 Points off 1 2 3 4 Total off Net Score

	
	
	
	
	
	
	
	

CS 307 – Midterm 2 – Fall 2006
Name__

UTEID login name _______________________________

TA's Name Alison

Tekin

Vineet

(Circle One)
Instructions:

1. Please turn off your cell phones

2. There are 4 questions on this test.

3. You have 2 hours to complete the test.

4. You may not use a calculator on the test.

5. When code is required, write Java code.

6. When writing methods, assume the preconditions of the method are met.

7. In coding question you may add helper methods if you wish.

8. After completing the test please turn it in to one of the test proctors and show them your UTID.
1. (2 points each, 30 points total) Short answer. Place you answers on the attached answer sheet.
· If the code contains a syntax error or other compile error, answer “compile error”.

· If the code would result in a runtime error / exception answer “Runtime error”.

· If the code results in an infinite loop answer “Infinite loop”.
Recall that when asked for Big O your answer should be the most restrictive correct Big O function. For example Selection Sort has an average case Big O of O(N^2), but per the formal definition of Big O it is correct to say Selection Sort also has a Big O of O(N^3) or O(N^4). I want the most restrictive correct Big O function. (Closest without going under.)

A.
What is the output of System.out.println(fire(7));
public int fire(int n){

if(n <= 1)

return 3;

else

return 2 + fire(n – 3);

}

B.
What is the output of System.out.println(crew(13, 1));
public int crew(int n, int m){

int result = 0;

if(m == 0)

result = 3;

else if(n < 1)

result = 1;

else

result = m + crew(n / m, m + 1);

return result;

}
C.
What is the output of System.out.println(united(6));
public int united(int n)
{
if(n <= 3)

return 1;

else

return 2 + united(n – 1) + united(n - 1);

}

D.
What is the Big O of method united in part C?

E.
What is the average case Big O of the following method? N = data.length.

public int wizard(double data[], int tgt){

int total = 0;

int limit = data.length / 2;

for(int i = 0; i < limit; i++)

if(data[i] > tgt)

total++;

return total;

}

F.
What is the result of the following postfix expression?

3 2 5 + * 2 +

G.
Consider a LinkedList class that uses singly linked nodes and has references to the first and last nodes in the list. The examples from class were for this kind of list.

What is the Big O of removing the last element of such a LinkedList if there are already N elements present? Explain why.

H.
What is the average case Big O of the following method? N = list.length.

public int[] revolution(int[] list){

int[] result = new int[list.length];

for(int i = 0; i < list.length; i++)

for(int j = 0; j < i; j++)

foo(list, result, i, j); // foo is O(1)

return result;

}

I.
What is the average case Big O of the following method? N = vals.length.

public int real(int[] vals){

int result = 0;

for(int i = vals.length; i > 0; i /= 2)

for(int j = 1; j < i; j++)

result += bar(vals, i, j); // bar is O(1)

return result;

}

J.
Consider the following SortedSet class.

publc class SortedSet{

 ArrayList<Comparable> myCon = new ArrayList<Comparable>();

 public boolean add(Comparable val){

 // For all Big O, N = myCon.size()

 boolean alreadyPresent = myCon.contains(val); // O(N)

 if(!alreadyPresent){

 myCon.add(val); // amortized O(1)

 Collections.sort(myCon); // O(N log N)

 }

 return alreadyPresent;

 }

 // other methods not shown

}

What is the average case Big O of the following method? Assume most elements of strings are unique.

public SortedSet createSet(String[] strings){

SortedSet result = new SortedSet();

for(int i = 0; i < strings.length; i++)

result.add(strings[i]);

return result;

}

K.
Consider the following methods for a List class.

	Method Summary

	 void
	add(Object o)
 Appends the specified element to the end of this list.

	 void
	add(int index, Object element)
 Inserts the specified element at the specified position in this list.

	 Object
	get(int index)
 Returns the element at the specified position in this list.

	Object
	remove(int index)
 Removes the element at the specified position in this list. Return the element that is removed from the list.

