Topic 16 Queues

"FISH queue: n.

[acronym, by analogy with FIFO (First In, First Out)] 'First In, Still Here'. A joking way of pointing out that processing of a particular sequence of events or requests has stopped dead. Also FISH mode and FISHnet; the latter may be applied to any network that is running really slowly or exhibiting extreme flakiness."

-The Jargon File 4.4.7

CS 307 Fundamentals of Computer Science

Queues

Queue Properties

- Queues are a first in first out data structure
 FIFO (or LILO, but that sounds a bit silly)
- Add items to the end of the queue
- Access and remove from the front
 - Access to the element that has been in the structure the *longest* amount of time
- Used extensively in operating systems
 - Queues of processes, I/O requests, and much more

Queues

- Similar to Stacks
- Like a line
 - In Britain people don't "get in line" they "queue up".

CS 307 Fundamentals of Computer Science

Queues

Queues in Operating Systems

- On a computer with 1 CPU, but many processes how many processes can actually use the CPU at a time?
- One job of OS, schedule the processes for the CPU
- issues: fairness, responsiveness, progress

and the second second second	Wassers				
Load averages for the last 1, 5, 1	15 minutes	1.20, 1.4	19, 1.40		
Process Name •	Status	% CPU	Nee	ID .	Memory
at-spi-registryd	Sleeping	0	0	3683	2.4 MB
bonobo-activation-server	Sieeping				332.0 KM
bt-applet	Sleeping	0	0	3179	212.0 KB
Ciock-applet	Sleeping	0	0	3241	676.0 KB
dbus-daemon	Sleeping	0	0	3118	164.0 KB
dbus-launch	Sleeping	0	0	3120	0 bytes
eggcups	Sleeping	0	0	3165	1.6 MB
escd	Sleeping	0	0	3200	44.0 KB
🗑 firefox	Sleeping	0	0	15110	0 bytes
🗑 firefox-bin	Sleeping	0	0	15126	143.5 Mil
gam_server	Sleeping	0	0	3220	156.0 KH
gconto-2	Sleeping	0	0	3126	504.0 KiB
2 gedt	Skeping	0	0	1464	6.9 MB
					End Proces

	Q. Filter		Windowed Pro	cesses	0	
vit Process In	spect Filte	,		Show		
Process ID	Process Name	User	T % CPU	# Threads	Real Memory	V9/20
361	Einder Einder	steve	0.00	4	21.05 MB	238.26 MB
366	🐵 Safari	steve	0.00	4	23.53 MB	252.85 MB
346	🙀 loginwindow	steve	0.00	2	3.80 MB	185.66 MB
367	🕼 iTunes	steve	4.00	10	22.03 MB	239.66 MB
371	Activity Monitor	steve	2.80	2	20.11 MB	246.64 MB
368	iPhoto	steve	0.00	3	33.39 M8	281.90 MI
374	Terminal	steve	0.00	4	12.98 MB	244.08 MB
360	SystemUlServer	steve	0.00	2	5.35 MB	227.74 M
359	Dock	steve	0.00	2	6.43 MB	200.11 M
	CPU System Me	mory Disk	Activity D	isk Usage	Network)
	ser: 4.50	These	ds: 213		PU Usage	
X Syst	em: 4.00	Processi	er: 02		mater as a	
36 N	ice: 0.00					
96.5	die: 91.50				and the second second	

CS 307 Fundamentals of Computer Science

1

4

2

Queue operations

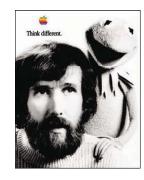
Queue interface, version 1 add(Object item) public interface Queue //place item at back of this Queue - a.k.a. enqueue (Object item) enqueue(Object item); Dbject get() //access item at front of this queue - a.k.a. Object front(), Object peek() //pre: !isEmpty() Dbject remove() Object front(); - a.k.a. Object dequeue() //remove item at front of this queue boolean isEmpty() //pre: !isEmpty() Object dequeue(); Specify in an interface, allow varied implementations boolean isEmpty(); CS 307 Fundamentals of CS 307 Fundamentals of 5 Computer Science Queues Computer Science Queues

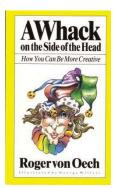
Implementing a Queue

Given the internal storage container and choice for front and back of queue what are the Big O of the queue operations?

