
Topic 9
I t d ti t R iIntroduction to Recursion

"T ith h"To a man with a hammer, 
everything looks like a nail"everything looks like a nail  
-Mark TwainMark Twain 

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

1

Underneath the Hood.

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

2

The Program Stack
��When you invoke a method in your code 

what happens when that method is 
completed?
FooObject f = new FooObject();
int x = 3;
f.someFooMethod(x);
f.someBarMethod(x);

�How does that happen? pp
�What makes it possible?

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

3

Methods for Illustration
200 bli id F M th d(i t )200 public void someFooMethod(int z)
201{ int x = 2 * z;
202 i l ( )202 System.out.println(x);

}

300 public void someBarMethod(int y) 
301 { i 3 *301 { int x = 3 * y;
302 someFooMethod(x);
303 System.out.println(x);

}

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

4



The Program Stack
��When your program is executed on a 

processor the commands are converted into 
another set of instructions and assigned 
memory locations.
– normally a great deal of expansion takes place
101 FooObject f = new FooObject();
102 int x = 3;
103 f.someFooMethod(x);
104 f h d( )104 f.someBarMethod(x);

�Von Neumann Architecture

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

5

Basic CPU Operations
�A CPU k i f t h�A CPU works via a fetch 

command / execute command 
loop and a program counterloop and a program counter

�Instructions stored in memory 
(Just like data!)(Just like data!)

101 FooObject f = new FooObject();j j ();
102 int x = 3;
103 f.someFooMethod(x);
104 f B M th d( )104 f.someBarMethod(x);

�What if someFooMethod is stored at 
memory location 200?

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

6

memory location 200?

More on the Program Stack
101 FooObject f = new FooObject();
102 int x = 3;
103 f.someFooMethod(x);
104 f.someBarMethod(x);

�Line 103 is really saying go to line 200 with f 
as the implicit parameter and x as the explicit 
parameter

�When someFooMethod is done what happens?pp
A. Program ends B. goes to line 103
C Goes back to whatever method called it

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

7

C. Goes back to whatever method called it

Activation Records and the 
Program StackProgram Stack

�When a method is invoked all the relevant 
i f ti b t th t th dinformation about the current method 
(variables, values of variables, next line of 

d t b t d) i l d icode to be executed) is placed in an 
activation record

�The activation record is pushed onto the 
program stack

�A stack is a data structure with a single 
access point, the top.

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

8

p , p



The Program Stack
��Data may either be 

added (pushed) or 
removed (popped) from 
a stack but it is always 
f

top

from the top.
– A stack of dishes
– which dish do we have 

easy access to?

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

9

Using RecursionUsing Recursion

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

10

A Problem
�W it th d th t d t i h h i t k�Write a method that determines how much space is take up 

by the files in a directory
�A directory can contain files and directoriesA directory can contain files and directories
�How many directories does our code have to examine?
�How would you add up the space taken up by the files in a 

single directory 
– Hint: don't worry about any sub directories at first

�Directory and File classes�Directory and File classes
� in the Directory class:

public File[] getFiles()
public Directory[] getSubdirectories()

� in the File class
bli i t tSi ()

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

11

public int getSize()

Attendance Question 2
��How many levels of directories have to be 

visited?
A. 0
B. UnknownU o
C. Infinite
D 1D. 1
E. 8

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

12



Sample Directory Structure

scottm

cs307 AP

m1.txt m2.txt
A.pdf

hw AB.pdf

a1.htm a2.htm a3.htm a4.htm

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

13

Code for getDirectorySpace()
bli i t tDi t S (Di t d)public int getDirectorySpace(Directory d)

{ int total = 0;
File[] fileList = d.getFiles();e[] e st d.get es();
for(int i = 0; i < fileList.length; i++)

total += fileList[i].getSize();
Directory[] dirList = d.getSubdirectories();
for(int i = 0; i < dirList.length; i++)

t t l + tDi t S (di Li t[i])total += getDirectorySpace(dirList[i]);
return total;

