
Topic 3
References and Object Variables

"Thou shalt not follow the NULLThou shalt not follow the NULL
pointer, for chaos and madness await
th t it d "thee at its end."

- Henry SpencerHenry Spencer

CS 307 Fundamentals of
Computer Science References and Object Variables

1

Object Variables
8object variables are declared by stating the class

name / data type and then the variable name
– same as primitives
– in Java there are hundreds of built in classes.

h th API• show the API page

– don't learn the classes, learn how to read and use a class
interface (the users manual)()

8objects are complex variables.
– They have an internal state and various behaviors that can

either change the state or simply tell something about the
object

CS 307 Fundamentals of
Computer Science

References and Object Variables 2

Object Variables
public void objectVaraiables()public void objectVaraiables()
{ Rectangle rect1;

Rectangle rect2;
// 2 Rectangle objects exist??// 2 Rectangle objects exist??
// more code to follow

}

8So now there are 2 Rectangle objects right?
8Not so much.
8Object variables in Java are actually references to

objects, not the objects themselves!
– object variables store the memory address of an object of

the proper type not an object of the proper type.
contrast this with primitive variables

CS 307 Fundamentals of
Computer Science

References and Object Variables 3

– contrast this with primitive variables

The Pointer Sidetrack
8IMPORTANT!! This material may8IMPORTANT!! This material may

seem a bit abstract, but it is often the
cause of many a programmers logic error
8A pointer is a variable that stores the

memory address of where another
variable is storeda ab e s sto ed
8In some languages you can have bound variables

and dynamic variables of any type
b d i bl i th t i i t d ith– a bound variable is one that is associated with a

particular portion of memory that cannot be changed
8Example C++, can have an integer variable or a

i t i t (hi h i till i bl)integer pointer (which is still a variable)
int intVar; // a int var
int * intPtr; //pointer to an int var

CS 307 Fundamentals of
Computer Science

References and Object Variables 4

i i 5 // i
Pointer Variables in C++

int intVar = 5; // a int var
int * intPtr; //pointer to an int var
intPtr = new int;
/* d i ll ll i/* dynamically allocate an space to store an int.
intPtr holds the memory address of this space*/

5 ?? ??0x00122155

i tV i tPt

??
space for an int in

??
intVar intPtr space for an int in

memory
assume memory
dd

CS 307 Fundamentals of
Computer Science

References and Object Variables 5

address
0x00122155

Pointer Complications
8C++ allows actual variables and pointers to

variables of any type. Things get complicated and
confusing very quickly
i t i tV 5 // i tint intVar = 5; // a int var
int * intPtr; //pointer to an int var
intPtr = new int; // allocate memory
intPtr = 12; / assign the integer being*intPtr = 12; /* assign the integer being

pointed to the value of 12. Must
dereference the pointer. i.e. get to
the thing being pointed at*/the thing being pointed at /

cout << intPtr << "\t" << *intPtr << "\t"
<< &intPtr << endl;

// 3 different ways of manipulating intPtr
8In C++ you can work directly with the memory

address stored in intPtr

// 3 different ways of manipulating intPtr

CS 307 Fundamentals of
Computer Science

References and Object Variables 6
– increment it, assign it other memory addresses, pointer “arithmetic”

Attendance Question 1
Given the following C++ declarations how
would the variable intPtr be made to refer
t th i bl ?to the variable intVar?
intVar = 5;
intPtr = new int;t t e t;

A. intPtr = intVar;
B intPtr = *intVar;B. intPtr = *intVar;
C. *intPtr = intVar;
D. intPtr = &intVar;
E. intPtr = intVar;

CS 307 Fundamentals of
Computer Science

References and Object Variables 7

And Now for Something
Completely DifferentCompletely Different…

8Thanks Nick…
8Link to Bink

CS 307 Fundamentals of
Computer Science

References and Object Variables 8

Benefit of Pointers
8Why have pointers?Why have pointers?
8To allow the sharing of a variable

