 Points off 1 2 3 4 5 6 Total off Net Score

	
	
	
	
	
	
	
	

CS 307 – Final – Fall 2006
Name__

UTEID login name _______________________________

Circle your TA’s name:
Alison

Tekin

Vineet
Instructions:

1. Please turn off your cell phones.

2. There are 6 questions on this test.
3. You have 3 hours to complete the test.

4. You may not use a calculator on the test.

5. When code is required, write Java code.

6. Ensure your answers are legible.

7. \When answering coding questions, you may add helper methods if you wish .

8. When answering questions 2 - 6, assume the preconditions of the methods are met.
1. (2 points each, 30 points total) Short answer. Place you answers on the attached answer sheet.
For questions that ask what is the output:
· If the code contains a syntax error or other compile error, answer “Compiler error”.

· If the code would result in a runtime error or exception answer “Runtime error”.

· If the code results in an infinite loop answer “Infinite loop”.

On questions that ask for the Big O of a method or algorithm, recall that when asked for Big O your answer should be the most restrictive Big O function. For example Selection Sort has an expected case Big O of O(N^2), but per the formal definition of Big O it is correct to say Selection Sort also has a Big O of O(N^3). Give the most restrictive, correct Big O function. (Closest without going under.)

A.
The following numbers are inserted, one at a time, in the order shown, into a binary search tree with no checks to ensure or maintain balance. (i.e. the traditional naïve insertion algorithm.) The tree is initially empty. Draw the resulting tree.

19, 12, 21, 14, -5
For parts B - E consider the following binary tree. For each question assume when a node is processed the value in the node is printed out by the statement:

System.out.print(currentNode.getData() + " ");

[image: image1]

B.
What is the output of a preorder traversal of the above tree?

C.
What is the output of an inorder traversal of the above tree?

D.
What is the output of a postorder traversal of the above tree?

E.
Is the binary tree shown above a binary search tree? Assume characters are compared based on alphabetical order.
F.
What is the output of the following code segment?
Queue<Integer> q = new Queue<Integer>();

Stack<Integer> s = new Stack<Integer>();

for(int i = 1; i < 20; i += 3){
 if(i % 2 == 0)

 q.enqueue(i);

 else

 s.push(i);

}

while(!q.isEmpty() && !s.isEmpty()){

 System.out.print(s.pop() + " ");

 System.out.print(q.dequeue() + " ");

}

For questions G. and H. consider the following Queue class

public class Queue<AnyType>{

private ArrayList<AnyType> myCon;

public Queue(){

myCon = new ArrayList<AnyType>();

}

public AnyType front(){

return myCon.get(myCon.size() - 1);

}

public AnyType dequeue(){

return myCon.remove(myCon.size() - 1);

}

public boolean isEmpty(){

return myCon.size() == 0;

}

public void enqueue(AnyType data){

myCon.add(0, data);

}
}
G.
If a Queue, as implemented on the previous page, contains N items, what is the Big O of the
dequeue method?
H.
If a Queue, as implemented on the previous page, contains N items, what is the Big O of the
enqueue method?
I.
Consider the following Huffman Code tree. The frequencies of nodes are not shown. Using the algorithm presented in class, how would the String "HE" be encoded using 1s and 0s?

[image: image2]
J.
What is the worst case height of a Red Black Tree that contains N items? Use Big O notation to express you answer.

K.
What is the expected Big O for determining the height of a Binary Search Tree? (The height of a tree is the number of links from the root to the deepest leaf.)
L.
What is the expected Big O of the following method? Assume the LinkedList is formed using doubly linked nodes as on the assignment and N = list.size().
// pre: list.size > 6

public int showSome(LinkedList<Integer> list){

int start = list.size() / 2 - 2;
int stop = list.size() / 2 + 2;

int total = 0;

 for(int pos = start; pos <= stop; pos++)

total += list.get(pos);

return total;

}

M.
Assume you have an ArrayList of approximately 1,000,000 items. The items can be sorted, but are not currently in sorted order. You do not expect to add any more items to the ArrayList. You wish to determine if given values are present in the ArrayList or not. You expect to have to process 125,000 checks to see if a given value is present or not. Which is more efficient, doing linear searches on the unsorted data or sorting the data via the quicksort algorithm and then doing binary searches. Briefly explain your reasoning including calculations.

