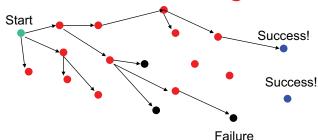
Topic 10 Recursive Backtracking

"In ancient times, before computers were invented, alchemists studied the mystical properties of numbers. Lacking computers, they had to rely on dragons to do their work for them. The dragons were clever beasts, but also lazy and bad-tempered. The worst ones would sometimes burn their keeper to a crisp with a single fiery belch. But most dragons were merely uncooperative, as violence required too much energy. This is the story of how Martin, an alchemist's apprentice, discovered recursion by outsmarting a lazy dragon."


- David S. Touretzky, Common Lisp: A Gentle Introduction to Symbolic Computation

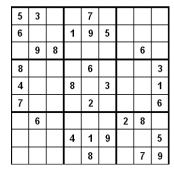
CS 307 Fundamentals of Computer Science

Recursive Backtracking

1

Problem space consists of states (nodes) and actions (paths that lead to new states). When in a node can can only see paths to connected nodes

If a node only leads to failure go back to its "parent" node. Try other alternatives. If these all lead to failure then more backtracking may be necessary.


CS 307 Fundamentals of Computer Science

Recursive Backtracking

2

A More Concrete Example

- Sudoku
- 9 by 9 matrix with some numbers filled in
- all numbers must be between 1 and 9
- Goal: Each row, each column, and each mini matrix must contain the numbers between 1 and 9 once each
 - no duplicates in rows, columns, or mini matrices

Solving Sudoku – Brute Force

- A <u>brute force</u> algorithm is a simple but general approach
- Try all combinations until you find one that works
- This approach isn't clever, but computers are fast
- Then try and improve on the brute force resuts

CS 307 Fundamentals of

Computer Science

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Solving Sudoku

- Brute force Sudoku Soluton
 - if not open cells, solved
 - scan cells from left to right, top to bottom for first open cell
 - When an open cell is found start cycling through digits 1 to 9.
 - When a digit is placed check that the set up is legal
 - now solve the board

5	3	1		7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

CS 307 Fundamentals of Computer Science

Recursive Backtracking

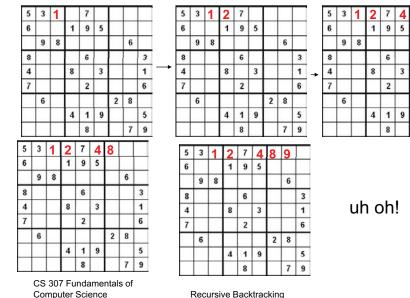
5

7

Attendance Question 1

After placing a number in a cell is the remaining problem very similar to the original problem?

A. Yes


B. No

CS 307 Fundamentals of Computer Science

Recursive Backtracking

6

Solving Sudoku – Later Steps

Sudoku – A Dead End

We have reached a dead end in our search

5	3	1	2	7	4	8	9	
6			1	9	5	Г		Г
Т	9	8	Г			Г	6	Г
8			Г	6		Г		3
4			8		3	Г	Г	1
7		Г	Г	2		Г	Г	6
	6		П			2	8	Г
			4	1	9			5
				8			7	9

With the current set up none of the nine digits work in the top right corner

CS 307 Fundamentals of Computer Science

Recursive Backtracking

Backing Up

- When the search reaches a dead end in <u>backs up</u> to the previous cell it was trying to fill and goes onto to the next digit
- We would back up to the cell with a 9 and that turns out to be a dead end as well so we back up again
 - so the algorithm needs to remember what digit to try next
- Now in the cell with the 8. We try and 9 and move forward again.