– If several variables(objects, records, structs) need accessIf several variables(objects, records, structs) need access
to another single variable two alternatives
1. keep multiple copies of variable.
2. share the data with each variable keeping a reference to
the needed data

ptr ptrother
data

t h

other
data

not shown

shared variableh 2

p
not shown not shown

CS 307 Fundamentals of
Computer Science

References and Object Variables 9

shared variablesharer 2 sharer 1

Time Space Trade Off
88Often the case that algorithms / solutions an

be made faster by using more space
(memory) or can use less space at the
expense of being slower.

space
used

BAD
used

GOOD

time to complete

GOOD

CS 307 Fundamentals of
Computer Science

References and Object Variables 10

time to complete

More Benefits
8Allow dynamic allocation of memory8Allow dynamic allocation of memory

– get it only when needed (stack memory and heap
memory)

8Allow linked data structures such as linked lists and
binary trees

i dibl f l f t i t f bl– incredibly useful for certain types of problems
8Pointers are in fact necessary in a language like

Java where polymorphism is so prevalent (more onJava where polymorphism is so prevalent (more on
this later)
8Now the good news

– In Java most of the complications and difficulties inherent
with dealing with pointers are removed by some
simplifications in the language

CS 307 Fundamentals of
Computer Science

References and Object Variables 11

simplifications in the language

Dynamic Memory Allocation
Your program has two chunks of memory to work
with: Stack memory (or the runtime Stack) and
Heap memoryHeap memory

When a Java program starts it receives two chunksp g
of memory one for the Stack and one for the Heap.

Things that use Stack memory: local variablesThings that use Stack memory: local variables,
parameters, and information about methods that are
in progress.

Things that use Heap memory: everything that is
allocated using the new operator
CS 307 Fundamentals of
Computer Science

References and Object Variables 12

allocated using the new operator.

The Picture
Stack Memory Heap MemoryStack Memory Heap Memory

String Object

x
s

g j

myChars

y H e l l o

void toyCodeForMemory(int x)
{ int y = 10;{ y ;

x += y;
String s = new String("Hello");
System.out.println(x + " " + y + s);

CS 307 Fundamentals of
Computer Science

References and Object Variables 13

Syste .out.p t (y s);
}

How Much Memory?

How big is the Heap?g p
System.out.println("Heap size is " +
Runtime.getRuntime().totalMemory());
How much of the Heap is available?
System.out.println("Available memory: " + y p (y
Runtime.getRuntime().freeMemory());

CS 307 Fundamentals of
Computer Science

References and Object Variables 14

References in Java
88In Java all primitive variables are value

variables. (real, actual, direct?)
– it is impossible to have an integer pointer or a

pointer to any variable of one of the primitive
d t tdata types

8All object variables are actually reference
i bl (i llvariables (essentially store a memory

address) to objects.
– it is impossible to have anything but references

to objects. You can never have a plain object
i bl

CS 307 Fundamentals of
Computer Science

References and Object Variables 15

variable

Back to the Rectangle Objects
8 t1 d t2 i bl th t t th8 rect1 and rect2 are variables that store the memory

addresses of Rectangle objects
8 right now they are uninitialized and since they are local,right now they are uninitialized and since they are local,

variables may not be used until they are given some value
public void objectVaraiables()
{ Rectangle rect1;

Rectangle rect2;
// rect1 = 0; // syntax error, C++ style
// rect1 = rect2; // syntax error unitialized// rect1 = rect2; // syntax error, unitialized
rect1 = null; // pointing at nothing
rect2 = null; // pointing at nothing

}
8null is used to indicate an object variable is not pointing /

naming / referring to any Rectangle object.

CS 307 Fundamentals of
Computer Science

References and Object Variables 16

Creating Objects
8Declaring object variables does not create objects. g j j

– It merely sets aside space to hold the memory address of an
object.

