals of
Computer Science Sorting and Searching

13

Recursive Binary Search
public static int bsearch(int[] list int target){public static int bsearch(int[] list, int target){

return bsearch(list, target, 0, list.length – 1);
}

bli i i b h(i [] li ipublic static int bsearch(int[] list, int target,
int first, int last){

if(first <= last){
int mid = low + ((high - low) / 2);
if(list[mid] == target)

return mid;
else if(list[mid] > target)

return bsearch(list, target, first, mid – 1);return bsearch(list, target, first, mid 1);
else

return bsearch(list, target, mid + 1, last);
}
return -1;return 1;

}

CS 307 Fundamentals of
Computer Science Sorting and Searching

14

Other Searching Algorithms
��Interpolation Search

– more like what people really do
�Indexed Searching
�Binary Search TreesBinary Search Trees
�Hash Table Searching
�G ' Al ith (W iti f�Grover's Algorithm (Waiting for

quantum computers to be built)
��best-first
�A*

CS 307 Fundamentals of
Computer Science Sorting and Searching

15

SortingSorting

CS 307 Fundamentals of
Computer Science Sorting and Searching

16

Sorting FunSorting Fun
Why Not Bubble Sort?y

CS 307 Fundamentals of
Computer Science Sorting and Searching

17

Sorting
�A fundamental application for computers�A fundamental application for computers
�Done to make finding data (searching) faster
�M diff t l ith f ti�Many different algorithms for sorting
�One of the difficulties with sorting is working

ith fi d i t t i ()with a fixed size storage container (array)
– if resize, that is expensive (slow)

��The "simple" sorts run in quadratic time
O(N2)

b bbl t– bubble sort
– selection sort

i ti t
CS 307 Fundamentals of
Computer Science Sorting and Searching

18

– insertion sort

Stable Sorting
�A t f t�A property of sorts
�If a sort guarantees the relative order of

l it t th th it i t blequal items stays the same then it is a stable
sort

�[7 6 7 5 1 2 7 5]�[71, 6, 72, 5, 1, 2, 73, -5]
– subscripts added for clarity

�[5 1 2 5 6 7 7 7]�[-5, 1, 2, 5, 6, 71, 72, 73]
– result of stable sort

�R l ld l�Real world example:
– sort a table in Wikipedia by one criteria, then another
– sort by country then by major wins

CS 307 Fundamentals of
Computer Science Sorting and Searching

19

– sort by country, then by major wins

Selection sort
�Algorithm

– Search through the list and find the smallest element
– swap the smallest element with the first element

repeat starting at second element and find the second– repeat starting at second element and find the second
smallest element

public static void selectionSort(int[] list)
{ int min;{ int min;

int temp;
for(int i = 0; i < list.length - 1; i++) {

min = i;
for(int j = i + 1; j < list.length; j++)

if(list[j] < list[min])
min = j;

t li t[i]temp = list[i];
list[i] = list[min];
list[min] = temp;

}

CS 307 Fundamentals of
Computer Science Sorting and Searching

20

}
}

Selection Sort in Practice
44 68 191 119 119 37 83 82 191 45 158 130 76 153 39 25

What is the T(N) actual number of statementsWhat is the T(N), actual number of statements
executed, of the selection sort code, given a list
of N elements? What is the Big O?

CS 307 Fundamentals of
Computer Science Sorting and Searching

21

g

Generic Selection Sort
public void selectionSort(Comparable[] list)
{ int min; Comparable temp;

for(int i = 0; i < list.length - 1; i++) {(; g ;) {
{ min = i;

for(int j = i + 1; j < list.length; j++)

if(list[min].compareTo(list[j]) > 0)
min = j;

temp = list[i];
list[i] = list[min];
list[min] = temp;

}
}

�B t t Bi O?
CS 307 Fundamentals of
Computer Science Sorting and Searching

22
�Best case, worst case, average case Big O?

Attendance Question 3
Is selection sort always stable?
A. Yes
B. No

CS 307 Fundamentals of
Computer Science Sorting and Searching

23

Insertion Sort
��Another of the O(N^2) sorts
�The first item is sorted
�Compare the second item to the first

– if smaller swapif smaller swap
�Third item, compare to item next to it

need to swap– need to swap
– after swap compare again

�A d f th�And so forth…

CS 307 Fundamentals of
Computer Science Sorting and Searching

24

Insertion Sort Code
public void insertionSort(int[] list)
{ int temp, j;

for(int i = 1; i < list.length; i++)for(int i 1; i < list.length; i++)
{ temp = list[i];

j = i;
while(j > 0 && temp < list[j - 1])while(j > 0 && temp < list[j 1])
{ // swap elements

list[j] = list[j - 1];
list[j - 1] = temp;list[j 1] temp;
j--;

}
}}

}

�Best case, worst case, average case Big O?

CS 307 Fundamentals of
Computer Science Sorting and Searching

25

Attendance Question 4
��Is the version of insertion sort shown always

stable?
A. Yes
B. Noo

CS 307 Fundamentals of
Computer Science Sorting and Searching

26

Comparing Algorithms
��Which algorithm do you think will be faster

given random data, selection sort or insertion
sort?

�Why?

CS 307 Fundamentals of
Computer Science Sorting and Searching

27

Sub Quadratic
Sorting Algorithms

Sub Quadratic means having a
Big O better than O(N2)g ()

CS 307 Fundamentals of
Computer Science Sorting and Searching

28

ShellSort
��Created by Donald Shell in 1959
�Wanted to stop moving data small distances

(in the case of insertion sort and bubble sort)
and stop making swaps that are not helpful
(in the case of selection sort)

�Start with sub arrays created by looking at S a sub a ays c ea ed by oo g a
data that is far apart and then reduce the gap
size

CS 307 Fundamentals of
Computer Science Sorting and Searching

29

ShellSort in practice
46 2 83 41 102 5 17 31 64 49 1846 2 83 41 102 5 17 31 64 49 18
Gap of five. Sort sub array with 46, 5, and 18
5 2 83 41 102 18 17 31 64 49 465 2 83 41 102 18 17 31 64 49 46
Gap still five. Sort sub array with 2 and 17
5 2 83 41 102 18 17 31 64 49 465 2 83 41 102 18 17 31 64 49 46
Gap still five. Sort sub array with 83 and 31
5 2 31 41 102 18 17 83 64 49 46
Gap still five Sort sub array with 41 and 64
5 2 31 41 102 18 17 83 64 49 46
Gap still five. Sort sub array with 102 and 49
5 2 31 41 49 18 17 83 64 102 46

CS 307 Fundamentals of
Computer Science Sorting and Searching

30
Continued on next slide:

Completed Shellsort
5 2 31 41 49 18 17 83 64 102 46
Gap now 2: Sort sub array with 5 31 49 17 64 46Gap now 2: Sort sub array with 5 31 49 17 64 46
5 2 17 41 31 18 46 83 49 102 64
Gap still 2: Sort sub array with 2 41 18 83 102p y
5 2 17 18 31 41 46 83 49 102 64
Gap of 1 (Insertion sort)p ()
2 5 17 18 31 41 46 49 64 83 102

Array sorted

CS 307 Fundamentals of
Computer Science Sorting and Searching

31

Shellsort on Another Data Set
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
44 68 191 119 119 37 83 82 191 45 158 130 76 153 39 25
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Initial gap = length / 2 = 16 / 2 = 8
initial sub arrays indices:y
{0, 8}, {1, 9}, {2, 10}, {3, 11}, {4, 12}, {5, 13}, {6, 14}, {7, 15}
next gap = 8 / 2 = 4
{0, 4, 8, 12}, {1, 5, 9, 13}, {2, 6, 10, 14}, {3, 7, 11, 15}
next gap = 4 / 2 = 2
{0 2 4 6 8 10 12 14} {1 3 5 7 9 11 13 15}{0, 2, 4, 6, 8, 10, 12, 14}, {1, 3, 5, 7, 9, 11, 13, 15}
final gap = 2 / 2 = 1

CS 307 Fundamentals of
Computer Science Sorting and Searching

32

ShellSort Code
public static void shellsort(Comparable[] list)public static void shellsort(Comparable[] list)
{ Comparable temp; boolean swap;

for(int gap = list.length / 2; gap > 0; gap /= 2)
for(int i = gap; i < list.length; i++)
{ Comparable tmp = list[i];

int j = i;j

for(; j >= gap &&

tmp.compareTo(list[j - gap]) < 0;

j -= gap)

list[j] = list[j - gap];

list[j] = tmp;list[j] tmp;

}
}

CS 307 Fundamentals of
Computer Science Sorting and Searching

33

Comparison of Various Sorts
Num Items Selection Insertion Shellsort Quicksort

1000 16 5 0 0
2000 59 49 0 62000 59 49 0 6
4000 271 175 6 5
8000 1056 686 11 0

16000 4203 2754 32 11
32000 16852 11039 37 45
64000 expected? expected? 100 6864000 expected? expected? 100 68

128000 expected? expected? 257 158
256000 expected? expected? 543 335
512000 expected? expected? 1210 722

1024000 expected? expected? 2522 1550

CS 307 Fundamentals of
Computer Science Sorting and Searching

34
times in milliseconds

Quicksort
� Invented by C.A.R. (Tony) Hoare
� A divide and conquer approach

that uses recursion
1. If the list has 0 or 1 elements it is sorted
2. otherwise, pick any element p in the list. This is

called the pivot value
3. Partition the list minus the pivot into two sub lists

according to values less than or greater than the
pivot (equal values go to either)pivot. (equal values go to either)

4. return the quicksort of the first list followed by the
quicksort of the second list

CS 307 Fundamentals of
Computer Science Sorting and Searching

35

quicksort of the second list

Quicksort in Action
39 23 17 90 33 72 46 79 11 52 64 5 71
Pick middle element as pivot: 46
Partition list
23 17 5 33 39 11 46 79 72 52 64 90 71
quick sort the less than list
Pi k iddl l t i t 33Pick middle element as pivot: 33
23 17 5 11 33 39
quicksort the less than list pivot now 5quicksort the less than list, pivot now 5
{} 5 23 17 11
quicksort the less than list, base casequicksort the less than list, base case
quicksort the greater than list
Pick middle element as pivot: 17

CS 307 Fundamentals of
Computer Science Sorting and Searching

36
and so on….

Quicksort on Another Data Set
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
44 68 191 119 119 37 83 82 191 45 158 130 76 153 39 25
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Big O of Quicksort?

CS 307 Fundamentals of
Computer Science Sorting and Searching

37

g Q

public static void swapReferences(Object[] a, int index1, int index2)
{ Object tmp = a[index1];

a[index1] = a[index2];
a[index2] = tmp;

}

public void quicksort(Comparable[] list, int start, int stop)
{ if(start >= stop)

return; //base case list of 0 or 1 elements

int pivotIndex = (start + stop) / 2;int pivotIndex (start + stop) / 2;

// Place pivot at start position
swapReferences(list, pivotIndex, start);
Comparable pivot = list[start];

// Begin partitioning// Begin partitioning
int i, j = start;

// from first to j are elements less than or equal to pivot
// from j to i are elements greater than pivot
// elements beyond i have not been checked yet

i 1 i ifor(i = start + 1; i <= stop; i++)
{ //is current element less than or equal to pivot

if(list[i].compareTo(pivot) <= 0)
{ // if so move it to the less than or equal portion

j++;
swapReferences(list, i, j);p (, , j);

}
}

//restore pivot to correct spot
swapReferences(list, start, j);
quicksort(list start j - 1); // Sort small elements

CS 307 Fundamentals of
Computer Science Sorting and Searching

38

quicksort(list, start, j 1); // Sort small elements
quicksort(list, j + 1, stop); // Sort large elements

}

Attendance Question 5
��What is the best case and worst case Big O

of quicksort?
Best Worst

A. O(NlogN) O(N2)
B. O(N2) O(N2)
C O(N2) O(N!)C. O(N) O(N!)
D. O(NlogN) O(NlogN)
E O(N) O(Nl N)E. O(N) O(NlogN)

CS 307 Fundamentals of
Computer Science Sorting and Searching

39

Quicksort Caveats
��Average case Big O?
�Worst case Big O?
�Coding the partition step is usually the

hardest parta dest pa t

CS 307 Fundamentals of
Computer Science Sorting and Searching

40

Attendance Question 6
��You have 1,000,000 items that you will be

searching. How many searches need to be
performed before the data is changed to
make sorting worthwhile?