N.
Consider the following ListNode class:

public class ListNode

{
public Object data;

public ListNode next;

public ListNode prev;

}

Draw the object variables and objects that exists after the following code is executed. Use a "/" to indicate any object references that are null. Recall that all object variables in Java are pointers.

ListNode n1 = new ListNode();

ListNode n2 = new ListNode();

ListNode n3 = n1;

n1.next = n2;

n3.prev = n1;

n1.next.prev = n3.next;

O.
What is the average case Big O of adding an element to a LinkedList. The list is composed
of doubly linked nodes.
 2. (Linked Lists I, 10 points) Complete an instance method that determines if a LinkedList object is circular or not. This LinkedList class uses nodes that are singly linked. The LinkedList class has only one instance variable, a reference to the first node in the list, named head. The class does not have a reference to the last node in the linked list, nor does it track the number of elements in the list. You may not use any other methods of the LinkedList class in completing this method. Your method should be O(1) space, which means no matter how many elements are in the LinkedList your method uses the same number of variables and memory. In other words you can't use a temporary array or ArrayList.

Methods that are not O(1) space or that use other methods in the LinkedList class will not receive full credit.
A linked list is circular if the last node in the list refers to the first node instead of null.

Here is a non circular linked list.

[image: image3]
Here is a circular linked list.

[image: image4]
Here is the Node class:

public class Node

{
public Node()

public Node(Object data, Node next)

public Object getData()

public Node getNext()

public void setData(Object data)

public void setNext(Node next)
}
Here is the LinkedList class:

public class LinkedList
{
private Node head;

// complete the following method

// pre: none

// post: return true if this LinkedList is circular, false otherwise.
// This linked list is not altered as a result of this method.
public boolean isCircular(){
 3. (Linked Lists II, 15 points) Complete an instance method that determines the position of a given element in a LinkedList starting at a given location. The method is named indexOf.

This LinkedList class uses nodes that are singly linked. You may not use any other methods of the LinkedList class in completing this method. Your method should be O(1) space, which means no matter how many elements are in the LinkedList your method uses the same number of variables and memory. In other words you can't use a temporary array or ArrayList.

Methods that are not O(1) space or that use other methods in the LinkedList class will not receive full credit.
Here is an example. In this example the LinkedList represents the following abstract list:

position: 0 1 2 3 4 5 6
data:
["A", "C", "AA", "B", "AA", "C", "D"]

indexOf(0, "AA") would return 2

indexOf(3, "AA") would return 4

indexOf(5, "AA") would return -1

indexOf(0, "E") would return -1;

indexOf(6, "D") would return 6
The Node class is the same as in question 2.

Here is the LinkedList class:

public class LinkedList
{
private Node head;

private Node tail;

private int size;

// complete the following method

// pre: 0 <= start < size(), obj != null

// post: returns the position of the first occurrence of obj

// in this list starting at position start. Returns -1 if

// obj is not present in the list from start to the end of the list

public int indexOf(int start, Object obj){

assert start >= 0 && start < size() && obj != null;

// more room on next page if necessary

// more room for question 3

4. (Binary Trees, 15 points) Complete an instance method, numNodesSumOfChildren, for a BinaryTree class that returns the number of nodes in the BinaryTree that have a value stored in the node equal to the sum of the values stored in the child nodes, if they exist. The BinaryTree only stores int values.
Important. You method shall be no worse than O(h) space, where h is the height of the tree.
Here is an example. Consider the following binary tree.

In the tree shown above there are 3 nodes that store a value equal to the sume of the values in their children. The node that contains 12 (children equal to 8 + 4 = 12), the node that contains 8 (children equal to 7 + 1), and the highest node that contains 4 (one child node that also contains 4).

Here is the TreeNode class:
public class TreeNode

{ public TreeNode()

 public TreeNode(int initValue)

 public TreeNode(int initValue, TreeNode initLeft, TreeNode initRight)

 public int getValue()

 public TreeNode getLeft()

 public TreeNode getRight()

 public void setValue(int theNewValue)

 public void setLeft(TreeNode theNewLeft)
 public void setRight(TreeNode theNewRight)

}

Here is the BinaryTree class:

public class BinaryTree

{
private TreeNode root;

// complete the following method
// pre: none

// post: Return the number of nodes in this tree that store a value equal // to the sum of the values in the node's children, if they exist

private int numNodesSumOfChildren(){
5. (Using Data Structures, 15 points) A Map is a data structure that stores key-value pairs. Each key is associated with a value. The methods for the Map class are listed below. This question involves a Map that uses Strings as keys and Sets of Strings as values. The Map represents a translation dictionary such as a Spanish to English dictionary.

