 Points off 1 2 3 4 Total off Net Score

	
	
	
	
	
	
	
	

CS 307 – Midterm 2 – Fall 2005
Name__

UTEID login name _______________________________

TA's Name ___________________________ (Chendi, Don, or Peggy)

Instructions:

1. Please turn off your cell phones

2. There are 4 questions on this test.

3. You have 2 hours to complete the test.

4. You may not use a calculator on the test.

5. When code is required, write Java code.

6. When writing methods, assume the preconditions of the method are met.

7. In coding question you may add helper methods if you wish.

8. After completing the test please turn it in to one of the test proctors and show them your UTID.
1. (2 points each, 30 points total) Short answer. Place you answers on the attached answer sheet.
· If the code contains a syntax error or other compile error, answer “Compiler error”.

· If the code would result in a runtime error / exception answer “Runtime error”.

· If the code results in an infinite loop answer “Infinite loop”.
Recall that when asked for Big O your answer should be the most precise Big O function. For example Selection Sort has an average case Big O of O(N^2), but per the formal definition of Big O it is correct to say Selection Sort also has a Big O of O(N^3). I want the most precise Big O function. (Closest without going under.)

A.
What is the output of System.out.println(ivan(5));
public int ivan(int n)
{
if(n < 1)

return 3;

else

return 3 + ivan(n - 1);

}

B.
What is the output of jan(4);
public void jan(int n)
{
if(n <= 0)

System.out.print('*');

else

{
System.out.print(n);

jan(n – 2);

System.out.print(n);

}

}

C.
What is the output of System.out.println(ras(8));
public int ras(int n)
{
if(n <= 2)

return 2;

else

return 3 + ras(n – 2) + ras(n - 2);

}

D.
What is the output of System.out.println(fran(“man”));
// pre: s != null

// recall the first character of a String is at position 0
// substring(int) returns a substring starting at the specified

// position and going to the end of the String
public String fran(String s)

{
String result = “”;

if(s.length() <= 1)

result = s;

else

result = s.charAt(0) + fran(s.substring(1)) +

 s.charAt(0);

return result;

}
E.
What is the Big O of method ivan in part A?
F.
What is the Big O of the following method?

public int val(int[] list)

{
//pre: list != null, list.length >= 10

int total = 0;

for(int i = 1; i <= 10; i++)

total += list[list.length – i];

return total;

}
G.
Assume N = list.length. What is the T(N) of method george? Recall T(N) is a function that describes the actual number of executable statements in a code segment? Assume a call to the println method counts as one statement.

public void george(int[] list)

{
// pre: list != null

int total = 0;

for(int i = 0; i < list.length; i++)

total += list[i];

System.out.println(total);

for(int i = 0; i < list.length; i++)

total *= list[i];

System.out.println(total);

}

H.
What is the Big O of method george in part G?
I.
What is the Big O of method floyd? Method heras has a Big O of O(1).

public void floyd(int[] list)

{
for(int i = 0; i < list.length; i++)

for(int j = 0; j < list.length; j++)

for(int k = 0; k < list.length; k++)

heras(list[i], list[j], list[j]);

}

J.
What is the worst case Big O of method bobby?

public int bobby(int[] list)
{
int total = 0;

for(int i = 0; i < list.length; i++)

for(int j = i + 1; j < list.length; j++)

if(list[i] == list[j])

total++;

return total;

}
K.
What is the Big O of method levi? Assume the length and charAt method from the String class are O(1) and that the println method is O(1).

public void levi(String s)

{
for(int i = 0; i < 5; i++)

for(int j = s.length() - 1; j > 0; j = j / 2)

System.out.println(s.charAt(j));

}

L.
A program is O(N^2). It takes 2 seconds for the program to complete with a data set of 50,000 items. What is the expected run time of the program with 200,000 data items?
M.
A program is O(N log2 N). It takes 10 seconds for the program to complete with a data set of 1000 items. What is the expected run time of the program with 1,000,000 data items?
(log2 1000 ~= 10 and log2 1,000,000 ~= 20)
N.
Assume linked list contains data sorted in ascending order. Would it be more efficient to use a linear search or a binary search to determine if a particular value is present in the list? Explain why.
O.
In the quicksort an algorithm an element is chosen from the unsorted list. This element is called the pivot. The unsorted list is then partitioned into elements less than or equal to the pivot and elements greater than the pivot. These two sub-lists are then quicksorted. In the average case quicksort is O(N log N). In the worst case quicksort is O(N^2). Explain what must occur for this worst case behavior to occur.
2. (Using data structures / Implementing data structures 20 points) A Bag is a data structure with no implied order. Duplicate elements are allowed. A Set is a data structure with no implied order. Duplicates are not allowed.
Complete a constructor in the UnsortedSet class that takes 1 parameter, a Bag and creates a Set out of the elements of the Bag.