A. 10
B. 400
C. 1,000
D 10 000D. 10,000
E. 500,000

CS 307 Fundamentals of
Computer Science Sorting and Searching

41

Merge Sort Algorithm
D K h i J h N hDon Knuth cites John von Neumann as the creator
of this algorithm

1. If a list has 1 element or 0
elements it is sorted

2. If a list has more than 2 split
into into 2 separate lists

3. Perform this algorithm on each
of those smaller listsof those smaller lists

4. Take the 2 sorted lists and
merge them together

CS 307 Fundamentals of
Computer Science Sorting and Searching

42

merge them together

Merge Sort

When implementing
one temporary array
is used instead of
multiple temporary
arrays.y

Why?Why?

CS 307 Fundamentals of
Computer Science Sorting and Searching

43

Merge Sort code
/**
* perform a merge sort on the data in c
* @param c c != null, all elements of c
* are the same data type
*//
public static void mergeSort(Comparable[] c)
{ Comparable[] temp = new Comparable[c.length];

sort(c, temp, 0, c.length - 1);
}}

private static void sort(Comparable[] list, Comparable[] temp,
int low, int high)int low, int high)

{ if(low < high){

int center = (low + high) / 2;

sort(list, temp, low, center);sort(list, temp, low, center);

sort(list, temp, center + 1, high);

merge(list, temp, low, center + 1, high);

}

CS 307 Fundamentals of
Computer Science Sorting and Searching

44

}

}

Merge Sort Code
private static void merge(Comparable[] list, Comparable[] temp,

int leftPos int rightPos int rightEnd){int leftPos, int rightPos, int rightEnd){
int leftEnd = rightPos - 1;
int tempPos = leftPos;
int numElements = rightEnd - leftPos + 1;
//main loop
while(leftPos <= leftEnd && rightPos <= rightEnd){

if(list[leftPos] compareTo(list[rightPos]) <= 0){if(list[leftPos].compareTo(list[rightPos]) <= 0){
temp[tempPos] = list[leftPos];
leftPos++;

}
else{

temp[tempPos] = list[rightPos];
rightPos++;rightPos++;

}
tempPos++;

}
//copy rest of left half
while(leftPos <= leftEnd){

temp[tempPos] list[leftPos];temp[tempPos] = list[leftPos];
tempPos++;
leftPos++;

}
//copy rest of right half
while(rightPos <= rightEnd){

t [t P] li t[i htP]temp[tempPos] = list[rightPos];
tempPos++;
rightPos++;

}
//Copy temp back into list
for(int i = 0; i < numElements; i++, rightEnd--)

li t[i htE d] t [i htE d]

CS 307 Fundamentals of
Computer Science Sorting and Searching

45

list[rightEnd] = temp[rightEnd];
}

Final Comments
��Language libraries often have sorting

algorithms in them
– Java Arrays and Collections classes
– C++ Standard Template Library
– Python sort and sorted functions

�Hybrid sortsy
– when size of unsorted list or portion of array is

small use insertion sort, otherwise use
O(N log N) sort like Quicksort of Mergesort

�Many other sorting algorithms exist.
CS 307 Fundamentals of
Computer Science Sorting and Searching

46

y g g

Topic 12
S S CADTS, Data Structures, Java Collections

and Generic Data Structures

"Get your data structures correct
fi t d th t f th illfirst, and the rest of the program will
write itself."
- David Jones

CS 307 Fundamentals of
Computer Science

ADTS and Generic Data Structures 1

Data Structures
��A Data Structure is:

– an implementation of an abstract data type and
– "An organization of information, usually in

computer memory", for better algorithm
ffi i "efficiency."

aList
List Object

aList
size
myElements

5
y

A C E B A
0 1 2 3 4 5 6 7 8 9 10

CS 307 Fundamentals of
Computer Science ADTs and Data Structures

2

A C E B A

Data Structure Concepts
�D S i�Data Structures are containers:

– they hold other data
arra s are a data str ct re– arrays are a data structure

– ... so are lists
�Other types of data structures:�Other types of data structures:

– stack, queue, tree,
binary search tree, hash table,y , ,
dictionary or map, set, and on and on

– www.nist.gov/dads/
– en.wikipedia.org/wiki/List_of_data_structures

�Different types of data structures are optimized for
certain types of operations

CS 307 Fundamentals of
Computer Science ADTs and Data Structures

3

certain types of operations

Core Operations
��Data Structures will have 3 core operations

– a way to add things
– a way to remove things
– a way to access things

�Details of these operations depend on the
data structure
– Example: List, add at the end, access by

location, remove by locationy
�More operations added depending on what

data structure is designed to do
CS 307 Fundamentals of
Computer Science ADTs and Data Structures

4

data structure is designed to do

ADTs and Data Structures in
Programming LanguagesProgramming Languages

�Modern programming languages usually
h lib f d t t thave a library of data structures
– Java collections framework
– C++ standard template library
– .Net framework (small portion of VERY large

library)
– Python lists and tuples
– Lisp lists

CS 307 Fundamentals of
Computer Science ADTs and Data Structures

5

Data Structures in Java
��Part of the Java Standard Library is the

Collections Framework
– In class we will create our own data structures

and discuss the data structures that exist in Java
�A library of data structures
�Built on two interfaces

– Collection
– IteratorIterator

�http://java.sun.com/j2se/1.5.0/docs/guide/coll
ections/index html

CS 307 Fundamentals of
Computer Science ADTs and Data Structures

6

ections/index.html

The Java Collection interface
��A generic collection
�Can hold any object data type
�Which type a particular collection will hold is

specified when declaring an instance of a spec ed e dec a g a sta ce o a
class that implements the Collection interface

�Helps guarantee type safety at compile timeHelps guarantee type safety at compile time

CS 307 Fundamentals of
Computer Science ADTs and Data Structures

7

Methods in the Collection interface
public interface Collection<E>public interface Collection<E>
{ public boolean add(E o)

public boolean addAll(Collection<? extends E> c)
public void clear()public void clear()
public boolean contains(Object o)
public boolean containsAll(Collection<?> c)
public boolean equals(Object o)public boolean equals(Object o)
public int hashCode()
public boolean isEmpty()
public Iterator<E> iterator()public Iterator<E> iterator()
public boolean remove(Object o)
public boolean removeAll(Collection<?> c)
public boolean retainAll(Collection<?> c)pub c boo ea eta (Co ect o c)
public int size()
public Object[] toArray()
public <T> T[] toArray(T[] a)

CS 307 Fundamentals of
Computer Science ADTs and Data Structures

8

p [] y([])
}

The Java ArrayList Class
��Implements the List interface and uses an

array as its internal storage container
�It is a list, not an array
�The array that actual stores the elements of e a ay t at actua sto es t e e e e ts o

the list is hidden, not visible outside of the
ArrayList classay s c ass

�all actions on ArrayList objects are via the
methodsmethods

�ArrayLists are generic.
Th h ld bj t f t !

CS 307 Fundamentals of
Computer Science ADTs and Data Structures

9

– They can hold objects of any type!

ArrayList's (Partial)
Class DiagramClass Diagram

Iterable

Object Collection

AbstractCollection
List

AbstractList

ArrayList

CS 307 Fundamentals of
Computer Science ADTs and Data Structures

10

Back to our Array Based List
��Started with a list of ints
�Don't want to have to write a new list class

for every data type we want to store in lists
�Moved to an array of Objects to store the y j

elements of the list
// from array based listy

private Object[] myCon;

CS 307 Fundamentals of
Computer Science

ADTS and Generic Data Structures 11

Using Object
��In Java, all classes inherit from exactly one

other class except Object which is at the top
of the class hierarchy

�Object variables can point at objects of their
declared type and any descendants
– polymorphismp y p

�Thus, if the internal storage container is of
type Object it can hold anythingtype Object it can hold anything
– primitives handled by wrapping them in objects.

int – Integer, char - Character

CS 307 Fundamentals of
Computer Science

ADTS and Generic Data Structures 12

g ,

Difficulties with Object
��Creating generic containers using the Object

data type and polymorphism is relatively
straight forward

�Using these generic containers leads to
some difficulties
– Castingg
– Type checking

�Code examples on the following slidesCode examples on the following slides

CS 307 Fundamentals of
Computer Science

ADTS and Generic Data Structures 13

Attendance Question 1
��What is output by the following code?
ArrayList list = new ArrayList();

String name = "Olivia";

list.add(name);

System out print(list get(0) charAt(2));System.out.print(list.get(0).charAt(2));

A. i
BB. O
C. l
D. No output due to syntax error.
E No output due to runtime errorE. No output due to runtime error.

CS 307 Fundamentals of
Computer Science

ADTS and Generic Data Structures 14

Code Example - Casting
��Assume a list class

ArrayList li = new ArrayList();
li.add(“Hi”);

System.out.println(li.get(0).charAt(0));

// previous line has syntax error// previous line has syntax error

// return type of get is Object

// Object does not have a charAt method// j

// compiler relies on declared type

System.out.println(

((String)li.get(0)).charAt(0));

// must cast to a String

CS 307 Fundamentals of
Computer Science

ADTS and Generic Data Structures 15

Code Example – type checking
//pre: all elements of li are Strings

public void printFirstChar(ArrayList li){

String temp;

for(int i = 0; i < li.size(); i++)

{ temp = (String)li.get(i);

if(temp.length() > 0)

S t t i tl (System.out.println(

temp.charAt(0));

}}

}

// what happens if pre condition not met?

CS 307 Fundamentals of
Computer Science

ADTS and Generic Data Structures 16

Too Generic?
��Does the compiler allow this?
ArrayList list = new ArrayList();

list.add("Olivia");

list.add(new Integer(12));

list add(new Rectangle());list.add(new Rectangle());

list.add(new ArrayList());

A YesA. Yes
B. No

CS 307 Fundamentals of
Computer Science

ADTS and Generic Data Structures 17

Is this a bug or a feature?

CS 307 Fundamentals of
Computer Science

ADTS and Generic Data Structures 18

"Fixing" the Method
// ll l t f li St i//pre: all elements of li are Strings

public void printFirstChar(ArrayList li){

String temp;String temp;

for(int i = 0; i < li.size(); i++){

if(li.get(i) instanceof String){(g () g){
temp = (String)li.get(i);

if(temp.length() > 0)

System.out.println(

temp.charAt(0));

}

}

}

CS 307 Fundamentals of
Computer Science

ADTS and Generic Data Structures 19

}

Generic Types
��Java has syntax for

parameterized data types
�Referred to as Generic Types in most of the

literature
�A traditional parameter has a data type and

can store various values just like a variableca s o e a ous a ues jus e a a ab e
public void foo(int x)

�Generic Types are like parameters but the�Generic Types are like parameters, but the
data type for the parameter is data type

lik i bl th t t d t t
CS 307 Fundamentals of
Computer Science

ADTS and Generic Data Structures 20

– like a variable that stores a data type

Making our Array List Generic
�D t t i bl d l d i l h d�Data type variables declared in class header
public class GenericList<E> {
�The <E> is the declaration of a data type

parameter for the class
– any legal identifier: Foo, AnyType, Element,
DataTypeThisListStores
Sun style guide recommends terse identifiers– Sun style guide recommends terse identifiers

�The value E stores will be filled in whenever
a programmer creates a new GenericLista programmer creates a new GenericList
GenericList<String> li =

new GenericList<String>();
CS 307 Fundamentals of
Computer Science

ADTS and Generic Data Structures 21

new GenericList<String>();

Modifications to GenericList
��instance variable

private E[] myCon;

�Parameters on
– add, insert, remove, insertAll, , ,

�Return type on
– get– get

�Changes to creation of internal storage
containercontainer
myCon = (E[])new Object[DEFAULT_SIZE];

�Constructor header does not change
CS 307 Fundamentals of
Computer Science

ADTS and Generic Data Structures 22

�Constructor header does not change

Using Generic Types
��Back to Java's ArrayList
ArrayList list1 = new ArrayList();

– still allowed, a "raw" ArrayList
– works just like our first pass at GenericListj p
– casting, lack of type safety

CS 307 Fundamentals of
Computer Science

ADTS and Generic Data Structures 23

Using Generic Types
i i i 2ArrayList<String> list2 =

new ArrayList<String>();

– for list2 E stores String
list2.add("Isabelle");

System.out.println(
list2.get(0).charAt(2)); //okg

list2.add(new Rectangle());

// syntax error// syntax error

CS 307 Fundamentals of
Computer Science

ADTS and Generic Data Structures 24

Parameters and Generic Types
��Old version
//pre: all elements of li are Strings

public void printFirstChar(ArrayList li){

�New version
//pre: none
public void printFirstChar(ArrayList<String> li){

�Elsewhere
ArrayList<String> list3 = new ArrayList<String>();y g y g ();

printFirstChar(list3); // ok

ArrayList<Integer> list4 = new ArrayList<Integer>();

printFirstChar(list4); // syntax error

CS 307 Fundamentals of
Computer Science

ADTS and Generic Data Structures 25

printFirstChar(list4); // syntax error

Generic Types and Subclasses
i iArrayList<ClosedShape> list5 =

new ArrayList<ClosedShape>();

list5.add(new Rectangle());

list5.add(new Square());

list5.add(new Circle());

// all okay

�list5 can store ClosedShapes and any
descendants of ClosedShape

CS 307 Fundamentals of
Computer Science

ADTS and Generic Data Structures 26

Topic 14p
Iterators

"First things first, but not necessarily
i th t d "in that order "
-Dr Who-Dr. Who

CS 307 Fundamentals of
Computer Science Iterators

1

A Question
bli l W dLi t {public class WordList {
private ArrayList<String> myList;

// pre: none
// post: all words that are exactly len
// characters long have been removed from// characters long have been removed from
// this WordList with the order of the
// remaining words unchanged
public void removeWordsOfLength(int len){public void removeWordsOfLength(int len){

for(int i = 0; i < myList.size(); i++){
if(myList.get(i).length() == len)

Li t (i)myList.remove(i);
}

CS 307 Fundamentals of
Computer Science Iterators

2

Attendance Question 1

�When does method
removeWordsOfLength work as
intended?