Here is a small example:

	key (Spanish word)

	"rojo"
	"rapido"
	"veloz"
	"naranja"

	value (Set of English words)

	("red")
	("fast", "quick")
	("fast", "quick", "swift")
	("orange")

Complete a method that creates a reverse translation Map. Every value in every Set becomes a key and every key becomes a value. For example given the above Map the resulting Map would be:

	key (English word)

	"red"
	"fast"
	"quick"
	"orange"
	"swift"

	value (Set of Spanish words)

	"rojo"
	("rapido", "veloz")
	("rapido", "veloz")
	("naranja")
	("veloz")

Here are the given methods for Maps, Sets, and Iterators.

	Map<KeyType, ValType> Method Summary

	
	Map()
 Create a new, empty Map.

	 boolean
	containsKey(Object key)
 Returns true if this map contains a mapping for the specified key.

	 boolean
	containsValue(Object value)
 Returns true if this map maps one or more keys to the specified value.

	 ValType
	get(Object key)
 Returns the value to which this map maps the specified key.

	 Set<KeyType>
	keySet()
 Returns a set view of the keys contained in this map.

	 ValType
	put(KeyType key, ValType value)
 Associates the specified value with the specified key in this map.

	 V
	remove(Object key)
 Removes the mapping for this key from this map if it is present.

	 int
	size()
 Returns the number of key-value mappings in this map.

	Set<AnyType> Method Summary

	
	Set()
 Create a new, empty Set.

	 boolean
	add(AnyType o)
 Adds the specified element to this set if it is not already present

	 void
	clear()
 Removes all of the elements from this set.

	 boolean
	contains(Object o)
 Returns true if this set contains the specified element.

	 Iterator<AnyType>
	iterator()
 Returns an iterator over the elements in this set.

	 boolean
	remove(Object o)
 Removes the specified element from this set if it is present.

	 int
	size()
 Returns the number of elements in this set (its cardinality).

	Iterator<AnyType> Method Summary

	 boolean
	hasNext()
 Returns true if the iteration has more elements.

	 AnyType
	next()
 Returns the next element in the iteration.

	 void
	remove()
 Removes from the underlying collection the last element returned by the iterator .

Complete the following method:

/*

pre: originalGuide != null

post: return a reverse of originalGuide as discussed in the

question. originalGuide is unchanged

*/

public Map<String, Set<String>> getReverse(

Map<String, Set<String>> originalGuide){

assert originalGuide != null;
Complete this method on the next page.

/* pre: originalGuide != null

post: return a reverse of originalGuide as discussed in the

question. originalGuide is unchanged

*/

public Map<String, Set<String>> getReverse(

Map<String, Set<String>> originalGuide){

assert originalGuide != null;
6. (Working with Data Structures, 15 points) Complete a method reverseN which reverses the first N elements of a regular Queue. This method is not in the Queue class.

For example if the initial queue is q = [1, 2, 3, 4, 5, 6, 2, 3, 4] and the left most element is the front element then a call to reverseN(q, 4) would result in q = [4, 3, 2, 1, 5, 6, 2, 3, 4]. The only methods avaialble for the Queue class are front, dequeue, enqueue, and isEmpty. You may use whatever other classes you like.

(11 points) Complete the following method.

/* pre: q != null, n >= 0, q contains at least n elements

 post: as described in the question

*/

public void reverseN(Queue q, int n){

(4 points) Given there are N elements in the Queue, what is the Big O of your method? Assume all methods for the Queue class are O(1). Justify your answer.

Scratch Paper

Scratch Paper

Scratch Paper

Scratch Paper

Scratch Paper

Name:_______________________________

Answer sheet for question 1, short answer questions

__

A.

B.

C.

D.

E.

F.

G.

H.

I.

J.

K.

__

L.

M.

N.

O.

'E'

root of tree

head

 'E'

'K'

 'T'

 'R'

 5

'I'

'S'

data next

 3

 4

head

4

 7

 1

 8

12

'H'

 'T'

'N'

root of tree

data next

root

CS 307 – Final – Fall 2006
 19