– The object must be created by using the new operator and
calling a constructor for that object

public void objectVaraiables()
{ Rectangle rect1;{ Rectangle rect1;

rect1 = new Rectangle();
Rectangle rect2 = new Rectangle(5,10,20,30);
// (x, y, width, height)
//

8For all objects the memory needed to store the objects

// rect1 and rect2 now refer to Rectangle objects
}

For all objects, the memory needed to store the objects,
is allocated dynamically using the new operator and a
constructor call. (Strings are a special case.)

constructors are similar to methods but they are used to

CS 307 Fundamentals of
Computer Science

References and Object Variables 17

– constructors are similar to methods, but they are used to
initialize objects

The Yellow Sticky Analogy

Rectangle Object

t1

g j

x: 0
y: 0

rect1 width: 0
height: 0

Rectangle Object

x: 5

rect2

x: 5
y: 10
width: 20
h i ht 30

CS 307 Fundamentals of
Computer Science

References and Object Variables 18

rect2 height: 30

Pointers in Java
8 Is this easier?

– primitives one thing, objects another?

8can't get at the memory address the pointer stores as in
C++C++
although try this:
Object obj = new Object();
System.out.println(obj.toString());

8dereferencing occurs automatically
8because of the consistency the distinction between an8because of the consistency the distinction between an

object and an object reference can be blurred
– "pass an object to the method" versus "pass an object reference to

th th dthe method

8Need to be clear when dealing with memory address of
object and when dealing with the object itself

CS 307 Fundamentals of
Computer Science

References and Object Variables 19

j g j

Working with Objects
8O bj i d d bj i bl8Once an object is created and an object variable

points to it then Object may be manipulated via its
methodsmethods
Rectangle r1 = new Rectangle();
r1.resize(100, 200);
r1 setLocation(10 20);r1.setLocation(10, 20);
int area = r1.getWidth() * r1.getHeight();
Rectangle r2 = null;
r2.resize(r1.getWidth(), r1.getHeight() * 2);

8Use the dot operator to deference an object
variable and invoke one of the objects behaviors

(g (), g g ());
// uh-oh!

variable and invoke one of the objects behaviors
8Available behaviors are spelled out in the class of

the object (the data type of the object)
CS 307 Fundamentals of
Computer Science

References and Object Variables 20

the object, (the data type of the object)

What's the Output?
public void objectVariables()public void objectVariables()
{ Rectangle rect1 = new Rectangle(5, 10, 15, 20);

Rectangle rect2 = new Rectangle(5, 10, 15, 20);;
System.out.println("rect 1: " + rect1.toString());
System.out.println("rect 2: " + rect2.toString());y p g
// Line 1
System.out.println("rect1 == rect2: " + (rect1 == rect2));
rect1 = rect2;
rect2.setSize(50, 100); // (newWidth, newHeight)
// Line 2// Line 2
System.out.println("rect 1: " + rect1.toString());
System.out.println("rect 2: " + rect2.toString());
System.out.println("rect1 == rect2: " + (rect1 == rect2));
int x = 12;;
int y = 12;
// Line 3
System.out.println("x == y: " + (x == y));
x = 5;
y = x;
x = 10;
System.out.println("x == y: " + (x == y));
// Line 4
System.out.println("x value: " + x + ", y value: " + y);

CS 307 Fundamentals of
Computer Science

References and Object Variables 21

System.out.println(x value: + x + , y value: + y);
}

Attendance Question 2
What is output by the line of code marked
Line 1?

A. rect1 == rect2: true
B rect1 == rect2: rect1 == rect2B. rect1 == rect2: rect1 == rect2
C. rect1 == rect2: false
D. intPtr = &intVar;
E. rect1 == rect2: 0

CS 307 Fundamentals of
Computer Science

References and Object Variables 22

Attendance Question 3
What will be the width and height of the
Rectangle object rect1 refers to at the line of
code marked Line 2?code marked Line 2?