A. Always
B SometimesB. Sometimes
C. Never

// original list = [“dog”, “cat”, “hat”, “sat”]

// resulting list after removeWordsOfLength(3) ?// resulting list after removeWordsOfLength(3) ?

CS 307 Fundamentals of
Computer Science Iterators

3

The Remove Question
�A ?�Answer?
public void removeWordsOfLength(int len) {
Iterator<String> it = myList iterator();Iterator<String> it = myList.iterator();
while(it.hasNext())

if(it.next().length() == len)
it.remove();

}
}
// original list = [“dog”, “cat”, “hat”, “sat”]

// resulting list after removeWordsOfLength(3) ?

CS 307 Fundamentals of
Computer Science Iterators

4

// resulting list after removeWordsOfLength(3) ?

Iterators
��ArrayList is part of the Java Collections

framework
�Collection is an interface that specifies the

basic operations every collection (data
structure) should have

�Some Collections don’t have a definite orderSo e Co ec o s do a e a de e o de
– Sets, Maps, Graphs

�How to access all the items in a CollectionHow to access all the items in a Collection
with no specified order?

CS 307 Fundamentals of
Computer Science Iterators

5

Access All Elements - ArrayList
i i i i ipublic void printAll(ArrayList list){

for(int i = 0; i < list.size(); i++)

System.out.println(list.get(i));

}

�How do I access all the elements of a Set? The
elements don’t have an index.

�Iterator objects provide a way to go through all the
elements of a Collection, one at a time

CS 307 Fundamentals of
Computer Science Iterators

6

Iterator Interface
�A it t bj t i “ h t” bj t�An iterator object is a “one shot” object

– it is designed to go through all the
elements of a Collection onceelements of a Collection once

– if you want to go through the
elements of a Collection again youelements of a Collection again you
have to get another iterator object

�Iterators are obtained by calling y g
a method from the Collection

CS 307 Fundamentals of
Computer Science Iterators

7

Iterator Methods
�The Iterator interface specifies 3 methods:�The Iterator interface specifies 3 methods:

boolean hasNext()
//returns true if this iteration has more elements

Object next()
//returns the next element in this iteration//returns the next element in this iteration
//pre: hastNext()

id ()void remove()
/*Removes from the underlying collection the last element

returned by the iterator.
Thi th d b ll d l ll t tpre: This method can be called only once per call to next.

After calling, must call next again before calling remove
again.

*/
CS 307 Fundamentals of
Computer Science Iterators

8

*/

Attendance Question 2
��Which of the following produces a syntax

error?
ArrayList list = new ArrayList();
Iterator it1 = new Iterator(); // I
Iterator it2 new Iterator(list); // IIIterator it2 = new Iterator(list); // II
Iterator it3 = list.iterator(); // III

A IA. I
B. II
C IIIC. III
D. I and II
E. II and III

CS 307 Fundamentals of
Computer Science Iterators

9

Typical Iterator Pattern
i i i i ipublic void printAll(ArrayList list){

Iterator it = list.iterator();
Obj t tObject temp;

while(it.hasNext()) {

itemp = it.next();

System.out.println(temp);

}

}

CS 307 Fundamentals of
Computer Science Iterators

10

Typical Iterator Pattern 2
public void printAll(ArrayList list){public void printAll(ArrayList list){

Iterator it = list.iterator();
while(it.hasNext())

S t t i tl (it t())System.out.println(it.next());
}

// i// go through twice?
public void printAllTwice(ArrayList list){

Iterator it = list.iterator();
while(it.hasNext())

System.out.println(it.next());
it = list.iterator();
while(it.hasNext())

System.out.println(it.next());
}

CS 307 Fundamentals of
Computer Science Iterators

11

A Picture of an Iterator
��Imagine a fence made up of fence posts and

rail sections
railsrails

fenceposts

CS 307 Fundamentals of
Computer Science Iterators

12

Fence Analogy
��The iterator lives on the fence posts
�The data in the collection are the rails
�Iterator created at the far left post
�As long as a rail exists to the right of theAs long as a rail exists to the right of the

Iterator, hasNext() is true
iterator objectj

CS 307 Fundamentals of
Computer Science Iterators

13

Fence Analogy
A Li t St iArrayList<String> names =

new ArrayList<String>();
names.add(“Jan”);
names.add(“Levi”);
names.add(“Tom”);
names add(“Jose”);names.add(Jose);
Iterator<String> it = names.iterator();
int i = 0;

“Jan” “Levi” “Tom” “Jose”

CS 307 Fundamentals of
Computer Science Iterators

14

Fence Analogy
i iwhile(it.hasNext()) {

i++;

System.out.println(it.next());

}

// when i == 1, prints out Jan
first call to next moves iterator to
next post and returns “Jan”

“Jan” “Levi” “Tom” “Jose”

next post and returns “Jan”

CS 307 Fundamentals of
Computer Science Iterators

15

Fence Analogy
i iwhile(it.hasNext()) {

i++;

System.out.println(it.next());

}

// when i == 2, prints out Levi

“Jan” “Levi” “Tom” “Jose”

CS 307 Fundamentals of
Computer Science Iterators

16

Fence Analogy
i iwhile(it.hasNext()) {

i++;

System.out.println(it.next());

}

// when i == 3, prints out Tom

“Jan” “Levi” “Tom” “Jose”

CS 307 Fundamentals of
Computer Science Iterators

17

Fence Analogy
i iwhile(it.hasNext()) {

i++;

System.out.println(it.next());

}

// when i == 4, prints out Jose

“Jan” “Levi” “Tom” “Jose”

CS 307 Fundamentals of
Computer Science Iterators

18

Fence Analogy
i iwhile(it.hasNext()) {

i++;

System.out.println(it.next());

}

// call to hasNext returns false

// while loop stops

“Jan” “Levi” “Tom” “Jose”

CS 307 Fundamentals of
Computer Science Iterators

19

Attendance Question 3
��What is output by the following code?
ArrayList<Integer> list;

List = new ArrayList<Integer>();

list.add(3);

list add(3);list.add(3);

list.add(5);

Iterator<Integer> it = list.iterator();g ();

System.out.println(it.next());

System.out.println(it.next());

A.3 B. 5 C. 3 3 5
D 3 3 E 3 5D. 3 3 E. 3 5

CS 307 Fundamentals of
Computer Science Iterators

20

Comodification
�If () i h d�If a Collection (ArrayList) is changed

while an iteration via an iterator is in progress
an Exception will be thrown the next time the
next() or remove() methods are called
via the iterator

ArrayList<String> names =

i i ()new ArrayList<String>();

names.add(“Jan”);

Iterator<String> it = names iterator();Iterator<String> it = names.iterator();

names.add(“Andy”);

it.next(); // exception will occur here

CS 307 Fundamentals of
Computer Science Iterators

21

(); // p

remove method
�C th t thi f th�Can use the Iterator to remove things from the
Collection

�Can onl be called once per call to t()�Can only be called once per call to next()
public void removeWordsOfLength(int len) {

String temp; g p

Iterator it = myList.iterator

while(it.hasNext()) {
temp = (String)it.next();temp (String)it.next();

if(temp.length() == len)
it.remove();

}}

}
// original list = [“dog”, “cat”, “hat”, “sat”]

3

CS 307 Fundamentals of
Computer Science Iterators

22

// resulting list after removeWordsOfLength(3) ?

Common Iterator Error
bli id i tAllOfL th(A Li t<St i >public void printAllOfLength(ArrayList<String> names,

int len)

{ //pre: names != null, names only contains Strings

//post: print out all elements of names equal in

// length to len

Iterator<String> it = names.iterator();te ato St g t a es. te ato ();

while(it.hasNext()){

if(it.next().length() == len)

S t t i tl (it t())System.out.println(it.next());

}

}

// given names = [“Jan”, “Ivan”, “Tom”, “George”]

// and len = 3 what is output?

CS 307 Fundamentals of
Computer Science Iterators

23

The Iterable Interface
�A l t d i t f i bl�A related interface is Iterable
�One method in the interface:

public Iterator<T> iterator()

�Why?
�Anything that implements the Iterable

interface can be used in the for each loop.
ArrayList<Integer> list;
//code to create and fill list
int total = 0;int total = 0;
for(int x : list)

total += x;

CS 307 Fundamentals of
Computer Science Iterators

24

Iterable
�If i l t t th h ll th�If you simply want to go through all the

elements of a Collection (or Iterable thing)
use the for each loopuse the for each loop
– hides creation of the Iterator

public void printAllOfLength(ArrayList<String> names, p p g y g
int len){

//pre: names != null, names only contains Strings
//post: print out all elements of names equal in
// length to len
for(String s : names){

if(s.length() == len)
S t t i tl ()System.out.println(s);

}
}

CS 307 Fundamentals of
Computer Science Iterators

25

Implementing an Iterator
��Implement an Iterator for our GenericList

class
– Nested Classes
– Inner Classes
– Example of encapsulation
– checking precondition on remove
– does our GenricList need an Iterator?

CS 307 Fundamentals of
Computer Science Iterators

26

Topic 14
Li k d Li tLinked Lists

"All the kids who did great in high school writing g g g
pong games in BASIC for their Apple II would get to
college, take CompSci 101, a data structures
course and when they hit the pointers business theircourse, and when they hit the pointers business their
brains would just totally explode, and the next thing
you knew, they were majoring in Political Science
because law school seemed like a better idea."

-Joel Spolskyp y

Thanks to Don Slater of CMU for use of his slides.