╗	1						\neg	
	3	1	2	7	4	9		
_	L		L	8		ļ.,	7	9
	L	L	4	1	9			5
	6					2	8	
7				2				6
4			8		3			1
8			Г	6		Т		3
	9	8					6	
6			1	9	5			

		9	4	7	2	1	3	5
		3 E	5	9	1			6
Г	6					8	9	
3				6				8
1			3		8			4
6				2				7
Г	8	2					6	
5			9	1	4			
9	7			8				

11

CS 307 Fundamentals of Computer Science

CS 307 Fundamentals of

Computer Science

Recursive Backtracking

Key Insights

- After trying placing a digit in a cell we want to solve the new sudoku board
 - Isn't that a smaller (or simpler version) of the same problem we started with?!?!?!?
- After placing a number in a cell the we need to remember the next number to try in case things don't work out.
- We need to know if things worked out (found a solution) or they didn't, and if they didn't try the next number
- If we try all numbers and none of them work in our cell we need to *report back* that things didn't work

Characteristics of Brute Force and Backtracking

- Brute force algorithms are slow
- The don't employ a lot of logic
 - For example we know a 6 can't go in the last 3 columns of the first row, but the brute force algorithm will plow ahead any way
- But, brute force algorithms are fairly easy to implement as a first pass solution
 - backtracking is a form of a brute force algorithm

CS 307 Fundamentals of Computer Science

Recursive Backtracking

10

Recursive Backtracking

- Problems such as Suduko can be solved using recursive backtracking
- recursive because later versions of the problem are just slightly simpler versions of the original
- backtracking because we may have to try different alternatives

CS 307 Fundamentals of Computer Science

Recursive Backtracking

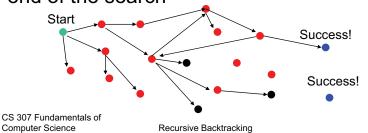
Pseudo code for recursive backtracking algorithms

If at a solution, report success for(every possible choice from current state / node)

Make that choice and take one step along path
Use recursion to solve the problem for the new node / state
If the recursive call succeeds, report the success to the next
high level

Back out of the current choice to restore the state at the beginning of the loop.

Report failure


CS 307 Fundamentals of Computer Science

Recursive Backtracking

13

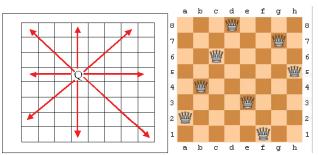
Goals of Backtracking

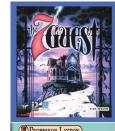
- Possible goals
 - Find a path to success
 - Find all paths to success
 - Find the best path to success
- Not all problems are exactly alike, and finding one success node may not be the end of the search

14

₩

The 8 Queens Problem


Recursive Backtracking



The 8 Queens Problem

- A classic chess puzzle
 - Place 8 queen pieces on a chess board so that none of them can attack one another

CS 307 Fundamentals of Computer Science

The N Queens Problem

- Place N Queens on an N by N chessboard so that none of them can attack each other
- Number of possible placements?
- In 8 x 8

64 * 63 * 62 * 61 * 60 * 59 * 58 * 57
= 178,462, 987, 637, 760 / 8!
= 4,426,165.368

$$\binom{n}{k} = \frac{n \cdot (n-1) \cdots (n-k+1)}{k \cdot (k-1) \cdots 1} = \frac{n!}{k!(n-k)!}$$
 if $0 \le k \le n$ (1)

n choose k

- How many ways can you choose k things from a set of n items?
- In this case there are 64 squares and we want to choose 8 of them to put gueens on

CS 307 Fundamentals of Computer Science

Recursive Backtracking

17

19

Attendance Question 2

For valid solutions how many queens can be placed in a give column?

- A = 0
- B 1
- C.2
- D. 3
- E. 4
- F. Any number

CS 307 Fundamentals of Computer Science

Recursive Backtracking

18

Reducing the Search Space

The previous calculation includes set ups like this one

Q

O

- Includes lots of set ups with multiple queens in the same column
- How many gueens can there be in one column?
- Number of set ups 8 * 8 * 8 * 8 * 8 * 8 * 8 * 8 * 8 = 16,777,216
- We have reduced search space by two orders of magnitude by applying some logic

