 Points off 1 2 3 4 5 6 Total off Net Score

	
	
	
	
	
	
	
	

CS 307 – Midterm 2 – Fall 2003

Name__

UTEID login name _______________________________

Section Leader's Name ___________________________

Instructions:

1. There are 4 questions on this test.

2. You have 2 hours to complete the test.

3. You may not use a calculator on the test.

4. When code is required, write Java code.

5. The style guide is not in effect except where noted.

6. Efficiency is not graded except where noted.

7. Ensure your answers are legible.

8. When writing code you may not use any methods or classes from the Java Standard Library except as noted and the System.out.print, System.out.println, and the equals method.

1. (2 points each, 30 points total) Short answer. If an error would occur answer "syntax error" or "runtime error" depending on what type of error it would be.

Recall that when asked for Big O your answer should be the most precise Big O function. For example Selection Sort has an average case Big O of O(N^2), but per the formal definition of Big O it is technically correct to say Selection Sort also has a Big O of O(N^3). On this test I want the most precise Big O function. (Closest without going under.)

A.
Consider a Queue that is implemented using an ArrayList for its internal storage container. The ArrayList uses a native array of objects as its internal storage container. The first element of the List is always stored in element 0 of the native array. The Queue uses index 0 of the ArrayList as the front element of the queue and element listVar.size() – 1 as the back element.

Given the above implementation of a Queue what is the average case Big O of the Queue's dequeue method?

B.
Consider a Stack that is implemented using an ArrayList for its internal storage container. The ArrayList uses a native array of objects as its internal storage container. The first element of the List is always in element 0. When the container is full the ArrayList creates a new array that is 10 elements larger than the previous one and copies over elements. The Stack considers the last element in the List as its top item.

Given the above implementation of a Queue what is the average case Big O of the Stack's push method?
C.
What is the average case Big O of the following code? N is a parameter and is guaranteed to be > 0.

int total = 0;

for(int i = 0; i < N; i++)

for(int j = 0; j < N; j++)

for(int k = 0; k < N; k += 3)

total += i + j + k;

D.
What is the average case Big O of the following code? N is a parameter and is guaranteed to be > 0.

int total = 0;

for(int i = 0; i < N; i++)

for(int j = N; j >= 5; j--)

total += 1;

for(int i = 0; i < N; i++)

for(int k = 1; k < 3*N; k *= 3)

total += 1;

E.
Consider the following method:

public static int volleyball(int x)

{
if(x <= 0)

return 2;

else

return volleyball(x – 4) + volleyball(x – 3);

}

What is the output of the following line of code?

System.out.println(volleyball(10));

F.
Consider the following method:

public static int lacrosse(int x)

{
if(x <= 0)

return 1;

else

return 1 + lacrosse(x / 2);

}

What is the output of the following line of code?

System.out.println(lacrosse (16));

G.
Given x > 0, what is the Big O of method lacrosse from part F. ?

H.
An algorithm has a Big O of (N^3). On a given computer, the algorithm takes 0.5 seconds to process a data set of 1,000 items. How long do you expect it to take the algorithm to process a data set of 10,000 items?

I.
An algorithm has a Big O of N log2 N. On a given computer, the algorithm takes 2 seconds to process a data set of 1,000,000 items. How long do you expect it to take the algorithm to process a data set of 8,000,000 items? Note log2 1,000,000 ~= 20. Put your answer in reduced form.

J.
Recall the Quicksort. The basic algorithm of quicksort is to pick a pivot and then put all values less than or equal to the pivot in one list (or one portion of an array) and the values greater than the pivot in another list (or another portion of the array.) These two sub lists are then Quicksorted. The base case is a list of size 0 or 1. The average case Big O of Quicksort is O(N log2 N) but the worst case Big O of Quicksort is O(N^2). Explain what would cause the worst case Big O to occur when sorting a list of numbers.

2. (Recursion, 25 points) This question uses a class that models cities and interstate highways between cities. Consider the following class:

public class City
{
// partial interface only

/* pre: none

post: return an ArrayList of City objects this City is directly connected to via interstates

*/

public ArrayList connectsTo()

/*
pre: otherCity != null

post: return the distance between this City and otherCity if they are directly connected via an interstate, -1 if they are not directly connected via an interstate. This is a transitive operation so a.distanceTo(b) will return the same answer as b.distanceTo(a)

*/

public int distanceTo(City otherCity)

// standard equals method. returns true if this City and

// other are in fact, the same City

public boolean equals(Object other)

// Return a string consisting of this city's name

public String toString()

}
Complete the following method. It is not part of the City class.