CS 307 Fundamentals of
Computer Science Linked Lists

1

Attendance Question 1
��What is output by the following code?
ArrayList<Integer> a1 = new ArrayList<Integer>();

ArrayList<Integer> a2 = new ArrayList<Integer>();ArrayList<Integer> a2 = new ArrayList<Integer>();

a1.add(12);

a2.add(12);

System.out.println(a1 == a2);

A. No output due to syntax error
B. No output due to runtime error
C. false

D. true

CS 307 Fundamentals of
Computer Science Linked Lists

2

Dynamic Data Structures
�Dynamic data structures�Dynamic data structures

– They grow and shrink one element at a time,
normally without some of the inefficiencies ofnormally without some of the inefficiencies of
arrays

– as opposed to a static container like an arraypp y
�Big O of Array Manipulations

– Access the kth element
– Add or delete an element in the middle of the

array while maintaining relative order
– adding element at the end of array? space

avail? no space avail?
add element at beginning of an array

CS 307 Fundamentals of
Computer Science Linked Lists

3

– add element at beginning of an array

Object References
��Recall that an object reference is a variable

that stores the address of an object

�A reference can also be called a pointer

�They are often depicted graphically:
student

John Smith
40725
3.57

Linked Lists
4

References as Links
��Object references can be used to create

links between objects

�Suppose a Student class contained a
f t th d bj treference to another Student object

John Smith
40725
3.57

Jane Jones
58821
3.72

Linked Lists
5

References as Links
��References can be used to create a variety

of linked structures, such as a linked list:

studentList

Linked Lists
6

Linked Lists
�A li ll ti f lf f ti l bj t ll d�A linear collection of self-referential objects, called

nodes, connected by other links
– linear: for every node in the list, there is one and only one node y , y

that precedes it (except for possibly the first node, which may
have no predecessor,) and there is one and only one node that
succeeds it, (except for possibly the last node, which may have
no successor)no successor)

– self-referential: a node that has the ability to refer to another
node of the same type or even to refer to itselfnode of the same type, or even to refer to itself

– node: contains data of any type, including a reference to another
node of the same data type, or to nodes of different data typesnode of the same data type, or to nodes of different data types

– Usually a list will have a beginning and an end; the first element
in the list is accessed by a reference to that class, and the last

CS 307 Fundamentals of
Computer Science Linked Lists

7

y ,
node in the list will have a reference that is set to null

Advantages of linked lists
�Li k d li d i h h i k�Linked lists are dynamic, they can grow or shrink

as necessary

�Linked lists can be maintained in sorted order
simply by inserting each new element at the propersimply by inserting each new element at the proper
point in the list. Existing list elements do not need
to be movedto be moved

�Linked lists are non-contiguous; the logicalLinked lists are non-contiguous; the logical
sequence of items in the structure is decoupled
from any physical ordering in memory

CS 307 Fundamentals of
Computer Science Linked Lists

8

y p y g y

Nodes and Lists
��A different way of implementing a list
�Each element of a Linked List is a separate

Node object.
�Each Node tracks a single piece of data plus ac ode t ac s a s g e p ece o data p us

a reference (pointer) to the next
�Create a new Node very time we addCreate a new Node very time we add

something to the List
�Remove nodes when item removed from list�Remove nodes when item removed from list

and allow garbage collector to reclaim that
memory

CS 307 Fundamentals of
Computer Science Linked Lists

9

memory

A Node Class
public class Node<E> {public class Node<E> {

private E myData;
private Node myNext;

public Node()public Node()
{ myData = null; myNext = null; }

public Node(E data, Node<E> next)
{ myData = data; myNext = next; }{ y ; y ; }

public E getData()
{ return myData; }

public Node<E> getNext()
{ return myNext; }

public void setData(Et data)
{ D t d t }{ myData = data; }

public void setNext(Node<E> next)
{ myNext = next; }

}

CS 307 Fundamentals of
Computer Science Linked Lists

10

}

One Implementation of a Linked List
�Th N d h th i lid�The Nodes show on the previous slide are

singly linked
d f l t th t d i th– a node refers only to the next node in the

structure
– it is also possible to have doubly linked nodesit is also possible to have doubly linked nodes.
– The node has a reference to the next node in the

structure and the previous node in the structure p
as well

�How is the end of the list indicated
– myNext = null for last node
– a separate dummy node class / object

CS 307 Fundamentals of
Computer Science Linked Lists

11

Interfaces and Standard Java
��Finally, an alternate

implementation to an ADT
�Specify a List interface

– Java has this C ki
�Implement in multiple ways

– ArrayList

Cookie
ArrayList

– LinkedList
�Which is better?�Which is better?

CS 307 Fundamentals of
Computer Science Linked Lists

12

A Linked List Implementation
public class LinkedList<E> implements Ilist<E>public class LinkedList<E> implements Ilist<E>

private Node<E> head;
private Node<E> tail;
private int size;

public LinkedList(){
head = null;
tail = null;tail = null;
size = 0;

}
}
LinkedList<String> list = new LinkedList<String>();

LinkedList

myHead iMySizenull

ll

0

CS 307 Fundamentals of
Computer Science Linked Lists

13
myTail null

Writing Methods
��When trying to code methods for Linked

Lists draw pictures!
– If you don't draw pictures of what you are trying

to do it is very easy to make mistakes!

CS 307 Fundamentals of
Computer Science Linked Lists

14

add method
��add to the end of list
�special case if empty
�steps on following slides
�public void add(Object obj)public void add(Object obj)

CS 307 Fundamentals of
Computer Science Linked Lists

15

Add Element - List Empty (Before)
head tail size

ll ll 0null null 0

Object

item

CS 307 Fundamentals of
Computer Science Linked Lists

16

Add Element - List Empty (After)

head tail size

11

String
Node

myData myNext
nullnull

CS 307 Fundamentals of
Computer Science Linked Lists

17

Add Element - List Not Empty (Before)
h d il i

1
head tail size

NodeNode
myData myNext

nullnull

String Stringitem

CS 307 Fundamentals of
Computer Science Linked Lists

18

Add Element - List Not Empty (After)
h d il i

2
head tail size

Node NodeNode
myData myNext

Node
myData myNext

llnull

String String

CS 307 Fundamentals of
Computer Science Linked Lists

19

Code for default add
��public void add(Object obj)

CS 307 Fundamentals of
Computer Science Linked Lists

20

Attendance Question 2
��What is the worst case Big O for adding to

the end of an array based list and a linked
list? The lists already contains N items.
Array based Linked

A. O(1) O(1)
B O(N) O(N)B. O(N) O(N)
C. O(logN) O(1)
D O(1) O(N)D. O(1) O(N)
E. O(N) O(1)

CS 307 Fundamentals of
Computer Science Linked Lists

21

Code for addFront
��add to front of list
�public void addFront(Object obj)
�How does this compare to adding at the front

of an array based list?o a a ay based st

CS 307 Fundamentals of
Computer Science Linked Lists

22

Attendance Question 3
��What is the Big O for adding to the front of

an array based list and a linked list? The lists
already contains N items.
Array based Linked

A. O(1) O(1)
B O(N) O(1)B. O(N) O(1)
C. O(logN) O(1)
D O(1) O(N)D. O(1) O(N)
E. O(N) O(N)

CS 307 Fundamentals of
Computer Science Linked Lists

23

Code for Insert
��public void insert(int pos, Object obj)
�Must be careful not to break the chain!
�Where do we need to go?
�Special cases?Special cases?

CS 307 Fundamentals of
Computer Science Linked Lists

24

Attendance Question 4
��What is the Big O for inserting an element

into the middle of an array based list and a
linked list? The lists contains N items.
Array based Linked

A. O(N) O(N)
B O(N) O(1)B. O(N) O(1)
C. O(logN) O(1)
D O(l N) O(l N))D. O(logN) O(logN))
E. O(1) O(N)

CS 307 Fundamentals of
Computer Science Linked Lists

25

Attendance Question 5
��What is the Big O for getting an element

based on position from an array based list
and a linked list? The lists contain N items.
Array based Linked

A. O(1) O(N)
B O(N) O(1)B. O(N) O(1)
C. O(logN) O(1)
D O(l N) O(N)D. O(logN) O(N)
E. O(N) O(N)

CS 307 Fundamentals of
Computer Science Linked Lists

26

Code for get
��public Object get(int pos)
�The downside of Linked Lists

CS 307 Fundamentals of
Computer Science Linked Lists

27

Code for remove
��public Object remove(int pos)

CS 307 Fundamentals of
Computer Science Linked Lists

28

Why Use Linked List
��What operations with a Linked List faster

than the version from ArrayList?

CS 307 Fundamentals of
Computer Science Linked Lists

29

Remove Back Method
��public Object removeBack()

�Big O?
CS 307 Fundamentals of
Computer Science Linked Lists

30

Big O?

Iterators for Linked Lists
��What is the Big O of the following code?

LinkedList<Integer> list;

list = new LinkedList<Integer>();list new LinkedList Integer ();
// code to fill list with N elements

//Big O of following code?
for(int i = 0; i < list.size(); i++)

System.out.println(list.get(i));

CS 307 Fundamentals of
Computer Science Linked Lists

31

Attendance Question 6
��What is the Big O of the code on the

previous slide?
A. O(N)
B. O(2N)O()
C. O(NlogN)
D O(N2)D. O(N2)
E. O(N3)

CS 307 Fundamentals of
Computer Science Linked Lists

32

Other Possible Features of
Li k d Li tLinked Lists

�Doubly Linked�Doubly Linked
�Circular
�Dummy Nodes for first and last node in list

public class DLNode<E> {
private E myData;p y
private DLNode<E> myNext;
private DLNode<E> myPrevious;

}

CS 307 Fundamentals of
Computer Science Linked Lists

33

Dummy Nodes
��Use of Dummy Nodes for a Doubly Linked

List removes most special cases
�Also could make the Double Linked List

circular

CS 307 Fundamentals of
Computer Science Linked Lists

34

Doubly Linked List
addFrontaddFront

�public void addFront(Object obj)p (j j)

CS 307 Fundamentals of
Computer Science Linked Lists

35

Insert for Doubly Linked List
��public void insert(int pos, Object obj)

CS 307 Fundamentals of
Computer Science Linked Lists

36

Topic 15
I l ti d U i St kImplementing and Using Stacks

"stack n.
Th t f thi h t d i th f t "I h 'tThe set of things a person has to do in the future. "I haven't
done it yet because every time I pop my stack something new
gets pushed." If you are interrupted several times in the g p y p
middle of a conversation, "My stack overflowed" means "I
forget what we were talking about."

-The Hacker's Dictionary
Friedrich L BauerFriedrich L. Bauer
German computer scientist
who proposed "stack method
of expression evaluation"

CS 307 Fundamentals of
Computer Science Stacks

1

of expression evaluation
in 1955.

Stack Overflow

CS 307 Fundamentals of
Computer Science Stacks

2

Sharper Tools

Lists
Stacks

Lists

CS 307 Fundamentals of
Computer Science Stacks

3

Stacks
�Access is allowed only at one point of the structure�Access is allowed only at one point of the structure,

normally termed the top of the stack
– access to the most recently added item only– access to the most recently added item only

� Operations are limited:
– push (add item to stack)push (add item to stack)
– pop (remove top item from stack)
– top (get top item without removing it)p (g p g)
– clear
– isEmpty
– size?

�Described as a "Last In First Out"
(LIFO) d t t t

CS 307 Fundamentals of
Computer Science Stacks

4

(LIFO) data structure

Stack Operations
Assume a simple stack for integers.
Stack s = new Stack();
s.push(12);
s push(4);s.push(4);
s.push(s.top() + 2);

()s.pop()
s.push(s.top());
//what are contents of stack?

CS 307 Fundamentals of
Computer Science Stacks

5

Stack Operations
Write a method to print out contents of stack
in reverse order.

CS 307 Fundamentals of
Computer Science Stacks

6

Common Stack Error
Stack s = new Stack();
// put stuff in stack
for(int i 0; i < 5; i++)for(int i = 0; i < 5; i++)

s.push(i);
// print out contents of stack// print out contents of stack
// while emptying it. (??)
for(int i = 0; i < s.size(); i++)

System.out.print(s.pop() + “ “);

// Wh t i t t?// What is output?

CS 307 Fundamentals of
Computer Science Stacks

7

Attendance Question 1
��What is output of code on previous slide?
A 0 1 2 3 4
B 4 3 2 1 0
C 4 3 2C 4 3 2
D 2 3 4
E N d iE No output due to runtime error.

CS 307 Fundamentals of
Computer Science Stacks

8

Corrected Version
Stack s = new Stack();
// put stuff in stack
for(int i = 0; i < 5; i++)for(int i = 0; i < 5; i++)

s.push(i);
// print out contents of stack p
// while emptying it
int limit = s.size();
for(int i = 0; i < limit; i++)

System.out.print(s.pop() + “ “);
////or
// while(!s.isEmpty())

CS 307 Fundamentals of
Computer Science Stacks

9
// System.out.println(s.pop());

Implementing a stack
� d d l i ll i h ld h l�need an underlying collection to hold the elements

of the stack
�2 b i h i�2 basic choices

– array (native or ArrayList)
linked list– linked list

�array implementation

�linked list implementation

�Some of the uses for a stack are much more
interesting than the implementation of a stack

CS 307 Fundamentals of
Computer Science Stacks

10

interesting than the implementation of a stack

Applications of StacksApplications of Stacks

CS 307 Fundamentals of
Computer Science Stacks

11

Problems that Use Stacks
��The runtime stack used by a

process (running program) to
keep track of methods in
progress

�Search problems
�Undo, redo, back, forwardU do, edo, bac , o a d

CS 307 Fundamentals of
Computer Science Stacks

12

Mathematical Calculations
Wh t i 3 2 * 4? 2 * 4 3? 3 * 2 4?What is 3 + 2 * 4? 2 * 4 + 3? 3 * 2 + 4?