}}

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

14

Attendance Question 3
��Is it possible to write a non recursive method 

to do this?
A. Yes
B. Noo

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

15

Iterative getDirectorySpace()
public int getDirectorySpace(Directory d)public int getDirectorySpace(Directory d)
{ ArrayList dirs = new ArrayList();

File[] fileList;
Directory[] dirList;y
dirs.add(d);
Directory temp;
int total = 0;
hil ( ! di i () )while( ! dirs.isEmpty() )
{ temp = (Directory)dirs.remove(0);

fileList = temp.getFiles();
for(int i = 0; i < fileList length; i++)for(int i  0; i < fileList.length; i++)

total += fileList[i].getSize();
dirList = temp.getSubdirectories();
for(int i =0; i < dirList.length; i++)

dirs.add( dirList[i] );
}
return total;

}
CS 307 Fundamentals of 
Computer Science Introduction to Recursion

16

}



Simple Recursion ExamplesSimple Recursion Examples

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

17

Wisdom for Writing Recursive 
Methods

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

18

The 3 plus 1 rules of Recursion
1. Know when to stop
2. Decide how to take one step
3. Break the journey down into that step and a 

smaller journeys a e jou ey
4. Have faith

From Common Lisp: A Gentle 
Introduction toIntroduction to 
Symbolic Computation
by David Touretzky

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

19

Writing Recursive Methods
� R l f R i� Rules of Recursion

1. Base Case: Always have at least one case that 
can be solved without using recursioncan be solved without using recursion

2. Make Progress: Any recursive call must 
progress toward a base case.progress toward a base case.

3. "You gotta believe." Always assume that the 
recursive call works. (Of course you will have to 
design it and test it to see if it works or prove 
that it always works.)

A recursive solution solves a small part ofA recursive solution solves a small part of 
the problem and leaves the rest of the 
problem in the same form as the original

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

20

problem in the same form as the original



N!
��the classic first recursion problem / example
�N!

5! = 5 * 4 * 3 * 2 * 1 = 120
int res = 1;
for(int i = 2; i <= n; i++)

res *= i;

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

21

Factorial Recursively
��Mathematical Definition of Factorial
0! = 1
N! = N * (N - 1)!
The definition is recursive.
// pre n >= 0
public int fact(int n)
{ if(n == 0){ ( )

return 1;
else

return n * fact(n 1);return n * fact(n-1);
}

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

22

Big O and Recursion
��Determining the Big O of recursive methods 

can be tricky.
�A recurrence relation exits if the function is 

defined recursively.
�The T(N), actual running time, for N! is 

recursiveecu s e
�T(N)fact = T(N-1)fact + O(1)
�This turns out to be O(N)�This turns out to be O(N)

– There are N steps involved

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

23

Common Recurrence Relations
�T(N) T(N/2) + O(1) > O(l N)�T(N) = T(N/2) + O(1) -> O(logN)

– binary search
�T(N) = T(N-1) + O(1) -> O(N)T(N) = T(N-1) + O(1) -> O(N)

– sequential search, factorial
�T(N) = T(N/2) + T(N/2) + O(1) -> O(N),( ) ( ) ( ) ( ) ( ),

– tree traversal
�T(N) = T(N-1) + O(N) -> O(N^2)

– selection sort
�T(N) = T(N/2) + T(N/2) + O(N)  -> O(NlogN)

t– merge sort
�T(N) = T(N-1) + T(N-1) + O(1) -> O(2^N)

– Fibonacci

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

24

– Fibonacci



Tracing Fact With the 
Program StackProgram Stack

System.out.println( fact(4) );System.out.println( fact(4) );

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

25
System.out.println( fact(4) );top

Calling fact with 4 

4 in method factn 4
partial result = n * fact(n-1)

in method fact

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

26
System.out.println( fact(4) );top

Calling fact with 3

n 3 in method fact

4 i th d f t

n
partial result = n * fact(n-1)

top n 4
partial result = n * fact(n-1)

in method fact

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

27
System.out.println( fact(4) );

Calling fact with 2

n 2 in method fact

top n 3 in method fact

partial result = n * fact(n-1)

top

4 i h d f

n
partial result = n * fact(n-1)

in method fact

n 4
partial result = n * fact(n-1)

in method fact

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

28
System.out.println( fact(4) );



Calling fact with 1
n 1
partial result = n * fact(n-1)

in method fact

top n 2 in method fact

partial result  n  fact(n 1)

n 3 in method fact

partial result = n * fact(n-1)

