
Topic 15
I l ti d U i St kImplementing and Using Stacks

"stack n.
Th t f thi h t d i th f t "I h 'tThe set of things a person has to do in the future. "I haven't
done it yet because every time I pop my stack something new
gets pushed." If you are interrupted several times in the g p y p
middle of a conversation, "My stack overflowed" means "I
forget what we were talking about."

-The Hacker's Dictionary
Friedrich L BauerFriedrich L. Bauer
German computer scientist
who proposed "stack method
of expression evaluation"

CS 307 Fundamentals of
Computer Science Stacks

1

of expression evaluation
in 1955.

Stack Overflow

CS 307 Fundamentals of
Computer Science Stacks

2

Sharper Tools

Lists
Stacks

Lists

CS 307 Fundamentals of
Computer Science Stacks

3

Stacks
8Access is allowed only at one point of the structure8Access is allowed only at one point of the structure,

normally termed the top of the stack
– access to the most recently added item only– access to the most recently added item only

8 Operations are limited:
– push (add item to stack)push (add item to stack)
– pop (remove top item from stack)
– top (get top item without removing it)p (g p g)
– clear
– isEmpty
– size?

8Described as a "Last In First Out"
(LIFO) d t t t

CS 307 Fundamentals of
Computer Science Stacks

4

(LIFO) data structure

Stack Operations
Assume a simple stack for integers.
Stack s = new Stack();
s.push(12);
s push(4);s.push(4);
s.push(s.top() + 2);

()s.pop()
s.push(s.top());
//what are contents of stack?

CS 307 Fundamentals of
Computer Science Stacks

5

Stack Operations
Write a method to print out contents of stack
in reverse order.

CS 307 Fundamentals of
Computer Science Stacks

6

Common Stack Error
Stack s = new Stack();
// put stuff in stack
for(int i 0; i < 5; i++)for(int i = 0; i < 5; i++)

s.push(i);
// print out contents of stack// print out contents of stack
// while emptying it. (??)
for(int i = 0; i < s.size(); i++)

System.out.print(s.pop() + “ “);

// Wh t i t t?// What is output?

CS 307 Fundamentals of
Computer Science Stacks

7

Attendance Question 1
88What is output of code on previous slide?
A 0 1 2 3 4
B 4 3 2 1 0
C 4 3 2C 4 3 2
D 2 3 4
E N d iE No output due to runtime error.

CS 307 Fundamentals of
Computer Science Stacks

8

Corrected Version
Stack s = new Stack();
// put stuff in stack
for(int i = 0; i < 5; i++)for(int i = 0; i < 5; i++)

s.push(i);
// print out contents of stack p
// while emptying it
int limit = s.size();
for(int i = 0; i < limit; i++)

System.out.print(s.pop() + “ “);
////or
// while(!s.isEmpty())

CS 307 Fundamentals of
Computer Science Stacks

9
// System.out.println(s.pop());

Implementing a stack
8 d d l i ll i h ld h l8need an underlying collection to hold the elements

of the stack
82 b i h i82 basic choices

– array (native or ArrayList)
linked list– linked list

8array implementation

8linked list implementation

8Some of the uses for a stack are much more
interesting than the implementation of a stack

CS 307 Fundamentals of
Computer Science Stacks

10

interesting than the implementation of a stack

Applications of StacksApplications of Stacks

CS 307 Fundamentals of
Computer Science Stacks

11

Problems that Use Stacks
88The runtime stack used by a

process (running program) to
keep track of methods in
progress
8Search problems
8Undo, redo, back, forwardU do, edo, bac , o a d

CS 307 Fundamentals of
Computer Science Stacks

12

Mathematical Calculations
Wh t i 3 2 * 4? 2 * 4 3? 3 * 2 4?What is 3 + 2 * 4? 2 * 4 + 3? 3 * 2 + 4?

The precedence of operators affects the
d f ti A th ti lorder of operations. A mathematical

expression cannot simply be evaluated left to
rightright.
A challenge when evaluating a program.
L i l l i i th fLexical analysis is the process of
interpreting a program.
I l T k i tiInvolves Tokenization

Wh t b t 1 2 4 ^ 5 * 3 * 6 / 7 ^ 2 ^ 3
CS 307 Fundamentals of
Computer Science Stacks

13

What about 1 - 2 - 4 ^ 5 * 3 * 6 / 7 ^ 2 ^ 3

Infix and Postfix Expressions
8Th t iti8The way we are use to writing

expressions is known as infix
notationnotation
8Postfix expression does not
8 i d l8require any precedence rules
83 2 * 1 + is postfix of 3 * 2 + 1
8evaluate the following postfix

expressions and write out a
di i fi icorresponding infix expression:

2 3 2 4 * + * 1 2 3 4 ^ * +
1 2 3 2 ^ 3 * 6 / + 2 5 ^ 1

CS 307 Fundamentals of
Computer Science Stacks

14

1 2 - 3 2 ^ 3 * 6 / + 2 5 ^ 1 -

Attendance Question 2
88What does the following postfix expression

evaluate to?
6 3 2 + *

A. 188
B. 36
C 24C. 24
D. 11
E. 30

CS 307 Fundamentals of
Computer Science Stacks

15

Evaluation of Postfix Expressions
8E t d ith t k8Easy to do with a stack
8given a proper postfix expression:

– get the next token
– if it is an operand push it onto the stack
– else if it is an operator