The precedence of operators affects the
d f ti A th ti lorder of operations. A mathematical

expression cannot simply be evaluated left to
rightright.
A challenge when evaluating a program.
L i l l i i th fLexical analysis is the process of
interpreting a program.
I l T k i tiInvolves Tokenization

Wh t b t 1 2 4 ^ 5 * 3 * 6 / 7 ^ 2 ^ 3
CS 307 Fundamentals of
Computer Science Stacks

13

What about 1 - 2 - 4 ^ 5 * 3 * 6 / 7 ^ 2 ^ 3

Infix and Postfix Expressions
�Th t iti�The way we are use to writing

expressions is known as infix
notationnotation

�Postfix expression does not
� i d l�require any precedence rules
�3 2 * 1 + is postfix of 3 * 2 + 1
�evaluate the following postfix

expressions and write out a
di i fi icorresponding infix expression:

2 3 2 4 * + * 1 2 3 4 ^ * +
1 2 3 2 ^ 3 * 6 / + 2 5 ^ 1

CS 307 Fundamentals of
Computer Science Stacks

14

1 2 - 3 2 ^ 3 * 6 / + 2 5 ^ 1 -

Attendance Question 2
��What does the following postfix expression

evaluate to?
6 3 2 + *

A. 188
B. 36
C 24C. 24
D. 11
E. 30

CS 307 Fundamentals of
Computer Science Stacks

15

Evaluation of Postfix Expressions
�E t d ith t k�Easy to do with a stack
�given a proper postfix expression:

– get the next token
– if it is an operand push it onto the stack
– else if it is an operator

• pop the stack for the right hand operand
• pop the stack for the left hand operand
• apply the operator to the two operands

h th lt t th t k• push the result onto the stack
– when the expression has been exhausted the

result is the top (and only element) of the stack
CS 307 Fundamentals of
Computer Science Stacks

16

result is the top (and only element) of the stack

Infix to Postfix
��Convert the following equations from infix to

postfix:
2 ^ 3 ^ 3 + 5 * 1
11 + 2 - 1 * 3 / 3 + 2 ^ 2 / 3
Problems:

Negative numbers?
parentheses in expression

CS 307 Fundamentals of
Computer Science Stacks

17

Infix to Postfix Conversion
�R i t d i l ith�Requires operator precedence parsing algorithm

– parse v. To determine the syntactic structure of a
sentence or other utterance

Operands: add to expression
Close parenthesis: pop stack symbols until an open

parenthesis appears
Operators:

Have an on stack and off stack precedence
Pop all stack symbols until a symbol of lower
precedence appears Then push the operatorprecedence appears. Then push the operator

End of input: Pop all remaining stack symbols and
add to the expression

CS 307 Fundamentals of
Computer Science Stacks

18

add to the expression

Simple Example
Infix Expression: 3 + 2 * 4Infix Expression: 3 + 2 4
PostFix Expression:
Operator Stack:Operator Stack:

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1+ 1 1
- 1 1
* 2 2
/ 2 2/ 2 2
^ 10 9
(20 0

CS 307 Fundamentals of
Computer Science Stacks

19

Simple Example
Infix Expression: + 2 * 4Infix Expression: + 2 4
PostFix Expression: 3
Operator Stack:Operator Stack:

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1+ 1 1
- 1 1
* 2 2
/ 2 2/ 2 2
^ 10 9
(20 0

CS 307 Fundamentals of
Computer Science Stacks

20

Simple Example
Infix Expression: 2 * 4Infix Expression: 2 4
PostFix Expression: 3
Operator Stack: +Operator Stack: +

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1+ 1 1
- 1 1
* 2 2
/ 2 2/ 2 2
^ 10 9
(20 0

CS 307 Fundamentals of
Computer Science Stacks

21

Simple Example
Infix Expression: * 4Infix Expression: 4
PostFix Expression: 3 2
Operator Stack: +Operator Stack: +

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1+ 1 1
- 1 1
* 2 2
/ 2 2/ 2 2
^ 10 9
(20 0

CS 307 Fundamentals of
Computer Science Stacks

22

Simple Example
Infix Expression: 4Infix Expression: 4
PostFix Expression: 3 2
Operator Stack: + *Operator Stack: +

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1+ 1 1
- 1 1
* 2 2
/ 2 2/ 2 2
^ 10 9
(20 0

CS 307 Fundamentals of
Computer Science Stacks

23

Simple Example
Infix Expression:Infix Expression:
PostFix Expression: 3 2 4
Operator Stack: + *Operator Stack: +

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1+ 1 1
- 1 1
* 2 2
/ 2 2/ 2 2
^ 10 9
(20 0

CS 307 Fundamentals of
Computer Science Stacks

24

Simple Example
Infix Expression:Infix Expression:
PostFix Expression: 3 2 4 *
Operator Stack: +Operator Stack: +

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1+ 1 1
- 1 1
* 2 2
/ 2 2/ 2 2
^ 10 9
(20 0

CS 307 Fundamentals of
Computer Science Stacks

25

Simple Example
Infix Expression:Infix Expression:
PostFix Expression: 3 2 4 * +
Operator Stack:Operator Stack:

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1+ 1 1
- 1 1
* 2 2
/ 2 2/ 2 2
^ 10 9
(20 0

CS 307 Fundamentals of
Computer Science Stacks

26

Example
1 - 2 ^ 3 ^ 3 - (4 + 5 * 6) * 7
Show algorithm in action on above equation

CS 307 Fundamentals of
Computer Science Stacks

27

Balanced Symbol Checking
��In processing programs and working with

computer languages there are many
instances when symbols must be balanced
{ } , [] , ()

A stack is useful for checking symbol balance.
When a closing symbol is found it must match
the most recent opening symbol of the same
t petype.

Algorithm?

CS 307 Fundamentals of
Computer Science Stacks

28

Algorithm for Balanced
Symbol CheckingSymbol Checking

�Make an empty stack
�read symbols until end of file

– if the symbol is an opening symbol push it onto
the stack

– if it is a closing symbol do the following
• if the stack is empty report an error
• otherwise pop the stack. If the symbol popped does

not match the closing symbol report an errornot match the closing symbol report an error

�At the end of the file if the stack is not empty
report an error

CS 307 Fundamentals of
Computer Science Stacks

29

report an error

Algorithm in practice
�li [i] 3 * (44 h d(f (li [2 * (i 1) f (�list[i] = 3 * (44 - method(foo(list[2 * (i + 1) + foo(

list[i - 1])) / 2 *) - list[method(list[0])];

�Complications
h i it t t h t hi b l ?– when is it not an error to have non matching symbols?

�Processing a file�Processing a file
– Tokenization: the process of scanning an input stream.

Each independent chunk is a token. p
�Tokens may be made up of 1 or more characters

CS 307 Fundamentals of
Computer Science Stacks

30

Topic 16
QQueues

"FISH queue: n.
[acronym, by analogy with FIFO (First In,
First Out)] ‘First In, Still Here’. A joking way of
pointing out that processing of a particular
sequence of events or requests has stopped
dead Also FISH mode and FISHnet; thedead. Also FISH mode and FISHnet; the
latter may be applied to any network that is
running really slowly or exhibiting extremerunning really slowly or exhibiting extreme
flakiness."

-The Jargon File 4.4.7

CS 307 Fundamentals of
Computer Science Queues

1

g

Queues
�Si il t St k�Similar to Stacks
�Like a line

–In Britain people don’t “get in line”
they “queue up”.they queue up .

CS 307 Fundamentals of
Computer Science Queues

2

Queue Properties
��Queues are a first in first out data structure

– FIFO (or LILO, but that sounds a bit silly)
�Add items to the end of the queue
�Access and remove from the frontAccess and remove from the front

– Access to the element that has been in the
structure the longest amount of timeg

�Used extensively in operating systems
Queues of processes I/O requests and much– Queues of processes, I/O requests, and much
more

CS 307 Fundamentals of
Computer Science Queues

3

Queues in Operating Systems
�O i h 1 CPU b h�On a computer with 1 CPU, but many processes how

many processes can actually use the CPU at a time?
�O j b f OS h d l th f th CPU�One job of OS, schedule the processes for the CPU
�issues: fairness, responsiveness, progress

CS 307 Fundamentals of
Computer Science Queues

4

Queue operations
��add(Object item)

– a.k.a. enqueue(Object item)
�Object get()

– a.k.a. Object front(), Object peek()j j p
�Object remove()

– a k a Object dequeue()a.k.a. Object dequeue()
�boolean isEmpty()
�S if i i t f ll i d�Specify in an interface, allow varied

implementations

CS 307 Fundamentals of
Computer Science Queues

5

Queue interface, version 1
public interface Queue
{ //place item at back of this Queue

enqueue(Object item);q (j);

//access item at front of this queue
//pre: !isEmpty()//pre: !isEmpty()
Object front();

//remove item at front of this queue
//pre: !isEmpty()
Object dequeue();j q ();

boolean isEmpty();
}

CS 307 Fundamentals of
Computer Science Queues

6

}

Implementing a Queue
�Gi th i t l t t i d�Given the internal storage container and

choice for front and back of queue what are
th Bi O f th ti ?the Big O of the queue operations?

ArrayList LinkedList LinkeListArrayList LinkedList LinkeList
(Singly Linked) (Doubly Linked)

enqueue

front

dequeuedequeue

isEmpty

CS 307 Fundamentals of
Computer Science Queues

7

Attendance Question 1
��If implementing a queue with a singly linked

list with references to the first and last nodes
(head and tail) which end of the list should be
the front of the queue in order to have all

O()?queue operations O(1)?
A. The front of the list should be the front of the

queue
B. The back of the list should be the front of the

queue.
C. D. E. I don’t know, but I am sure looking forward

t t ki 307 i ti
CS 307 Fundamentals of
Computer Science Queues

8

to taking 307 again some time.

Alternate Implementation
��How about implementing a Queue with a

native array?
– Seems like a step backwards

CS 307 Fundamentals of
Computer Science Queues

9

Application of Queues
�R di S t�Radix Sort

– radix is a synonym for base. base 10, base 2
�M lti ti l ith th t l l k�Multi pass sorting algorithm that only looks

at individual digits during each pass
�U b k t t t l t�Use queues as buckets to store elements
�Create an array of 10 queues
�Starting with the least significant digit place

value in queue that matches digit
�empty queues back into array
�repeat, moving to next least significant digit

CS 307 Fundamentals of
Computer Science Queues

10

p g g g

Radix Sort in Action: 1s
��original values in array

113, 70, 86, 12, 93, 37, 40, 252, 7, 79, 12
�Look at ones place

113, 70, 86, 12, 93, 37, 40, 252, 7, 79, 12, , , , , , , , , ,
�Queues:

0 70 40 50 70, 40 5
1 6 86
2 12 252 12 7 37 72 12, 252, 12 7 37, 7
3 113, 93 8
4 9 9 79

CS 307 Fundamentals of
Computer Science Queues

11

4 9 9, 79

Radix Sort in Action: 10s
�E t i d f 0 t 9 b k i t�Empty queues in order from 0 to 9 back into

array
70 40 12 252 12 113 93 86 37 7 9 7970, 40, 12, 252, 12, 113, 93, 86, 37, 7, 9, 79

�Now look at 10's place
70 40 12 252 12 113 93 86 37 7 9 7970, 40, 12, 252, 12, 113, 93, 86, 37, 7, 9, 79

�Queues:
0 7 9 5 2520 7, 9 5 252
1 12, 12, 113 6
2 7 70 792 7 70, 79
3 37 8 86
4 40 9 93

CS 307 Fundamentals of
Computer Science Queues

12

4 40 9 93

Radix Sort in Action: 100s
�E i d f 0 9 b k i�Empty queues in order from 0 to 9 back into array

7, 9, 12, 12, 113, 37, 40, 252, 70, 79, 86, 93
�N l k t 100' l�Now look at 100's place

__7, __9, _12, _12, 113, _37, _40, 252, _70, _79, _86, _93
�Q�Queues:

0 7, 9, _12, _12, _40, _70, _79, _86, _93 5
1 113 61 113 6
2 252 7
3 83 8
4 9

CS 307 Fundamentals of
Computer Science Queues

13

Radix Sort in Action: Final Step
��Empty queues in order from 0 to 9 back into

array
7, 9, 12, 12, 40, 70, 79, 86, 93, 113, 252

CS 307 Fundamentals of
Computer Science Queues

14

Radix Sort Code
public static void sort(int[] list){public static void sort(int[] list){

ArrayList<Queue<Integer>> queues = new ArrayList<Queue<Integer>>();
for(int i = 0; i < 10; i++)

queues.add(new LinkedList<Integer>());
int passes = numDigits(list[0]);int passes numDigits(list[0]);
int temp;
for(int i = 1; i < list.length; i++){

temp = numDigits(list[i]);
if(temp > passes)if(temp > passes)

passes = temp;
}
for(int i = 0; i < passes; i++){

for(int j = 0; j < list.length; j++){for(int j 0; j < list.length; j++){
queues.get(valueOfDigit(list[j], i)).add(list[j]);

}
int pos = 0;
for(Queue<Integer> q : queues){for(Queue<Integer> q : queues){

while(!q.isEmpty())
list[pos++] = q.remove();

}
}

CS 307 Fundamentals of
Computer Science Queues

15

}
}

Topic 17
I t d ti t TIntroduction to Trees

"A t"A tree may grow a
thousand feet tall butthousand feet tall, but
its leaves will return to
its roots."