4 i h d f

n
partial result = n * fact(n-1)

in method fact

n 4
partial result = n * fact(n-1)

in method fact

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

29
System.out.println( fact(4) );

Calling fact with 0 and returning 1
n 0 in method fact

t n 1 in method fact

n
returning 1 to whatever method called me

top

n 2 in method fact

n 1
partial result = n * fact(n-1)

in method fact

n 2
partial result = n * fact(n-1)

in method fact

n 3
partial result = n * fact(n-1)

in method fact

n 4
partial result = n * fact(n 1)

in method fact

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

30System.out.println( fact(4) );

partial result = n * fact(n-1)

Returning 1 from fact(1)
n 1

partial result = n * 1, 
1 h h d ll d

in method fact

top n 2 in method fact

return 1 to whatever method called me

n 3 in method fact

partial result = n * fact(n-1)

n 3
partial result = n * fact(n-1)

in method fact

n 4
partial result = n * fact(n-1)

in method fact

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

31
System.out.println( fact(4) );

Returning 2 from fact(2)

n 2 in method fact
partial result = 2 * 1, 
return 2 to whatever method called me

top n 3
partial result = n * fact(n-1)

in method fact

n 4
ti l lt * f t( 1)

in method fact

p ( )

System.out.println( fact(4) );

partial result = n * fact(n-1)

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

32



Returning 6 from fact(3)

n 3 in method factn 3 in method fact

partial result = 3 * 2, 
return 6 to whatever method called me

top n 4
ti l lt * f t( 1)

in method fact

return 6 to whatever method called me

System.out.println( fact(4) );

partial result = n * fact(n-1)

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

33

Returning 24 from fact(4)

n 4 in method fact
partial result = 4 * 6, 

System.out.println( fact(4) );top
return 24 to whatever method called me

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

34

Calling System.out.println

System.out.println( 24 );

top ??

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

35

Evaluating Recursive MethodsEvaluating Recursive Methods

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

36



Evaluating Recursive Methods
��you must be able to evaluate recursive 

methods
public static int mystery (int n){

if( n == 0 )( )
return 1;

elseelse
return 3 * mystery(n-1);

}}
// what is returned by mystery(5)

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

37

Evaluating Recursive Methods
��Draw the program stack!

m(5) = 3 * m(4)( ) ( )
m(4) = 3 * m(3)
m(3) = 3 * m(2)m(3)  3  m(2)
m(2) = 3 * m(1)
m(1) = 3 * m(0)m(1)  3  m(0)
m(0) = 1 
-> 3^5 = 243

�with practice you can see the result
-> 3 5 = 243

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

38

Attendance Question 4
�Wh t i t d b ?�What is returned by mystery(-3) ?
A. 0
B. 1
C Infinite loopC. Infinite loop
D. Syntax error
E R i d k flE. Runtime error due to stack overflow

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

39

Evaluating Recursive Methods
��What about multiple recursive calls?
public static int bar(int n){

if( n <= 0 )
return 2;

else
return 3 + bar(n-1) + bar(n-2);

}
�Draw the program stack and REMEMBERDraw the program stack and REMEMBER 

your work

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

40



Evaluating Recursive Methods
�Wh t i t d b ?�What is returned by bar(5)?
b(5) = 3 + b(4) + b(3)
b(4) = 3 + b(3) + b(2)
b(3) = 3 + b(2) + b(1)b(3) = 3 + b(2) + b(1)
b(2) = 3 + b(1) + b(0)
b(1) 3 b(0) b( 1)b(1) = 3 + b(0) + b(-1)
b(0) = 2
b(-1) = 2