• pop the stack for the right hand operand
• pop the stack for the left hand operand
• apply the operator to the two operands

h th lt t th t k• push the result onto the stack
– when the expression has been exhausted the

result is the top (and only element) of the stack
CS 307 Fundamentals of
Computer Science Stacks

16

result is the top (and only element) of the stack

Infix to Postfix
88Convert the following equations from infix to

postfix:
2 ^ 3 ^ 3 + 5 * 1
11 + 2 - 1 * 3 / 3 + 2 ^ 2 / 3
Problems:

Negative numbers?
parentheses in expression

CS 307 Fundamentals of
Computer Science Stacks

17

Infix to Postfix Conversion
8R i t d i l ith8Requires operator precedence parsing algorithm

– parse v. To determine the syntactic structure of a
sentence or other utterance

Operands: add to expression
Close parenthesis: pop stack symbols until an open

parenthesis appears
Operators:

Have an on stack and off stack precedence
Pop all stack symbols until a symbol of lower
precedence appears Then push the operatorprecedence appears. Then push the operator

End of input: Pop all remaining stack symbols and
add to the expression

CS 307 Fundamentals of
Computer Science Stacks

18

add to the expression

Simple Example
Infix Expression: 3 + 2 * 4Infix Expression: 3 + 2 4
PostFix Expression:
Operator Stack:Operator Stack:

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1+ 1 1
- 1 1
* 2 2
/ 2 2/ 2 2
^ 10 9
(20 0

CS 307 Fundamentals of
Computer Science Stacks

19

Simple Example
Infix Expression: + 2 * 4Infix Expression: + 2 4
PostFix Expression: 3
Operator Stack:Operator Stack:

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1+ 1 1
- 1 1
* 2 2
/ 2 2/ 2 2
^ 10 9
(20 0

CS 307 Fundamentals of
Computer Science Stacks

20

Simple Example
Infix Expression: 2 * 4Infix Expression: 2 4
PostFix Expression: 3
Operator Stack: +Operator Stack: +

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1+ 1 1
- 1 1
* 2 2
/ 2 2/ 2 2
^ 10 9
(20 0

CS 307 Fundamentals of
Computer Science Stacks

21

Simple Example
Infix Expression: * 4Infix Expression: 4
PostFix Expression: 3 2
Operator Stack: +Operator Stack: +

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1+ 1 1
- 1 1
* 2 2
/ 2 2/ 2 2
^ 10 9
(20 0

CS 307 Fundamentals of
Computer Science Stacks

22

Simple Example
Infix Expression: 4Infix Expression: 4
PostFix Expression: 3 2
Operator Stack: + *Operator Stack: +

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1+ 1 1
- 1 1
* 2 2
/ 2 2/ 2 2
^ 10 9
(20 0

CS 307 Fundamentals of
Computer Science Stacks

23

Simple Example
Infix Expression:Infix Expression:
PostFix Expression: 3 2 4
Operator Stack: + *Operator Stack: +

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1+ 1 1
- 1 1
* 2 2
/ 2 2/ 2 2
^ 10 9
(20 0

CS 307 Fundamentals of
Computer Science Stacks

24

Simple Example
Infix Expression:Infix Expression:
PostFix Expression: 3 2 4 *
Operator Stack: +Operator Stack: +

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1+ 1 1
- 1 1
* 2 2
/ 2 2/ 2 2
^ 10 9
(20 0

CS 307 Fundamentals of
Computer Science Stacks

25

Simple Example
Infix Expression:Infix Expression:
PostFix Expression: 3 2 4 * +
Operator Stack:Operator Stack:

Precedence Table

Symbol Off Stack On Stack
Precedence Precedence

+ 1 1+ 1 1
- 1 1
* 2 2
/ 2 2/ 2 2
^ 10 9
(20 0

CS 307 Fundamentals of
Computer Science Stacks

26

Example
1 - 2 ^ 3 ^ 3 - (4 + 5 * 6) * 7
Show algorithm in action on above equation

CS 307 Fundamentals of
Computer Science Stacks

27

Balanced Symbol Checking
88In processing programs and working with

computer languages there are many
instances when symbols must be balanced
{ } , [] , ()

A stack is useful for checking symbol balance.
When a closing symbol is found it must match
the most recent opening symbol of the same
t petype.

Algorithm?

CS 307 Fundamentals of
Computer Science Stacks

28

Algorithm for Balanced
Symbol CheckingSymbol Checking

8Make an empty stack
8read symbols until end of file

– if the symbol is an opening symbol push it onto
the stack

– if it is a closing symbol do the following
• if the stack is empty report an error
• otherwise pop the stack. If the symbol popped does

not match the closing symbol report an errornot match the closing symbol report an error

8At the end of the file if the stack is not empty
report an error

CS 307 Fundamentals of
Computer Science Stacks

29

report an error

Algorithm in practice
8li [i] 3 * (44 h d(f (li [2 * (i 1) f (8list[i] = 3 * (44 - method(foo(list[2 * (i + 1) + foo(

list[i - 1])) / 2 *) - list[method(list[0])];

8Complications
h i it t t h t hi b l ?– when is it not an error to have non matching symbols?

8Processing a file8Processing a file
– Tokenization: the process of scanning an input stream.

Each independent chunk is a token. p
8Tokens may be made up of 1 or more characters

CS 307 Fundamentals of
Computer Science Stacks

30