Chinese Proverb-Chinese Proverb

CS 307 Fundamentals of
Computer Science

1

Definitions
�A t i b t t d t t d�A tree is an abstract data

type
root node

internal
nodes

– one entry point, the root
– Each node is either a leaf or

i t l dan internal node
– An internal node has 1 or

more children nodes thatmore children, nodes that
can be reached directly from
that internal nodethat internal node.

– The internal node is said to be
the parent of its child nodes

leaf nodes

CS 307 Fundamentals of
Computer Science

2

the parent of its child nodes

Properties of Trees
��Only access point is the root
�All nodes, except the root, have one parent

– like the inheritance hierarchy in Java
�Traditionally trees drawn upside downTraditionally trees drawn upside down

root

CS 307 Fundamentals of
Computer Science

3leaves

Properties of Trees and Nodes
� root�siblings: two nodes that

have the same parent
root

edge

�edge: the link from one
node to another

�path length: the number of
edges that must be siblingsedges a us be
traversed to get from one
node to another

path length from root to this
node is 3

CS 307 Fundamentals of
Computer Science

4

More Properties of Trees
�d th th th l th f th t f th t�depth: the path length from the root of the tree

to this node
�h i ht f d Th i di t�height of a node: The maximum distance

(path length) of any leaf from this node
a leaf has a height of 0– a leaf has a height of 0

– the height of a tree is the height of the root of that
treetree

�descendants: any nodes that can be reached
via 1 or more edges from this nodevia 1 or more edges from this node

�ancestors: any nodes for which this node is a
descendant
CS 307 Fundamentals of
Computer Science

5

descendant

Tree Visualization
A

DB C

FE G H JI

K L MK L M

N O
CS 307 Fundamentals of
Computer Science

6

N O

Attendance Question 1
��What is the depth of the node that contains

M on the previous slide?
A. -1
B. 00
C. 1
D 2D. 2
E. 3

CS 307 Fundamentals of
Computer Science

7

Binary Trees
��There are many variations on trees but we

will work with binary trees
�binary tree: a tree with at most two children

for each node
– the possible children are normally referred to as

the left and right child
parent

left child right child

CS 307 Fundamentals of
Computer Science

8

Full Binary Tree
��full binary tree: a binary tree is which each

node was exactly 2 or 0 children

CS 307 Fundamentals of
Computer Science

9

Complete Binary Tree
��complete binary tree: a binary tree in which

every level, except possibly the deepest is
completely filled. At depth n, the height of the
tree, all nodes are as far left as possible

Where would the next node go
CS 307 Fundamentals of
Computer Science

10

Where would the next node go
to maintain a complete tree?

Perfect Binary Tree
��perfect binary tree: a binary tree with all leaf

nodes at the same depth. All internal nodes
have exactly two children.

�a perfect binary tree has the maximum
number of nodes for a given height

�a perfect binary tree has 2(n+1) - 1 nodes a pe ec b a y ee as odes
where n is the height of a tree
– height = 0 -> 1 node
– height = 1 -> 3 nodes
– height = 2 -> 7 nodes
– height = 3 -> 15 nodes

CS 307 Fundamentals of
Computer Science

11

height 3 15 nodes

A Binary Node class
bli l BN dpublic class BNode

{ private Object myData;
private BNode myLeft;

i t BN d Ri htprivate BNode myRight;

public BNode();
bli d (bj d d l fpublic BNode(Object data, BNode left,

BNode right)
public Object getData()

ipublic BNode getLeft()
public BNode getRight()

public void setData(Object data)
public void setLeft(BNode left)
public void setRight(BNode right)

CS 307 Fundamentals of
Computer Science

12

}

Binary Tree Traversals
�M l i h i ll d f bi�Many algorithms require all nodes of a binary tree

be visited and the contents of each node
processedprocessed.

�There are 4 traditional types of traversals
preorder traversal: process the root then process all sub– preorder traversal: process the root, then process all sub
trees (left to right)

– in order traversal: process the left sub tree, process the
root, process the right sub tree

– post order traversal: process the left sub tree, process
the right sub tree then process the rootthe right sub tree, then process the root

– level order traversal: starting from the root of a tree,
process all nodes at the same depth from left to right,

CS 307 Fundamentals of
Computer Science

13

p p g
then proceed to the nodes at the next depth.

Results of Traversals
��To determine the results of a traversal on a

given tree draw a path around the tree.
– start on the left side of the root and trace around

the tree. The path should stay close to the tree.

12 pre order: process when
pass down left side of node
12 49 13 5 42

49 42
12 49 13 5 42
in order: process when pass
underneath node

513
13 49 5 12 42
post order: process when
pass up right side of node

CS 307 Fundamentals of
Computer Science

14

pass up right side of node
13 5 49 42 12

Tree Traversals
A

DC

F G H J

K L

CS 307 Fundamentals of
Computer Science

15

Attendance Question 2
��What is a the result of a post order traversal

of the tree on the previous slide?
A. F C G A K H L D J
B. F G C K L H J D AG C J
C. A C F G D H K L J
D A C D F G H J K LD. A C D F G H J K L
E. L K J H G F D C A

CS 307 Fundamentals of
Computer Science

16

Implement Traversals
��Implement preorder, inorder, and post order

traversal
– Big O time and space?

�Implement a level order traversal using a p g
queue
– Big O time and space? g p

�Implement a level order traversal without a
queuequeue
– target depth

�Different kinds of Iterators for traversals?
CS 307 Fundamentals of
Computer Science

17

�Different kinds of Iterators for traversals?

Topic 18
Bi S h TBinary Search Trees

"Yes Shrubberies are my trade I am aYes. Shrubberies are my trade. I am a
shrubber. My name is 'Roger the Shrubber'. I
arrange, design, and sell shrubberies."arrange, design, and sell shrubberies.

-Monty Python and The Holy Grail

CS 307 Fundamentals of
Computer Science

1

The Problem with Linked Lists
��Accessing a item from a linked list takes

O(N) time for an arbitrary element
�Binary trees can improve upon this and

reduce access to O(log N) time for the
average case

�Expands on the binary search technique and pa ds o e b a y sea c ec que a d
allows insertions and deletions

�Worst case degenerates to O(N) but this canWorst case degenerates to O(N) but this can
be avoided by using balanced trees (AVL,
Red-Black)

CS 307 Fundamentals of
Computer Science

2

Red Black)

Binary Search Trees
�A bi i h h d h�A binary tree is a tree where each node has at

most two children, referred to as the left and right
childchild

�A binary search tree is a binary tree in which every
node's left subtree holds values less than thenode s left subtree holds values less than the
node's value, and every right subtree holds values
greater than the node's value. g

�A new node is added as a leaf.
parent

root

17

l ft hild right child

17

11 19

< >

CS 307 Fundamentals of
Computer Science

3

left child right child11 19

Attendance Question 1
��After adding N distinct elements in random

order to a Binary Search Tree what is the
expected height of the tree?

A. O(N1/2)
B O(logN)B. O(logN)
C. O(N)
D O(Nl N)D. O(NlogN)
E. O(N2)

CS 307 Fundamentals of
Computer Science

4

Implementation of Binary Node
public class BSTNode
{ private Comparable myData;{ private Comparable myData;

private BSTNode myLeft;
private BSTNode myRightC;

bli i d (bl i)public BinaryNode(Comparable item)
{ myData = item; }

public Object getValue()pub c Object get a ue()
{ return myData; }

public BinaryNode getLeft()
{ t L ft }{ return myLeft; }

public BinaryNode getRight()
{ return myRight; }y g

public void setLeft(BSTNode b)
{ myLeft = b; }
// setRight not shown

CS 307 Fundamentals of
Computer Science

5

// setRight not shown
}

Sample Insertion
�100 164 130 189 244 42 141 231 20 153�100, 164, 130, 189, 244, 42, 141, 231, 20, 153

(from HotBits: www.fourmilab.ch/hotbits/)

If you insert 1000 random numbers into a BST using
the naïve algorithm what is the expected height of the
t ? (N b f li k f t t d t l f)tree? (Number of links from root to deepest leaf.)

CS 307 Fundamentals of
Computer Science

6

Worst Case Performance
��In the worst case a BST can degenerate into

a singly linked list.
�Performance goes to O(N)
�2 3 5 7 11 13 173 5 3

CS 307 Fundamentals of
Computer Science

7

More on Implementation
��Many ways to implement BSTs
�Using nodes is just one and even then many

options and choices

public class BinarySearchTree
{ private TreeNode root;

private int size;

public BinarySearchTree()
{ root = null;

size = 0;
}

CS 307 Fundamentals of
Computer Science

8

}

Add an Element, Recursive

CS 307 Fundamentals of
Computer Science

9

Add an Element, Iterative

CS 307 Fundamentals of
Computer Science

10

Attendance Question 2
��What is the best case and worst case Big O

to add N elements to a binary search tree?
Best Worst

A. O(N) O(N)O() O()
B. O(NlogN) O(NlogN)
C O(N) O(NlogN)C. O(N) O(NlogN)
D. O(NlogN) O(N2)
E. O(N2) O(N2)

CS 307 Fundamentals of
Computer Science

11

Performance of Binary Trees
��For the three core operations (add, access,

remove) a binary search tree (BST) has an
average case performance of O(log N)

�Even when using the naïve insertion /
removal algorithms

�no checks to maintain balanceo c ec s o a a ba a ce
�balance achieved based on the randomness

of the data insertedof the data inserted

CS 307 Fundamentals of
Computer Science

12

Remove an Element
��Three cases

– node is a leaf, 0 children (easy)
– node has 1 child (easy)
– node has 2 children (interesting)

CS 307 Fundamentals of
Computer Science

13

Properties of a BST
�Th i i l i i th l ft�The minimum value is in the left

most node
�The maximum value is in the right

most nodemost node
–useful when removing an element

f th BSTfrom the BST
�An inorder traversal of a BST

provides the elements of the BST in
ascending order

CS 307 Fundamentals of
Computer Science

14

ascending order

Using Polymorphism
��Examples of dynamic data structures have

relied on null terminated ends.
– Use null to show end of list, no children

�Alternative form
– use structural recursion and polymorphism

CS 307 Fundamentals of
Computer Science

15

BST Interface

public interface BST {
bli i t i ()public int size();

public boolean contains(Comparable obj);
public boolean add(Comparable obj);

}

CS 307 Fundamentals of
Computer Science

16

EmptyBST
public class EmptyBST implements BST {

private static EmptyBST theOne = new EmptyBST();

private EmptyBST(){}

public static EmptyBST getEmptyBST(){ return theOne; }p p y g p y (){ }

public NEBST add(Comparable obj) { return new NEBST(obj); }

public boolean contains(Comparable obj) { return false; }public boolean contains(Comparable obj) { return false; }

public int size() { return 0; }
}

CS 307 Fundamentals of
Computer Science

17

Non Empty BST – Part 1
public class NEBST implements BST {public class NEBST implements BST {

private Comparable data;
private BST left;
private BST right;

public NEBST(Comparable d){
data = d;data d;
right = EmptyBST.getEmptyBST();
left = EmptyBST.getEmptyBST();

}

public BST add(Comparable obj) {
int val = obj.compareTo(data);
if(val < 0)()
left = left.add(obj);
else if(val > 0)
right = right.add(obj);
return this;

CS 307 Fundamentals of
Computer Science

18

return this;
}

Non Empty BST – Part 2
public boolean contains(Comparable obj){

int val = obj.compareTo(data);
if(val == 0)if(val 0)
return true;

else if (val < 0)
return left.contains(obj);

elseelse
return right.contains(obj);

}

public int size() {
return 1 + left.size() + right.size();

}

}

CS 307 Fundamentals of
Computer Science

19

Topic 19
Red Black TreesRed Black Trees

"People in every direction p y
No words exchanged
No time to exchange
And all the little ants are marching g
Red and black antennas waving"

-Ants Marching, Dave Matthew's Band

"Welcome to L.A.'s Automated Traffic Surveillance and Control Operations
Center. See, they use video feeds from intersections and specifically
designed algorithms to predict traffic conditions, and thereby control traffic g g p , y
lights. So all I did was come up with my own... kick ass algorithm to sneak
in, and now we own the place."