A idth 15 h i ht 20A. width = 15, height = 20
B. width = 20, height = 15
C. width = -1, height = -1
D width = 0 height = 0D. width 0, height 0
E. width = 50, height = 100

CS 307 Fundamentals of
Computer Science

References and Object Variables 23

Attendance Question 4
What is output by the line of code marked
Line 3?

A. x == y: 0
B x == y: 1B. x == y: 1
C. x == y: true
D. x == y: x == y
E. x == y: false

CS 307 Fundamentals of
Computer Science

References and Object Variables 24

Attendance Question 5
What is output by the line of code marked
Line 4?

A. x value: 5, y value: 5
B x value: 10 y value: 5B. x value: 10, y value: 5
C. x value: 0, y value: 0
D. x value: 5, y value: 10;
E. x value: 10, y value: 10

CS 307 Fundamentals of
Computer Science

References and Object Variables 25

Equality versus Identity
A man walks into a pizza parlor sits down and tellsA man walks into a pizza parlor, sits down, and tells
the waiter, "I'll have what that lady over there is
eating." The waiter walks over to the indicated lady,
picks up the pizza that is resting in front of her and

8confusion over equality and identity

picks up the pizza that is resting in front of her, and
sets it back down in from of the man's table.

q y y
8identity: two things are in fact the same thing
8equality: two things are for all practical purposesequality: two things are for all practical purposes

alike, but not the exact same thing
8== versus the .equals methodq

– use the .equals method when you want to check the
contents of the pointee, use == when you want to
h k dd

CS 307 Fundamentals of
Computer Science

References and Object Variables 26

check memory addresses

Just Like the Real World
8Objects variables are merely names for objects8Objects variables are merely names for objects
8Objects may have multiple names

– meaning there are multiple object variables
referring to the same object (sharing)

P f
Michael!

Professor
Scott (Ha Ha)

Mike
Mr.
S ttMike Scott

dd
CS 307 Fundamentals of
Computer Science

References and Object Variables 27
Daddydada

The Garbage Collector
Rectangle rect1 = new Rectangle(2,4,10,10);Rectangle rect1 new Rectangle(2,4,10,10);
Rectangle rect2 = new Rectangle(5,10,20,30);
// (x, y, width, height)
rect1 = rect2;
/* what happened to the Rectangle Object

8If objects are allocated d namicall ith ne ho

/* what happened to the Rectangle Object
rect1 was pointing at?

*/

8If objects are allocated dynamically with new how
are they deallocated?
– delete in C++delete in C++

8If an object becomes isolated (no longer is in
scope), that is has no references to it, it is garbagescope), that is has no references to it, it is garbage
and the Java Virtual Machine garbage collector will
reclaim this memory AUTOMATICALLY!

CS 307 Fundamentals of
Computer Science

References and Object Variables 28

Objects as Parameters
8All t i J l t8All parameters in Java are value parameters
8The method receives a copy of the parameter,

not the actual variable passed
8Makes it impossible to change a primitive p g p

parameter
8implications for objects? (which areimplications for objects? (which are

references)
– behavior that is similar to a reference parameter, with a p ,

few minor, but crucial differences
– "Reference parameter like behavior for the pointee."

CS 307 Fundamentals of
Computer Science

References and Object Variables 29

Immutable Objects
8Some classes create immutable objectsSome classes create immutable objects
8Once created these objects cannot be changed

– note the difference between objects and object variablesnote the difference between objects and object variables
8Most immediate example is the String class
8String objects are immutableString objects are immutable
8Why might this be useful?

St i "Mik "String name = "Mike";
String sameName = name;
name + " " + "David" + " " + "Scott";name += " " + "David" + " " + "Scott";
System.out.println(name);
System out println(sameName);
CS 307 Fundamentals of
Computer Science

References and Object Variables 30

System.out.println(sameName);

