 Points off 1 2 3 4 5 Total off Net Score Exam #

	
	
	
	
	
	
	
	

CS 307 – Final – Fall 2004

Name__

UTEID login name _______________________________

Section Leader's Name ___________________________

Instructions:

1. Please turn off your cell phones.

2. There are 5 questions on this test.

3. You have 3 hours to complete the test.

4. You may not use a calculator on the test.

5. When code is required, write Java code.

6. The style guide is not in effect except where noted.

7. Efficiency is not graded except where noted.

8. Ensure your answers are legible.

9. When writing code you may not use any methods or classes from the Java Standard Library except as noted and the System.out.print, System.out.println, the equals method, and native arrays of primitives, Strings and other data types allowed by the question.

10. You may add helper methods if you wish when answering coding questions.

11. When answering coding questions assume the preconditions of the methods are met

1. (2 points each, 30 points total) Short answer. Place your answers on the attached answer sheet at the end of the exam. If the code has a syntax error answer syntax error. If the code would result in a runtime error answer runtime error. If the code will not complete due to an infinite loop, answer infinite loop.

Recall that when asked for Big O your answer should be the most precise Big O function. For example Selection Sort has an average case Big O of O(N^2), but per the formal definition of Big O it is technically correct to say Selection Sort has a Big O of O(N^3). On this test I want the most precise Big O function. (Closest without going under.)

A.
The following numbers are inserted, one at a time, in the order shown into a binary search tree with no checks to ensure or maintain balance. (i.e. the naïve insertion algorithm.) The tree is initially empty. Draw the resulting tree.

32, 5, 4, 74, 31

For parts B - F consider the following binary tree. For each question assume when a node is processed the value in the node is printed out by the statement:

System.out.print(currentNode.getData() + " ");

B.
What is the output of a preorder traversal of the above tree?

C.
What is the output of an inorder traversal of the above tree?

D.
What is the output of a postorder traversal of the above tree?

E.
What is the output of a level order traversal of the above tree?

F.
Is the binary tree from parts B, C, and D a binary search tree?

Consider the following Queue class that holds ints

	void
	enqueue(int item)
Add this item to the back of the this Queue. The item becomes the last element of the Queue

	 int
	front()
Returns the first element of the Queue, that is the one that has been present the longest.

	 int
	dequeue()

Remove and returns the first element of the Queue, that is the one that has been present the longest.

	boolean
	isEmpty()
 Returns true if there are no elements in this Queue, false otherwise

	int
	size()
 Returns the number of elements in this Queue

G.
Draw the contents of the Queue q after the following code has completed. Clearly label the front and back elements of the queue.

Queue q = new Queue();

for(int i = 0; i < 6; i++)

q.enqueue(i);

q.dequeue();

q.dequeue();

q.enqueue(3);

q.dequeue();

H.
Draw the contents of Queue q after the following code has completed. Clearly label the front and back elements of the queue.

Queue q = new Queue();

for(int i = 7; i > 0; i--)

q.enqueue(i);

q.dequeue();

q.enqueue(5);

for(int i = 0; i < q.size(); i++)

q.dequeue();

I.
If 1000 elements are inserted into a Binary Search Tree using the naïve insertion algorithm, what is the worst case height of the resulting tree? (The height of a tree is the number of links from the root to the deepest leaf. The height of the tree on the previous page is 3.)

J.
If 1000 elements are inserted into a Binary Search Tree using the naïve insertion algorithm, what is the expected (average case) height of the resulting tree? (The height of a tree is the number of links from the root to the deepest leaf. The height of the tree on the previous page is 3.)

K.
A priority queue is implemented using an ArrayList as its internal storage container. What is the average case Big O of the enqueue operation?

L.
Briefly explain what purpose Java interfaces serve. (public interface Foo …)

M.
What is the T(N), the function that describes the actual number of executable statements, for the following code? N is an integer that is sent as a parameter to the method that contains this code.

int sum1 = 0;

int sum2 = 0;

int limit = N / 3;

for(int i = 0; i < limit; i++)

sum1 += i * i;

for(int j = 0; j < N; j++)

sum2++;

N.
What is the Big O of the following code? M is an integer that is sent as a parameter to the method that contains this code. Method baz has of a Big O of O(log N) where N is the sum of the arguments sent to the method. (N = arg1 + arg2).

int total = 0;

for(int i = 0; i < M; i++)

for(int j = i; j >= 0; j--)

total += baz(i, j);

O.
A method takes 2 seconds to complete execution with a data set of 10,000 items. The method takes 16 seconds to complete execution with a data set of 20,000 items. What is the Big O of the method?

 2. (Binary Trees I, 15 points) Write a isPresent method for a Red-Black tree that uses lazy deletion to remove elements. Recall that Red-Black trees are balanced binary search trees that ensure efficient worst case performance. In addition to holding data each node in a Red-Black is colored Red or Black. In class we discussed the algorithm for adding elements to a Red-Black. Deleting elements from a Red-Black is equally challenging. One seemingly simple solution is to use lazy deletion. In lazy deletion values that are deleted from the tree are not actually deleted. Instead the node containing that node is just marked as not present, but not actually removed from the tree.