-Lyle, the Napster, (Seth Green), The Italian Job

CS 307 Fundamentals of
Computer Science Red Black Trees

1

y , p , (),

Attendance Question 1
��2000 elements are inserted one at a time

into an initially empty binary search tree
using the traditional algorithm. What is the
maximum possible height of the resulting

?tree?
A. 1
B. 11
C 1000C. 1000
D. 1999
E 4000E. 4000

CS 307 Fundamentals of
Computer Science Red Black Trees

2

Binary Search Trees
��Average case and worst case Big O for

– insertion
– deletion
– access

�Balance is important. Unbalanced trees give
worse than log N times for the basic tree g
operations

�Can balance be guaranteed?Can balance be guaranteed?

CS 307 Fundamentals of
Computer Science Red Black Trees

3

Red Black Trees
��A BST with more complex algorithms to

ensure balance
�Each node is labeled as Red or Black.
�Path: A unique series of links (edges) at u que se es o s (edges)

traverses from the root to each node.
– The number of edges (links) that must beThe number of edges (links) that must be

followed is the path length
�In Red Black trees paths from the root toIn Red Black trees paths from the root to

elements with 0 or 1 child are of particular
interest

CS 307 Fundamentals of
Computer Science Red Black Trees

4

interest

Paths to Single or Zero Child
NodesNodes

�How many? 19

12 35

16 213 16 5621

11

CS 307 Fundamentals of
Computer Science Red Black Trees

5

Red Black Tree Rules
1. Every node is colored either Red

or black
2. The root is black
3 If d i d it hild t3. If a node is red its children must

be black. (a.k.a. the red rule)
4. Every path from a node to a null

link must contain the samelink must contain the same
number of black nodes (a.k.a.
the path rule)

CS 307 Fundamentals of
Computer Science Red Black Trees

6

the path rule)

Example of a Red Black Tree

�The root of a Red Black tree is black
�Every other node in the tree follows these rules:

– Rule 3: If a node is Red, all of its children are Black
– Rule 4: The number of Black nodes must be the same in all pathsRule 4: The number of Black nodes must be the same in all paths

from the root node to null nodes

1919

12 35

3 16 5621

CS 307 Fundamentals of
Computer Science Red Black Trees

7
30

Red Black Tree?
19

12 3512

0 50

-10

5

75

135-5

-8

135

100

-6 80

CS 307 Fundamentals of
Computer Science Red Black Trees

8

Attendance Question 2
��Is the tree on the previous slide a binary

search tree? Is it a red black tree?
BST? Red-Black?

A. No No
B. No Yes
C Yes NoC. Yes No
D. Yes Yes

CS 307 Fundamentals of
Computer Science Red Black Trees

9

Red Black Tree?

19

12 35

3 163 16

0

Perfect?
F ll?Full?
Complete?

CS 307 Fundamentals of
Computer Science Red Black Trees

10

Attendance Question 3
��Is the tree on the previous slide a binary

search tree? Is it a red black tree?
BST? Red-Black?

A. No No
B. No Yes
C Yes NoC. Yes No
D. Yes Yes

CS 307 Fundamentals of
Computer Science Red Black Trees

11

Implications of the Rules
��If a Red node has any children, it must have

two children and they must be Black. (Why?)
�If a Black node has only one child that child

must be a Red leaf. (Why?)
�Due to the rules there are limits on how

unbalanced a Red Black tree may become.u ba a ced a ed ac ee ay beco e
– on the previous example may we hang a new

node off of the leaf node that contains 0?

CS 307 Fundamentals of
Computer Science Red Black Trees

12

Properties of Red Black Trees
��If a Red Black Tree is complete, with all

Black nodes except for Red leaves at the
lowest level the height will be minimal, ~log N

�To get the max height for N elements there
should be as many Red nodes as possible
down one path and all other nodes are Black
– This means the max height would be < 2 * log N
– see example on next slidep

CS 307 Fundamentals of
Computer Science Red Black Trees

13

Max Height Red Black Tree
14

12 3512 35

562113 56

43 99

211 13

15 2515 25

80 100

70
CS 307 Fundamentals of
Computer Science Red Black Trees

14

Maintaining the Red Black
Properties in a TreeProperties in a Tree

�Insertions
�Must maintain rules of Red Black Tree.
�New Node always a leafNew Node always a leaf

– can't be black or we will violate rule 4
– therefore the new leaf must be red– therefore the new leaf must be red
– If parent is black, done (trivial case)

if parent red things get interesting because a red– if parent red, things get interesting because a red
leaf with a red parent violates rule 3

CS 307 Fundamentals of
Computer Science Red Black Trees

15

Insertions with Red Parent - Child
Must modify tree when insertion would result in
Red Parent - Child pair using color changes and

30

Red Parent Child pair using color changes and
rotations.

15 70

856010 20

80 9050 655

CS 307 Fundamentals of
Computer Science Red Black Trees

16
40 55

Case 1
��Suppose sibling of parent is Black.

– by convention null nodes are black
�In the previous tree, true if we are inserting a

3 or an 8.
– What about inserting a 99? Same case?

�Let X be the new leaf Node P be its RedLet X be the new leaf Node, P be its Red
Parent, S the Black sibling and G, P's and
S's parent and X's grandparentS s parent and X s grandparent
– What color is G?

CS 307 Fundamentals of
Computer Science Red Black Trees

17

Case 1 - The Picture

G

P S

EDX C

A B

Relative to G X could be an inside or outside nodeRelative to G, X could be an inside or outside node.
Outside -> left left or right right moves
Inside -> left right or right left moves

CS 307 Fundamentals of
Computer Science Red Black Trees

18

g g

Fixing the Problem

G

P S

EDX C

A B If X is an outside node a single
rotation between P and G fixes the problem.p
A rotation is an exchange of roles between a parent
and child node. So P becomes G's parent. Also must

l P d G
CS 307 Fundamentals of
Computer Science Red Black Trees

19
recolor P and G.

Single Rotation

P

X G

SCA B

ED
Apparent rule violation?pp

CS 307 Fundamentals of
Computer Science Red Black Trees

20

Case 2
��What if X is an inside node relative to G?

– a single rotation will not work
�Must perform a double rotation

– rotate X and P
– rotate X and G G

P SP S

EDXA EXA

B C

CS 307 Fundamentals of
Computer Science Red Black Trees

21

After Double Rotation
X

P G

CA B SCA B

EDApparent rule violation?

CS 307 Fundamentals of
Computer Science Red Black Trees

22

Case 3
Sibli i R d t Bl kSibling is Red, not Black

G

P SP S

ED
X CX

B

C

A BA

Any problems?

CS 307 Fundamentals of
Computer Science Red Black Trees

23

Fixing Tree when S is Red
��Must perform single rotation between parent,

P and grandparent, G, and then make
appropriate color changes

P

X G

CBA S

ED

CS 307 Fundamentals of
Computer Science Red Black Trees

24

More on Insert
�P bl Wh t if th i l�Problem: What if on the previous example

G's parent had been red?
�E i t l t C 3 !�Easier to never let Case 3 ever occur!
�On the way down the tree, if we see a node X that

has 2 Red children we make X Red and its twohas 2 Red children, we make X Red and its two
children black.
– if recolor the root, recolor it to black
– the number of black nodes on paths below X remains

unchanged
If X's parent was Red then we have introduced 2– If X s parent was Red then we have introduced 2
consecutive Red nodes.(violation of rule)

– to fix, apply rotations to the tree, same as inserting node

CS 307 Fundamentals of
Computer Science Red Black Trees

25

Example of Inserting Sorted Numbers
��1 2 3 4 5 6 7 8 9 10

Insert 1. A leaf so

1
red. Realize it is
root so recolor
to black.

1

CS 307 Fundamentals of
Computer Science Red Black Trees

26

Insert 2

1
make 2 red. Parent
is black so done

2

is black so done.

CS 307 Fundamentals of
Computer Science Red Black Trees

27

Insert 3

1Insert 3. Parent is red.

2

Insert 3. Parent is red.
Parent's sibling is black
(null) 3 is outside relative

3
to grandparent. Rotate
parent and grandparent

2

1 3

CS 307 Fundamentals of
Computer Science Red Black Trees

28

Insert 4

2

On way down see
2 with 2 red children. 2

1 3

Recolor 2 red and
children black.
Realize 2 is root 1Realize 2 is root
so color back to black

22

1 3
When adding 4
parent is black 1 3

4

parent is black
so done.

CS 307 Fundamentals of
Computer Science Red Black Trees

29

4

Insert 5

25's parent is red.
Parent's sibling is

1 3
Parent s sibling is
black (null). 5 is
outside relative to

4
outside relative to
grandparent (3) so rotate
parent and grandparent then

5recolor

CS 307 Fundamentals of
Computer Science Red Black Trees

30

Finish insert of 5

2

1 4

3 5

CS 307 Fundamentals of
Computer Science Red Black Trees

31

Insert 6

2
On way down see
4 with 2 red

1 4
children. Make
4 red and children
black 4's parent is

3 5
black. 4's parent is
black so no problem.

CS 307 Fundamentals of
Computer Science Red Black Trees

32

Finishing insert of 6

26's parent is black

1 4
so done.

3 5

6

CS 307 Fundamentals of
Computer Science Red Black Trees

33

Insert 7

27's parent is red.

1 4
Parent's sibling is
black (null). 7 is
outside relative to

3 5
outside relative to
grandparent (5) so
rotate parent and

6
rotate parent and
grandparent then recolor

7

CS 307 Fundamentals of
Computer Science Red Black Trees

34

Finish insert of 7

2

1 4

3 6

5 7

CS 307 Fundamentals of
Computer Science Red Black Trees

35

Insert 8

2
On way down see 6
with 2 red children.

1 4
Make 6 red and
children black. This

t bl
3 6

creates a problem
because 6's parent, 4, is
also red Must perform

5 7
also red. Must perform
rotation.

CS 307 Fundamentals of
Computer Science Red Black Trees

36

Still Inserting 8

2Recolored now

1 4

Recolored now
need to
rotate

3 6

5 7

CS 307 Fundamentals of
Computer Science Red Black Trees

37

Finish inserting 8

4Recolored now

2 6

Recolored now
need to
rotate

3 5 71

8

CS 307 Fundamentals of
Computer Science Red Black Trees

38

Insert 9

4

2 6

3 5 71

8On way down see 4 has two red children
so recolor 4 red and children black.

9Realize 4 is the root so recolor black

CS 307 Fundamentals of
Computer Science Red Black Trees

39

Finish Inserting 9

4

2 6

3 5 81

7 9
After rotations and recoloringg

CS 307 Fundamentals of
Computer Science Red Black Trees

40

Insert 10

4

2 6

3 5 81

7 9On way down see 8 has two
red children so change 8 tored children so change 8 to
red and children black 10

CS 307 Fundamentals of
Computer Science Red Black Trees

41

Insert 11

4

2 6

3 5 81

7 9
Again a rotation is

10

11

g
needed.