A Solution to 8 Queens

If number of queens is fixed and I realize there can't be more than one gueen per column I can iterate through the rows for each column

```
for (int c0 = 0; c0 < 8; c0++) {
      board[c0][0] = 'q';
        for (int c1 = 0; c1 < 8; c1++) {
              board[c1][1] = 'q';
              for (int c2 = 0; c2 < 8; c2++) {
                     board[c2][2] = 'q';
                     // a little later
                     for (int c7 = 0; c7 < 8; c7++) {
                            board[c7][7] = 'q';
                            if( queensAreSafe(board) )
                                   printSolution(board);
                            board[c7][7] = ' '; //pick up queen
                     board[c6][6] = ' '; // pick up queen
 CS 307 Fundamentals of
                                                              20
```

Computer Science

Recursive Backtracking

N Queens

- The *problem* with N queens is you don't know how many for loops to write.
- Do the problem recursively
- Write recursive code with class and demo
 - show backtracking with breakpoint and debugging option

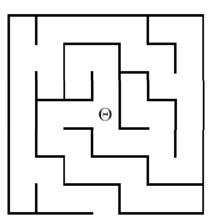
CS 307 Fundamentals of Computer Science

Recursive Backtracking

21

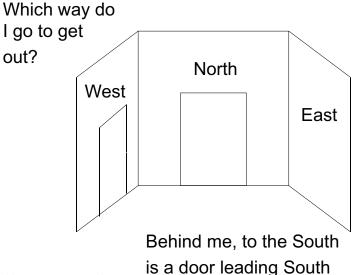
23

Recursive Backtracking


- You must practice!!!
- Learn to recognize problems that fit the pattern
- Is a kickoff method needed?
- All solutions or a solution?
- Reporting results and acting on results

CS 307 Fundamentals of Computer Science

Recursive Backtracking


22

Another Backtracking Problem A Simple Maze

Search maze until way out is found. If no way out possible report that.

The Local View

CS 307 Fundamentals of Computer Science

Recursive Backtracking

CS 307 Fundamentals of Computer Science

Modified Backtracking Algorithm for Maze

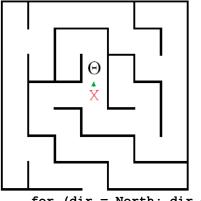
If the current square is outside, return TRUE to indicate that a solution has been found.

If the current square is marked, return FALSE to indicate that this path has been tried.

Mark the current square.

} Unmark the current square.

Return FALSE to indicate that none of the four directions led to a solution.


CS 307 Fundamentals of Computer Science

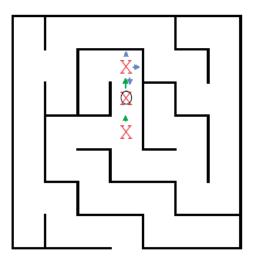
Recursive Backtracking

25

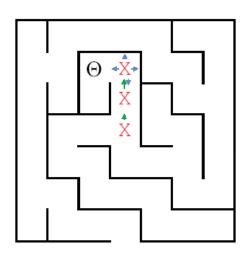
27

Backtracking in Action

The crucial part of the algorithm is the for loop that takes us through the alternatives from the curren square. Here we have move to the North.


```
for (dir = North; dir <= West; dir++)
{    if (!WallExists(pt, dir))
        {if (SolveMaze(AdjacentPoint(pt, dir)))
            return(TRUE);</pre>
```

CS 307 Fundamentals of Computer Science

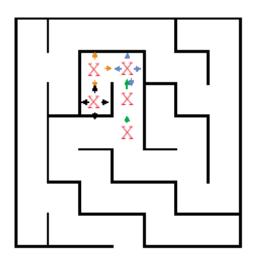

Recursive Backtracking

26

Backtracking in Action

Here we have moved
North again, but there is
a wall to the North.
East is also
blocked, so we try South.
That call discovers that
the square is marked, so
it just returns.

So the next move we can make is West.


Where is this leading?

CS 307 Fundamentals of Computer Science

Recursive Backtracking

CS 307 Fundamentals of Computer Science

Recursive Backtracking

This path reaches a dead end.

Time to backtrack!

Remember the program stack!