/*
pre: a != null, b != null, distance > 0

post: return true if a path of interstates exists between City a and City b with total length <= distance, false otherwise

*/

public boolean routeExists(City a, City b, int distance)
Example:

Assume The following Cities exist:

Dallas, San Antonio, Waco, Austin, Houston, Lubbock, Amarillo, and Oklahoma City

Amarillo and Lubbock are connected, with a distance of 100 miles

Amarillo and Oklahoma City are connected, with a distance of 300 miles

Dallas and Oklahoma City are connected, with a distance of 200 miles

Dallas and Waco are connected, with a distance of 150 miles

Dallas and Houston are connected, with a distance of 250 miles

Waco and Austin are connected, with a distance of 100 miles

Austin and San Antonio are connected with a distance of 100 miles

San Antonio and Houston are connected with a distance of 200 miles

If city a is Lubbock and City b is San Antonio and the distance is 500 miles there is no path that exists between those cities with a distance less than or equal 300 and the method would return false. The shortest path from Lubbock to San Antonio is via Amarillo (100), Oklahoma City(300), Dallas(200), Waco(150), Austin(100) and San Antonio(100) for a total of 950 miles. Notice there is another route from Lubbock to San Antonio: Amarillo (100), Oklahoma City(300), Dallas(200), Houston(250), San Antonio (200) with a total distance of 1050 miles.

Also note that although a path may exist from one city to another, they may not be directly connected. For example there is a path from San Antonio to Dallas, but there are intervening cities so the City class does not consider Dallas and San Antonio to be directly connected. Dallas.distanceTo(San_Antonio) would return a –1.

You may use the following methods from the ArrayList class on this question:

	Constructor Summary

	ArrayList()
 Constructs an empty list with an initial capacity of ten.
	

	Method Summary

	 void
	add(int index, Object element)
 Inserts the specified element at the specified position in this list.

	 boolean
	add(Object o)
 Appends the specified element to the end of this list.

	 void
	clear()
 Removes all of the elements from this list.

	 boolean
	contains(Object elem)
 Returns true if this list contains the specified element.

	 Object
	get(int index)
 Returns the element at the specified position in this list.

	 Object
	remove(int index)
 Removes the element at the specified position in this list.

	 int
	size()
 Returns the number of elements in this list.

Complete the method on the next page:

/*
pre: a != null, b != null, distance > 0

post: return true if a path of interstates exists between City a and City b with total length <= distance, false otherwise. Note this method is NOT part of the City class.

*/

public boolean routeExists(City a, City b, int distance)

3. (ADTS, 25 points) Consider a Set ADT. A set has no implied order, and elements can only appear once. In other words there cannot be multiple copies of an item in the Set. Assume this Set class allows nulls to be stored as values.

public class Set

{
private ArrayList myCon

// elements of the Set are stored in the first iMySize

// elements of myCon.

public Set()

{
iMySize = 0;

myCon = new ArrayList();

}

}
complete the following method which is part of the Set class.

/* pre: otherSet != null

post: returns the intersection of this Set and other Set. (A Set containing all items that are present in this Set and also

present in otherSet). This is an accessor so it does not alter the members of the calling object or the otherSet parameter. You may only use the Set class default constructor and the methods from ArrayList shown below. This method shall return an intersection consisting of shallow copies. (The new set can simply point to the Objects from the other sets.) You do not have to create new copies of the members of the original sets.

*/

public Set intersection(Set otherSet)

{
Example: The intersection of the set {1, 5, 3, 7} and the set {6, 1, 7, 5, 12}

 is the set{5, 1}
	Constructor Summary

	ArrayList()
 Constructs an empty list with an initial capacity of ten.
	

	Method Summary

	 void
	add(int index, Object element)
 Inserts the specified element at the specified position in this list.

	 boolean
	add(Object o)
 Appends the specified element to the end of this list.

	 void
	clear()
 Removes all of the elements from this list.

	 boolean
	contains(Object elem)
 Returns true if this list contains the specified element.

	 Object
	get(int index)
 Returns the element at the specified position in this list.

	 Object
	remove(int index)
 Removes the element at the specified position in this list.

	 int
	size()
 Returns the number of elements in this list.

	 Object
	set(int index, Object element)
 Replaces the element at the specified position in this list with the specified element.

Complete your intersection method below:

public Set intersection(Set otherSet)

{

4. (ADTS, 20 points) In this question you will write a method to reverse a singly linked list and explain the Big O of your code.

Consider the following Node class

public class Node
{
private Object myData;

private Node myNext;

public Node()

{}

public Node(Object data)

{
myData = data;
}

public Node(Object data, Node next)

{
myData = data;

myNext = next;

}

public Node getNext()

{
return myNext;
}

public void setNext(Node next)

{
myNext = next;
}

public Object getData()

{
return myData;
}

public void setData(Object data)

{
myData = data;
}

}

Consider the following LinkedList class. It is a singly Linked List that does not use dummy nodes. If iMySize > 0, the last node's next reference is null.

public class LinkedList

{
private Node myHead; //First node in list

private Node myTail; //Last node in list

private int iMySize;

public LinkedList()

{
myHead = null;

myTail = null;

iMySize = 0;

}

// other methods not shown

Complete a method that reverses the LinkedList. Do not assume or use any other methods in the LinkedList class. When complete the first node will be last, the second node will be second to last, and so forth. Note this method is part of the LinkedList class so you have access to the List's private instance variables.

/*
pre: none

post: list is reversed as discussed above.

*/

public void reverse()

{
// Don't forget question at bottom!!

//What is the average case Big O of your method. Explain:

CS 307 – Midterm 2 – Fall 2003
 11