	ArrayList	LinkedList (Singly Linked)	LinkeList (Doubly Linked)
enqueue			
front			
dequeue			
isEmpty			

Attendance Question 1


- If implementing a queue with a singly linked list with references to the first and last nodes (head and tail) which end of the list should be the front of the queue in order to have all queue operations O(1)?
- A. The front of the list should be the front of the queue
- B. The back of the list should be the front of the queue.
- C. D. E. I don't know, but I am sure looking forward to taking 307 again some time.


6

7

Alternate Implementation

- How about implementing a Queue with a native array?
 - Seems like a step backwards

CS 307 Fundamentals of Computer Science

Queues

Radix Sort in Action: 1s

- original values in array
 113, 70, 86, 12, 93, 37, 40, 252, 7, 79, 12
- Look at ones place

11<u>3, 70, 86, 12, 93, 37, 40, 252, 7, 79, 12</u>

• Queues:

0	7 <u>0</u> , 4 <u>0</u>	5
1		6 8 <u>6</u>
2	1 <u>2,</u> 25 <u>2,</u> 1 <u>2</u>	7 3 <u>7, 7</u>
3	11 <u>3,</u> 9 <u>3</u>	8
4		9 <u>9</u> , 7 <u>9</u>

Queues

11

9

Application of Queues

- Radix Sort
 - radix is a synonym for *base*. base 10, base 2
- Multi pass sorting algorithm that only looks at individual digits during each pass
- Use queues as *buckets* to store elements
- Create an array of 10 queues
- Starting with the least significant digit place value in queue that matches digit
- empty queues back into array
- repeat, moving to next least significant digit

CS 307 Fundamentals of
Computer Science

Queues

10

Radix Sort in Action: 10s

Empty queues in order from 0 to 9 back into array

70, 40, 12, 252, 12, 113, 93, 86, 37, 7, 9, 79

- Now look at 10's place <u>70, 40, 12, 252, 12, 113, 93, 86, 37, 7, 9, 79</u>
- Queues:

0	_7, _9	5	2 <u>5</u> 2
1	<u>1</u> 2, <u>1</u> 2, 1 <u>1</u> 3	6	
2		7	<u>7</u> 0, <u>7</u> 9
3	<u>3</u> 7	8	<u>8</u> 6
4	<u>4</u> 0	9	<u>9</u> 3

CS 307 Fundamentals of Computer Science

 Empty queues in 7, 9, 12, 12, 113, 3 Now look at 1007,9, _12, _12 Queues: 	Sort in Action: 1 n order from 0 to 9 back 37, 40, 252, 70, 79, 86, 93 's place 2, <u>1</u> 13, <u>37</u> , <u>40</u> , <u>2</u> 52, <u>70</u> , <u></u> 2, <u>40</u> , <u>70</u> , <u>79</u> , <u>86</u> , <u>93</u> 6 7 8	into array	Radix Sort • Empty queues in array 7, 9, 12, 12, 40, 7		o 9 back into
4	9				
CS 307 Fundamentals of Computer Science	Queues	13	CS 307 Fundamentals of Computer Science	Queues	14

Radix Sort Code

```
public static void sort(int[] list) {
    ArrayList<Queue<Integer>> queues = new ArrayList<Queue<Integer>>();
    for(int i = 0; i < 10; i++)
         queues.add( new LinkedList<Integer>() );
    int passes = numDigits( list[0] );
    int temp;
    for(int i = 1; i < list.length; i++) {</pre>
         temp = numDigits(list[i]);
         if( temp > passes )
             passes = temp;
    }
    for(int i = 0; i < passes; i++) {</pre>
         for(int j = 0; j < list.length; j++){
             queues.get(valueOfDigit(list[j], i)).add(list[j]);
         }
         int pos = 0;
         for(Queue<Integer> q : queues) {
             while( !q.isEmpty())
                 list[pos++] = q.remove();
         }
    }
  CS 307 Fundamentals of
                                                                     15
 Computer Science
                                  Queues
```