29

31

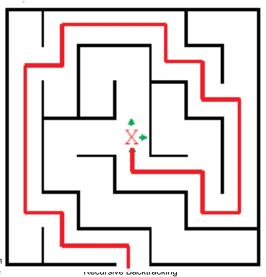
CS 307 Fundamentals of Computer Science Recursive Backtracking

Computer Science

CS 207 Fundamentals of

The recursive calls end and return until we find ourselves back here.

CS 307 Fundamentals of Computer Science


Recursive Backtracking

30

And now we try South CS 307 Fundamentals of

Recursive Backtracking

Path Eventually Found

CS 307 Fundamen Computer Science

More Backtracking Problems

CS 307 Fundamentals of Computer Science

CS 307 Fundamentals of

Recursive Backtracking

33

35

Other Backtracking Problems

- Knight's Tour
- Regular Expressions
- Knapsack problem / Exhaustive Search
 - Filling a knapsack. Given a choice of items with various weights and a limited carrying capacity find the optimal load out. 50 lb. knapsack. items are 1 40 lb, 1 32 lb. 2 22 lbs, 1 15 lb, 1 5 lb. A greedy algorithm would choose the 40 lb item first. Then the 5 lb. Load out = 45lb. Exhaustive search 22 + 22 + 5 = 49.

CS 307 Fundamentals of Computer Science

Recursive Backtracking

2.4

The CD problem

We want to put songs on a Compact Disc. 650MB CD and a bunch of songs of various sizes.

```
If there are no more songs to consider return result
else{
    Consider the next song in the list.
    Try not adding it to the CD so far and use recursion to evaluate best without it.
    Try adding it to the CD, and use recursion to evaluate best with it Whichever is better is returned as absolute best from here
}
```

Another Backtracking Problem

- Airlines give out frequent flier miles as a way to get people to always fly on their airline.
- Airlines also have partner airlines. Assume if you have miles on one airline you can redeem those miles on any of its partners.
- Further assume if you can redeem miles on a partner airline you can redeem miles on any of its partners and so forth...
 - Airlines don't usually allow this sort of thing.
- Given a list of airlines and each airlines partners determine if it is possible to redeem miles on a given airline A on another airline B.

CS 307 Fundamentals of Computer Science

Airline List – Part 1

- Delta
 - partners: Air Canada, Aero Mexico, OceanAir
- United
 - partners: Aria, Lufthansa, OceanAir, Quantas, British Airways
- Northwest
 - partners: Air Alaska, BMI, Avolar, EVA Air
- Canjet
 - partners: Girjet
- Air Canda
 - partners: Areo Mexico, Delta, Air Alaska
- Aero Mexico
 - partners: Delta, Air Canda, British Airways

CS 307 Fundamentals of Computer Science

Recursive Backtracking

37

39

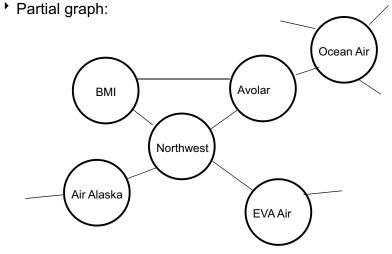
Airline List - Part 2

- Ocean Air
 - partners: Delta, United, Quantas, Avolar
- AlohaAir
 - partners: Quantas
- Aria
 - partners: United, Lufthansa
- Lufthansa
 - partners: United, Aria, EVA Air
- Quantas
 - partners: United, OceanAir, AlohaAir
- ▶ BMI
 - partners: Northwest, Avolar
- Maxair
 - partners: Southwest, Girjet

CS 307 Fundamentals of Computer Science

Recursive Backtracking

38


Airline List - Part 3

- Girjet
 - partners: Southwest, Canjet, Maxair
- British Airways
 - partners: United, Aero Mexico
- Air Alaska
 - partners: Northwest, Air Canada
- Avolar
 - partners: Northwest, Ocean Air, BMI
- EVA Air
 - partners: Northwest, Luftansa
- Southwest
 - partners: Girjet, Maxair

CS 307 Fundamentals of
Computer Science Recursive Backtracking

Problem Example

If I have miles on Northwest can I redeem them on Aria?

CS 307 Fundamentals of Computer Science

Recursive Backtracking