	 Object
	set(int index, Object element)
 Replaces the element at the specified position in this list with the specified element. Returns the element that was previously at index.

	 int
	size()
 Returns the number of elements in this list.

What is the output of method rapid assuming the precondition is met?
// pre: s.size() == 0
public void rapid(List s){

assert s.size() == 0 : “Failed precondition: rapid”;

s.add("A");

s.add("B");

s.add(0, "C");

s.add(2, "D");

s.set(3, s.set(0, s.get(3)));

for(int i = 0; i < s.size(); i++)

System.out.print(s.get(i));

}

L.
What is the output of the following method? Assume the IntStack class implements a traditional Stack that holds integers.
public void fc(){

int[] data = {5, 1, 6, 3, 7, 4, 15, 10};

IntStack s1 = new IntStack();

for(int i = 0; i < data.length(); i++)

if(data[i] % 3 != 0)

s1.push(data[i]);

while(!s1.isEmpty())

System.out.print(s1.pop());

}
M.
A method is O(N3). It takes 1 second for the method to complete on a data set with 1000 items. What is the expected time for the method to complete with a data set of 3000 items?

N.
A method is O(2N). It takes 0.5 seconds for the method to complete on a data set with 50 items. What is the expected time for the method to complete with a data set of 55 items?
O.
You are working with an existing sort method that sorts data into ascending order, but you are not sure which sorting algorithm the method uses. Here are some results of experiments with the sorting method:

Time to sort an array of 10,000 elements in random order: 0.25 seconds

Time to sort an array of 20,000 elements in random order: 1.00 second

Time to sort an array of 10,000 elements already in ascending order: 0.05 seconds

Time to sort an array of 20,000 elements already in ascending order: 0.10 seconds

Based on these results, which of the sorting algorithm we studied in class do you think the method uses?

2. (Implementing Data Structures, 25 Points) Suppose we want to implement an array based list class that tracks how many times a given element from the list is accessed. The class is named FrequencyList. Assume the follow class exists.

public class Counter{

// implementation details not shown

// pre: none

// post: create a counter with data, timesAccessed() = 0

public Counter(Object data)

// pre: none

// post: timesAccessed() = old timesAccessed() + 1

public void accessed()

// pre: none

// post: return the number of times this element has been
// accessed

public int timesAccessed()

// pre: none

// post: return this Counter's data

public Object getData()

}

Here is a portion of the array based list class similar to the one shown in class.

public class FrequencyList{

private Counter[] myCon;

private int mySize;

public FrequencyList(){

myCon = new Counter[10];

mySize = 0;

}

// pre: none

// post: x added to end of the list, size() = old size() + 1

public void add(Object obj){

if(mySize == myCon.length)

resize();

myCon[mySize] = new Counter(obj);

mySize++;

}

//more of the FrequencyList class

// pre: 0 <= pos < size()

// return the element at pos and update count of item

public Object get(int pos){

myCon[pos].accessed();

return myCon[pos].getData();

}

public int size(){

return mySize;

}

// other methods not shown

}

Complete a method for the FrequencyList class getPopular. This method returns a new ArrayList (not a FrequencyList) of items (not Counter objects) from the original FrequencyList that have been accessed 5%, or more, of the time.
For example if the total number of accesses on a given list is 1000 return an ArrayList with every item in the original list that has been accessed 50 times or more. (1000 * 0.05 = 50) .
The popular elements are not removed from the calling FrequencyList.
The number of times an element has been accessed is not affected by this method.

If no element has been accessed 5%, or more, of the time or if the FrequencyList is empty, return an empty ArrayList.
Assume the ArrayList class is generic based on holding Objects, has a default constructor, and an add method.