For example if the Bag had the following elements: {2, 1, 2, 3, 1, 4, 5, 1}

The resulting set would be: {2, 1, 3, 4, 5}

The UnsortedSet class uses a native array of Objects as its internal storage container. The UnsortedSet class also tracks the size of the set with an integer instance variable. Extra capacity in the array that holds the elements of the set is acceptable.

You may not use any methods from the UnsortedSet class.
Here are the methods from the Bag class and Iterator class.

Bag class methods:

	Bag Class Method Summary

	 boolean
	add(Object o)
 Add o to this Bag

	 void
	clear()
 Removes all of the elements from this collection (optional operation).

	 boolean
	contains(Object o)
 Returns true if this Bag contains the specified element.

	 boolean
	equals(Object o)
 Compares the specified object with this collection for equality.

	 boolean
	isEmpty()
 Returns true if this collection contains no elements.

	 Iterator
	iterator()
 Returns an iterator over the elements in this Bag.

	 boolean
	remove(Object o)
 Removes a single instance of the specified element from this Bag, if it is present

	 int
	size()
 Returns the number of elements in this collection.

	Iterator Class Method Summary

	 boolean
	hasNext()
 Returns true if the iteration has more elements.

	 Object
	next()
 Returns the next element in the iteration.

	 void
	remove()
 Removes from the underlying collection the last element returned by the iterator.

You may not use any other classes except the Bag, Iterator, and native array class when competing this method. You may call the equals method on objects in the Bag.

public class UnsortedSet
{
private static final int DEFAULT_CAPACITY = 10;

private Object[] myCon;

private int mySize;

// other constructors and methods not shown

// to be completed by the student

public UnsortedSet(Bag b)

{
// pre: b != null

// more space on next page if necesary

// more space for question 2
//Blank page

3. (Implementing data structures, 25 points). Write a method that splits a singly linked list into two separate linked lists. The elements in odd positions remain in the original linked list and the elements in even positions are inserted into a new linked list. The elements retain their same relative order. You may not use any other methods in the linked list class except the default constructor. Your method shall be no worse than O(N) where N is the number of elements in the original list. If the size of the original list is 1 or 0, an empty list is returned.
Example. Assume the following linked list exists. (myHead and myTail references not shown.)

[image: image1]
The linked list class using the following Node class.

public class Node

{
public Node(Object item, Node next)

public Object getData()

public Node getNext()

public void setData(Object item)

public void setNext(Node next)

}
public class LinkedList
{
private Node myHead;

private Node myTail;

private int mySize;

public LinkedList()

{
myHead = null;

myTail = null;

mySize = 0;

}

public LinkedList split()

{
// pre: none

4. (Recursion, 25 points) This question involves a group of dice. The dice are rolled and the total of the results is calculated. Determine how many different ways the result of rolling the group of dice could equal some target value. All dice must be included in the total of the roll. In other words, no dice may be left out.
The dice have 3 or more sides. The faces of the dice are numbered 1 to N where N is the number of faces on the die.

For example a group of dice has two 4-sided dice and 1 6-sided die. The target number is 5. The total of the group could equal 5 in the following ways.

	Die 1
4-sided
	Die 2
4-sided
	Die 3
6-sided
	Total

	1
	1
	3
	5

	1
	2
	2
	5

	1
	3
	1
	5

	2
	1
	2
	5

	2
	2
	1
	5

	3
	1
	1
	5

Given two 4-sided dice and one 6-sided dice they can be rolled 6 different ways to match the target total of 5.
Complete the following method

//
pre:
dice != null, all elements of dice > 2, target > 0

public int numCombinations(int[] dice, int target)

{

// more room on next page

// more room for question 4
Scratch Paper

Scratch Paper

Scratch Paper
Name:_______________________________

TAs name: ___________________________

Answer sheet for question 1, short answer questions

A. _______________________________

B. _______________________________

C. _______________________________

D. _______________________________

E. _______________________________

F. _______________________________

G. _______________________________

H. _______________________________

I. _______________________________

J. _______________________________

K. _______________________________

L. _______________________________

M. _______________________________

N. _______________________________

O. _______________________________

original calling list

returned list

D

B

calling list

E

C

A

E

D

C

B

A

data next next

CS 307 – Midterm 2 – Fall 2005
 13