 Tree A

 Tree B

Consider the tree on the left. Assume 12 is to be deleted from the tree. Instead of removing 12 or the node that contains 12 from the tree, that node is simply marked as not present, giving the tree on the right. This means the set of data contained by the tree on the left is {10, 12, 15, 20} and the set of data contained by the tree on the right is {10, 15, 20}.

Using lazy deletion makes deletion simpler, but it wastes space and complicates the other methods for a Red-Black tree. In fact the tree could have 1000s of nodes, but the data set represented by the tree may only contain a few values and the vast majority of nodes are simply marked not present.

You will need to call the compareTo method from the Comparable interface.
public int compareTo(Object o)

Compares this object with the specified object for order. Returns a negative integer, zero, or a positive integer as this object is less than, equal to, or greater than the specified object.

Consider the following RBTreeNode class:

public class RBTreeNode

{
public static final int RED = 0;

public static final int BLACK = 1;

public RBTreeNode(Comparable data, RBTreeNode left, RBTreeNode right, int color, boolean present)

public Comparable getData()

public RBTreeNode getLeft()

public RBTreeNode getRight()

//return color of this node

public int getColor()

/* return true if the data in this node is present in the set of data the Red-Black tree this node is part of, false otherwise

*/

public boolean isPresent()

//other method not shown

}
Consider the following RedBlackTree class

public class RedBlackTree

{
private RBTreeNode myRoot;

private int iMySize;

//other methods not shown

//complete the following method. (on the next page)

public boolean isPresent(Comparable data)

/*
pre: data != null, data is of the same type as all other data in this RedBlackTree. In other words the compareTo method may be called without generating a ClassCastException.

post: return true if data is present in the set of data represented by the this Red Black Tree, false otherwise

*/

Consider the trees on the previous page. A call to isPresent(12) on Tree A would return true. A call to isPresent(12) on Tree B would return false.

//complete the following method

public boolean isPresent(Comparable data)

/*
pre: data != null, data is of the same type as all other data in this RedBlackTree. In other words the compareTo method may be called without generating a ClassCastException.

post: return true if data is present in the Set of data represented by the this Red Black Tree, false otherwise

*/

3. (Binary Treess 2, 20 points) Implement a getMin method for a Red-Black tree that uses lazy deletion to remove elements. Assume a Red-Black tree class uses lazy deletion as described in question 2. Write a public method that returns the minimum value of the set of data represented by the Red-Black tree. Consider the following Red Black tree. The value 10, was present at one time in the tree, but has since been removed. Thus the minimum value in the tree is 12.

Consider the following RedBlackTree class

public class RedBlackTree

{
private RBTreeNode myRoot;

private int iMySize;

//other methods not shown

//complete the following method (on the next page)

public Comparable getMin()

/*
pre: size() > 0
post: return the minimum value in the set of data represented by this Red Black tree.

*/

}

You may use the compareTo method from the Comparable interface.

public int compareTo(Object o)

Compares this object with the specified object for order. Returns a negative integer, zero, or a positive integer as this object is less than, equal to, or greater than the specified object.

// complete the following method. Use the same RBTreeNode class

// from question 2

public Comparable getMin()

/*
pre: size() > 0

post: return the minimum value in the set of data represented by this Red Black tree.

*/

4. (Implementing Data Structures, 15 Points) A hash table is a data structure that uses an array as its internal storage container. Items are added to the array based on the integer generated by a hash function. A hash function produces an integer based on some properties of the object. In Java hash functions are encapsulated via the hashcode method in the Object class and that many classes override.

To add an Object to a hash table

1. call its hashcode method to obtain an int, x

2. modulus x by the length of the hash table to obtain an index, i

3. go to index i in the hash tables native array

4. if that element is null, place the Object in that element

5. if that element is not null a collision has occurred. Collisions can be resolved in many ways.

6. In this hash table collisions are resolved via linear probing. Check the element at index i + 1

7. If the element at i + 1 is null, add the item at that element, if not continue to check elements until an open spot is found, by adding 1 to the index to be checked. If the end of the array is reached then wraparound.

8. A special case occurs if the hash table reaches a certain load factor. Load factor is equal to (number of items in hash table / length of array used as internal storage container). After adding an element, if the load factor is greater than or equal to some limit the table must be rehashed. This involves resizing the internal storage container and rehashing all elements. Do not implement the rehash method.
Consider the following HashTable class

public class HashTable
{
// storage container for items in this Hash Table

private Object[] myCon;

// number of items in this HashTable

private int iMySize

// load factor limit. When the load factor is greater than

// or equal to this value call the rehash method

private double dMyLoadFactorLimit;

//called to rehash table if load factor is exceeded

private void rehash()

// complete the following method. Write your answer on the

// next page

public void add(Object item)

/*
pre: item != null

post: add this item to the hashTable. size() = old size() + 1

*/

}

You will have to use the hashcode method from the Object class:

public int hashCode()