CS 307 Fundamentals of
Computer Science Red Black Trees

42

11

Finish inserting 11

4

2 6

3 5 81

7 10

9 11

CS 307 Fundamentals of
Computer Science Red Black Trees

43

Topic 20
Data Structure Potpourri:Data Structure Potpourri:
Hash Tables and Mapsp

"hash collision n.
[from the techspeak] (var. `hash clash') When used of people,
signifies a confusion in associative memory or imagination,
especially a persistent one (see thinko). True story: One of us was
once on the phone with a friend about to move out to Berkeley. y
When asked what he expected Berkeley to be like, the friend
replied: "Well, I have this mental picture of naked women throwing
Molotov cocktails, but I think that's just a collision in my hash , j y
tables."

-The Hacker's Dictionary
CS307 Hash Tables and Maps 1

The Hacker s Dictionary

Programming Pearls by Jon Bentley

�Jon was senior programmer on a
large programming project.
�Senior programmer spend a lot of
time helping junior programmers.
��Junior programmer to Jon: "I need
help writing a sorting algorithm."

CS307 Hash Tables and Maps 2

A Problem
�From Programming Pearls (Jon in Italics)g g (J)

Why do you want to write your own sort at all? Why not use a sort
provided by your system?
I need the sort in the middle of a large system and for obscureI need the sort in the middle of a large system, and for obscure
technical reasons, I can't use the system file-sorting program.
What exactly are you sorting? How many records are in the file?
What is the format of each record?What is the format of each record?
The file contains at most ten million records; each record is a
seven-digit integer.
Wait a minute. If the file is that small, why bother going to disk at y g g
all? Why not just sort it in main memory?
Although the machine has many megabytes of main memory, this
function is part of a big system. I expect that I'll have only about a
megabyte free at that point.
Is there anything else you can tell me about the records?
Each one is a seven-digit positive integer with no other associated
data and no integer can appear more than once

CS307 Hash Tables and Maps 3

data, and no integer can appear more than once.

Questions
��When did this conversation take place?
�What were they sorting?
�How do you sort data when it won't all fit into

main memory?a e o y
�Speed of file i/o?

CS307 Hash Tables and Maps 4

A Solution
���������	
������������������������
���������������
����� � ������� ���

����������
����������������������������������
� � � � � � ������������������������������
��������	�

����������
� ��������!���������
���������������
�� ����� 	 � � � ���������������	� ����������������������

CS307 Hash Tables and Maps 5

Some Structures so Far
�A Li t�ArrayLists

– O(1) access
– O(N) insertion (average case) better at endO(N) insertion (average case), better at end
– O(N) deletion (average case)

�LinkedLists
– O(N) access
– O(N) insertion (average case), better at front and back

O(N) d l ti () b tt t f t d b k– O(N) deletion (average case), better at front and back
�Binary Search Trees

– O(log N) access if balancedO(log N) access if balanced
– O(log N) insertion if balanced
– O(log N) deletion if balanced

CS307 Hash Tables and Maps 6

Why are Binary Trees Better?
��Divide and Conquer

– reducing work by a factor of 2 each time
�Can we reduce the work by a bigger factor?

10? 1000?
�An ArrayList does this in a way when

accessing elementsaccessing elements
– but must use an integer value
– each position holds a single elementeach position holds a single element

CS307 Hash Tables and Maps 7

Hash Tables
��Hash Tables overcome the problems of

ArrayList while maintaining the fast access,
insertion, and deletion in terms of N (number
of elements already in the structure.)

CS307 Hash Tables and Maps 8

Hash Functions
��Hash: "From the French hatcher,

which means 'to chop'. "
�to hash to mix randomly or shuffle (To cut

up, to slash or hack about; to mangle)
�Hash Function: Take a large piece of data

and reduce it to a smaller piece of data, a d educe o a s a e p ece o da a,
usually a single integer.
– A function or algorithmA function or algorithm
– The input need not be integers!

CS307 Hash Tables and Maps 9

Hash Function

5/5/1967
555389085

����������

"Mike Scott"

����������
12

hash

scottm@gmail.net function

"Isabelle"

CS307 Hash Tables and Maps 10

Simple Example
��Assume we are using names as our key

– take 3rd letter of name, take int value of letter
(a = 0, b = 1, ...), divide by 6 and take remainder

�What does "Bellers" hash to?
�L -> 11 -> 11 % 6 = 5

CS307 Hash Tables and Maps 11

Result of Hash Function
�Mik (10 % 6) 4�Mike = (10 % 6) = 4
�Kelly = (11 % 6) = 5
�Olivia = (8 % 6) = 2�Olivia = (8 % 6) = 2
�Isabelle = (0 % 6) = 0
�David = (21 % 6) = 3�David = (21 % 6) = 3
�Margaret = (17 % 6) = 5 (uh oh)
�Wendy = (13 % 6) = 1Wendy = (13 % 6) = 1
�This is an imperfect hash function. A perfect hash

function yields a one to one mapping from the keys y pp g y
to the hash values.

�What is the maximum number of values this
f ti h h f tl ?

CS307 Hash Tables and Maps 12

function can hash perfectly?

More on Hash Functions
��Normally a two step process

– transform the key (which may not be an integer)
into an integer value

– Map the resulting integer into a valid index for
th h h t bl (h ll th l tthe hash table (where all the elements are
stored)

�Th t f ti f f�The transformation can use one of four
techniques
– mapping, folding, shifting, casting

CS307 Hash Tables and Maps 13

Hashing Techniques
��Mapping

– As seen in the example
– integer values or things that can be easily

converted to integer values in key
�Folding

– partition key into several parts and the integer
values for the various parts are combined

– the parts may be hashed first
– combine using addition, multiplication, shifting,

logical exclusive OR

CS307 Hash Tables and Maps 14

More Techniques
��Shifting

– an alternative to folding
– A fold function
int hashVal = 0;
int i = str length() - 1;int i str.length() 1;
while(i > 0){

hashVal += (int) str.charAt(i);
i--;;

}

results for "dog" and "god" ?

CS307 Hash Tables and Maps 15

Shifting and Casting
�M li t d ith hifti�More complicated with shifting

int hashVal = 0;
int i = str.length() - 1;
while(i > 0)
{ hashVal = (hashVal << 1) + (int) str.charAt(i);

i--;
}}

different answers for "dog" and "god"
Shifting may give a better range of hash values
when compared to just folding

Casts
��Very simple

– essentially casting as part of fold and shift when working
with chars.

CS307 Hash Tables and Maps 16

with chars.

The Java String class
h hC d th dhashCode method

public int hashCode()public int hashCode()
{ int h = hash;

if (h == 0)
{ int off = offset;{ int off offset;

char val[] = value;
int len = count;
for (int i = 0; i < len; i++)for (int i 0; i < len; i++)
{ h = 31*h + val[off++];
}
hash = h;hash h;

}
return h;

}

CS307 Hash Tables and Maps 17

}

Mapping Results
�T f h h d k l i l l i d i�Transform hashed key value into a legal index in

the hash table
�H h t bl i ll it�Hash table is normally uses an array as its

underlying storage container
�Normally get location on table by taking result of�Normally get location on table by taking result of

hash function, dividing by size of table, and taking
remainderremainder
index = key mod n
n is size of hash table
empirical evidence shows a prime number is best
1000 element hash table, make 997 or 1009 elements

CS307 Hash Tables and Maps 18

Mapping Results
"Isabelle" 230492619

hashCodehashCode
method

230492619 % 997 = 177230492619 % 997 = 177

0 1 2 3 177 9960 1 2 3177............ 996

"Isabelle"
CS307 Hash Tables and Maps 19

"Isabelle"

Handling Collisions
��What to do when inserting an element and

already something present?

CS307 Hash Tables and Maps 20

Open Address Hashing
�C ld h f d b k d�Could search forward or backwards

for an open space
�Linear probing:Linear probing:

– move forward 1 spot. Open?, 2 spots, 3
spots

– reach the end?
– When removing, insert a blank
– null if never occupied blank if once– null if never occupied, blank if once

occupied
�Quadratic probing

– 1 spot, 2 spots, 4 spots, 8 spots, 16 spots
�Resize when load factor reaches

some limit
CS307 Hash Tables and Maps 21

some limit

Chaining
��Each element of hash table be

another data structure
– linked list, balanced binary tree
– More space, but somewhat easier
– everything goes in its spot

�Resize at given load factor or when g
any chain reaches some limit:
(relatively small number of items)(y)

�What happens when resizing?
– Why don't things just collide again?

CS307 Hash Tables and Maps 22

– Why don t things just collide again?

Hash Tables in Java
� th d i�hashCode method in Object
�hashCode and equals

– "If two objects are equal according to the equals
(Object) method, then calling the hashCode
method on each of the two objects must produce
the same integer result. "
if id d t id– if you override equals you need to override
hashCode

CS307 Hash Tables and Maps 23

Hash Tables in Java
��HashTable class
�HashSet class

– implements Set interface with internal storage
container that is a HashTable

– compare to TreeSet class, internal storage
container is a Red Black Tree

�HashMap class
– implements the Map interface, internal storage p p , g

container for keys is a hash table

CS307 Hash Tables and Maps 24

Maps (a.k.a. Dictionaries)

A -> 65

CS307 Hash Tables and Maps 25

Maps
�Al k�Also known as:

– table, search table, dictionary, associative array, or
associative containerassociative container

�A data structure optimized for a very specific kind
of search / accessof search / access
– with a bag we access by asking "is X present"
– with a list we access by asking "give me item number X"y g g
– with a queue we access by asking "give me the item that

has been in the collection the longest."
��In a map we access by asking "give me the value

associated with this key."

CS307 Hash Tables and Maps 26

Keys and Values
�Di ti A l�Dictionary Analogy:

– The key in a dictionary is a word:
foofoo

– The value in a dictionary is the definition:
First on the standard list of metasyntacticFirst on the standard list of metasyntactic
variables used in syntax examples

�A key and its associated value form a pair y p
that is stored in a map

�To retrieve a value the key for that value y
must be supplied
– A List can be viewed as a Map with integer keys

CS307 Hash Tables and Maps 27

More on Keys and Values
��Keys must be unique, meaning a given key

can only represent one value
– but one value may be represented by multiple

keys
– like synonyms in the dictionary.

Example:
factor: n See coefficient of Xfactor: n.See coefficient of X

– factor is a key associated with the same value
(definition) as the key coefficient of X(definition) as the key coefficient of X

CS307 Hash Tables and Maps 28

The Map<K, V> Interface in Java
�void clear()

– Removes all mappings from this map (optional operation).
� boolean containsKey(Object key)

– Returns true if this map contains a mapping for the
ifi d kspecified key.

� boolean containsValue(Object value)
R t t if thi k t th– Returns true if this map maps one or more keys to the
specified value.

� Set<K> keySet()Set<K> keySet()
– Returns a Set view of the keys contained in this map.

CS307 Hash Tables and Maps 29

The Map Interface Continued
�� V get(Object key)

– Returns the value to which this map maps the
specified key.

� boolean isEmpty()
– Returns true if this map contains no key-value

mappings.
�V put(K key, V value)

– Associates the specified value with the specified p p
key in this map

CS307 Hash Tables and Maps 30

The Map Interface Continued
�� Vremove(Object key)

– Removes the mapping for this key from this map
if it is present

� int size()
– Returns the number of key-value mappings in

this map.
�Collection<V> values()

– Returns a collection view of the values contained
in this map.

CS307 Hash Tables and Maps 31

Implementing a Map
�T i l t ti f�Two common implementations of maps are

to use a binary search tree or a hash table as
th i t l t t ithe internal storage container
– HashMap and TreeMap are two of the

i l t ti f th M i t fimplementations of the Map interface
�HashMap uses a hash table as its internal

t t istorage container.
– keys stored based on hash codes and size of

h h t bl i t lhash tables internal array

CS307 Hash Tables and Maps 32

TreeMap implementation
��Uses a Red - Black tree to implement a Map
�relies on the compareTo method of the keys
�somewhat slower than the HashMap
�keys stored in sorted orderkeys stored in sorted order

CS307 Hash Tables and Maps 33

Sample Map Problem
D i h f f d i filDetermine the frequency of words in a file.
File f = new File(fileName);

S S (f)Scanner s = new Scanner(f);

Map<String, Integer> counts =
new Map<String, Integer>();p g, g

while(s.hasNext()){

String word = s.next();

if(!counts.containsKey(word))
counts.put(word, 1);

elseelse
counts.put(word,

counts.get(word) + 1);

CS307 Hash Tables and Maps 34

}