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

41

Evaluating Recursive Methods
�Wh t i t d b ?�What is returned by bar(5)?
b(5) = 3 + b(4) + b(3)
b(4) = 3 + b(3) + b(2)
b(3) = 3 + b(2) + b(1)b(3) = 3 + b(2) + b(1)
b(2) = 3 + b(1) + b(0) //substitute in results
b(1) 3 2 2b(1) = 3 + 2 + 2 = 7
b(0) = 2
b(-1) = 2

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

42

Evaluating Recursive Methods
�Wh t i t d b ?�What is returned by bar(5)?
b(5) = 3 + b(4) + b(3)
b(4) = 3 + b(3) + b(2)
b(3) = 3 + b(2) + b(1)b(3) = 3 + b(2) + b(1)
b(2) = 3 + 7 + 2 =12
b(1)b(1) = 7
b(0) = 2
b(-1) = 2

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

43

Evaluating Recursive Methods
�Wh t i t d b ?�What is returned by bar(5)?
b(5) = 3 + b(4) + b(3)
b(4) = 3 + b(3) + b(2)
b(3) = 3 + 12 + 7 = 22b(3) = 3 + 12 + 7 = 22
b(2) = 12
b(1)b(1) = 7
b(0) = 2
b(-1) = 2

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

44



Evaluating Recursive Methods
�Wh t i t d b ?�What is returned by bar(5)?
b(5) = 3 + b(4) + b(3)
b(4) = 3 + 22 + 12 = 37
b(3) = 22b(3) = 22
b(2) = 12
b(1)b(1) = 7
b(0) = 2
b(-1) = 2

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

45

Evaluating Recursive Methods
�Wh t i t d b ?�What is returned by bar(5)?
b(5) = 3 + 37 + 22 = 62
b(4) = 37
b(3) = 22b(3) = 22
b(2) = 12
b(1)b(1) = 7
b(0) = 2
b(-1) = 2

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

46

Unplugged Activity
��Double the number of pieces of candy in a 

bowl.
�Only commands we know are:

– take one candy out of bowl and put into infinite supply
– take one candy from infinite supply and place in bowl
– do nothing

d bl h b f i f d i h b l– double the number of pieces of candy in the bowl

�Thanks Stuart Reges

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

47

g

Recursion Practice
�W it th d i T P (i t b�Write a method raiseToPower(int base, 

int power)
�// 0�//pre: power >= 0

�Tail recursion refers to a method where the 
recursive call is the last thing in the method

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

48

g



Finding the Maximum in an Array
��public int max(int[] values){
�Helper method or create smaller arrays each 

time

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

49

Attendance Question 5
��When writing recursive methods what should 

be done first?
A. Determine recursive case
B. Determine recursive stepete e ecu s e step
C. Make recursive call
D Determine base case(s)D. Determine base case(s)
E. Determine Big O

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

50

Your Meta Cognitive State
��Remember we are learning to use a tool. 
�It is not a good tool for all problems.

– In fact we will implement several algorithms and 
methods where an iterative (looping without 
recursion) solution would work just fine

�After learning the mechanics and basics of 
recursion the real skill is knowing what 
problems or class of problems to apply it to

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

51

A Harder(??) Problem

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

52



Mine Sweeper
��Game made popular due to its inclusion with 

Windows (from 3.1 on)
�What happens when you click on a cell that 

has 0 (zero) mines bordering it?

Result ofResult of
clicking 
markedmarked
cell.

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

53

The update method
��Initially called with the x and y coordinates of 

a cell with a 0 inside it meaning the cell does 
not have any bombs bordering it.

�Must reveal all cells neighboring this one and 
if any of them are 0s do the same thing

2 -1 2 0 0 02 1 2 0 0 0
2 -1 3 2 2 1
1 1 3 -1 -1 1-1 indicates a 
0 0 2 -1 3 1
0 0 1 1 1 0
0 0 0 0 0 0

mine in that cell

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

54

0 0 0 0 0 0

Update Code

CS 307 Fundamentals of 
Computer Science Introduction to Recursion

55