Returns a hash code value for the object.
// complete the following method from the HashTable class

public void add(Object item)

/*
pre: item != null

post: add this item to the hashTable. size() = old size() + 1

*/

5. (Using data structures, 20 points) Cryptography is "a process associated with scrambling plaintext (ordinary text, or cleartext) into ciphertext (a process called encryption), then back again (known as decryption)." In this question you encrypt a clear message represented as an array of Strings. A cipher is the scheme by which clear text is encrypted. A substitution cipher is a simple way of encrypting or encoding text to try and keep unwanted people from knowing the contents of a message. The code or cipher consists of a key as follows:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z clear text letter (keys)
J I X O W H V Z M Q U D T B C P Y N S A E L G F K R encoded letter (values)
To encrypt a message simply find the letter you are trying to encode in the top row and write down the letter directly below it from the bottom row. For example, if we wanted to encrypt the sentence " CS IS FUN" we would see that C encrypts to X, S encrypts to S and so forth. We would get the message "XS MS HEB". This assumes spaces are sent as spaces, a pretty poor encryption scheme.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z IS clear text (keys)
J I X O W H V Z M Q U D T B C P Y N S A E L G F K R ! encoded (values)
A variation on substitution ciphers, that makes the encrypted messages shorter is to encode frequently used words with single characters. Assume the above code is used but any occurrence of the word "IS" is encoded by a "!". The encrypted message becomes "XS ! HEB". Again, this shows spaces in the clear.

If spaces were not encrypted the encrypted message would be "XS!HEB".

Complete the following method:

public String encrypt(String[] clearMesssage, Map encryptKey)

/*
pre: clearMessage != null, no elements of clearMessage == null, encryptKey != null, the keys of encryptKey are Strings that represent clear text, and the values of encryptKey are Strings that represent the encode values of the key.

post: create and return a single String that uses encryptKey to encode the elements of clearMessage. If an element in clearMessage is a valid key in encrypyKey, use the associated value in the encoded message. Otherwise iterate through each character in the element in clearMessage and use each single character as a String of length 1 as a key into encryptMessage. If the key is not present do not add anything to the encoded message. If the key is present add its value to the encoded String.

*/

For Example clearMessage could be the array {"CS", "THIS?", "IS", "FUN", "???"}. Assume the Map encryptKey is the second encoding scheme above, the one that replaces "IS" with "!". The result would be "XSAZMS!HER". "CS", "THIS?", and "FUN" were not present as words in the key so they were encoded by individual letter. The String "???" was not present in the key and neither was the character "?" so nothing is included in the encoded message for the "???". Note, even though "THIS?" contains a substring "IS" the I and S are encoded as single characters. If the entire String is not present as a key, the String is encoded character by character.

You may use the following methods from the Map interface:

boolean containsKey(Object key)

Returns true if this map contains a mapping for the specified key.

boolean containsValue(Object value)

 Returns true if this map maps one or more keys to the specified value.

Object get(Object key)

 Returns the value to which this map maps the specified key. If containsKey(key) == false this method returns null.

Object put(Object key, Object value)

 Associates the specified value with the specified key in this map

Objec remove(Object key)

 Removes the mapping for this key from this map if it is present (optional operation).

int size()

 Returns the number of key-value mappings in this map.
You may use the following methods from the String class and String concatenation:

char charAt(int index)

Returns the character at the specified index. Recall you can convert a char to a String by concatenating it with the empty String.

int length()

 Returns the length of this string.

public String substring(int beginIndex, int endIndex)

Returns a new string that is a substring of this string. The substring begins at the specified beginIndex and extends to the character at index endIndex - 1. Thus the length of the substring is endIndex-beginIndex.
Complete the method on the next page.

public String encrypt(String[] clearMesssage, Map encryptKey)

/*
pre: clearMessage != null, no elements of clearMessage == null, encryptKey != null, the keys of encryptKey are Strings that represent clear text, and the values of encryptKey are Strings that represent the encode values of the key.

post: create and return a single String that uses encryptKey to encode the elements of clearMessage. If an element in clearMessage is a valid key in encrypyKey, use the associated value in the encoded message. Otherwise iterate through each character in the element in clearMessage and use each single character as a String of length 1 as a key into encryptMessage. If the key is not present do not add anything to the encoded message. If the key is present add its value to the encoded String.

*/
Scratch paper

Scratch Paper

Scratch Paper

Name:_______________________________

TAs name: ___________________________

Answer sheet for question 1, short answer questions

A. _______________________________

B. _______________________________

C. _______________________________

D. _______________________________

E. _______________________________

F. _______________________________

G. ______________________________

H. _______________________________

I. _______________________________

J. _______________________________

K. _______________________________

L. _______________________________

M. _______________________________

N. _______________________________

O. _______________________________

 72

5

 9

25

52

root of tree

75

12�Black�present

30

70

15�Red�present

20�Black�present

10�Black�not present

12�Black�present

15�Red�present

20�Black�present

10�Black�present

12�Black�NOT PRESENT

10�Black�present

15�Red�present

20�Black�present

CS 307 – Final – Fall 2004
 12