You may not use any methods from FrequencyList not shown. (You can of course, write your own helper methods.)
Here is the method header. This method is part of the FrequencyList class.
// pre: none
// post: return an ArrayList of objects that have been
// accessed 5% or more of the time. The number of times
// elements have been accessed is not altered by this

// method
public ArrayList getPopular(){
// COMPLETE THIS METHOD ON THE NEXT PAGE.
// pre: none
// post: return an ArrayList of objects that have been
// accessed 5% or more of the time. The number of times
// elements have been accessed are is altered by this

// method
public ArrayList getPopular(){
// this method is part of the FrequencyList class

3. (Implementing data structures, 25 points). Write an instance method for a SinglyLinkedList class named createSet. The createSet method returns another SinglyLinkedList with all the elements from the original SinglyLinkedList except there are no duplicate elements. The relative position of elements in the returned SinglyLinkedList are the same as in the calling object.

You may not use any other methods in the SinglyLinkedList class except the default constructor. You may create your own helper methods if you wish.
You may not use native arrays or any other classes except Node.
Recall that since this method is in the SinglyLinkedList class you have access to the private data members of all SinglyLinkedList objects, not just the calling object.
Here are some examples. (Note, the original list is unchanged by this method.)
	Original List
	Returned List

	[A, B, A, D, C, A, B]

	[A, B, D, C]

	[A, B, C, D, E]

	[A, B, C, D, E]

	[A, A, A, A, A]

	[A]

	[]

	[]

Remember that the a singly linked list uses a dynamic linked structure of nodes as its internal storage container.
The linked list class using the following Node class.

public class Node

{
public Node(Object item, Node next)

public Object getData()

public Node getNext()

public void setData(Object item)

public void setNext(Node next)

}
Complete the createSet method on the next page.

public class SinglyLinkedList
{
private Node myHead; //points to the first node in the list

private Node myTail; // points to the last node in the list

private int mySize; // the number of elements in the list

public SinglyLinkedList()

{
myHead = null;

myTail = null;

mySize = 0;

}

// pre: none

// post: return a SinglyLinkedList of the element in this
// SinglyLinkedList with duplicates removed. The elements in

// the result have the same relative order as the elements in

// this SinglyLinkedList. This SinglyLinkedList is not
// altered as a result of this method call.

public SinglyLinkedList createSet()

{

// more room on next page

4. (Recursion, 20 points) Write a method to determine what words can found by reducing a given String. Reducing a String consists of removing letters from a String, but maintaining the same relative order of the remaining letters. Thus if the original String is "computer" the first 8 reductions are:
omputer, cmputer, coputer, comuter, compter, compuer, computr, compute

A predetermined SortedSet of Strings will be used to decide which resulting Strings are words.

Each of the strings that result from removing one character from "computer" is then reduced. So, for example, "coputer" would be reduced to the following strings

oputer, cputer, couter, copter, copuer, coputr, copute

This continues down to Strings that have only one letter.

You will find the following String methods helpful:

public String substring(int beginIndex)

Returns a new string that is a substring of this string. The substring begins with the character at the specified index and extends to the end of this string.

public String substring(int beginIndex,

 int endIndex)

Returns a new string that is a substring of this string. The substring begins at the specified beginIndex and extends to the character at index endIndex - 1. Thus the length of the substring is endIndex-beginIndex.

Assume the SortedSet class has an add and a contains method as in the Set assignment you completed.
Here is the method header.

// pre: result != null, word != null, word.length() > 0,

// dictionary already contains all legal words

// post: result contains all the Strings that can be made by

// reducing word and are in dictionary

public void reduce(String word, SortedSet<String> result,

 SortedSet<String> dictionary){

// Complete this method on the next page.

Here is an example of how the method could be called:

SortedSet<String> dictionary = // method to create dictionary

SortedSet<String> result = new SortedSet<String>();

reduce("computer", result, dictionary);

Obviously results will vary based on the dictionary used. Here is one possible result for reducing "computer". Given a different dictionary, different results would be obtained.

Note, a word can count as a reduction of itself. (0 characters removed)
[come, compute, computer, cop, cope, copter, cot, cote, cue, cur, cut, cute, cuter, me, mute, muter, op, opt, or, our, out, outer, per, put]
// pre: result != null, word != null, word.length() > 0,

// dictionary already contains all legal words

// post: result contains all the Strings that can be made by

// reducing word and are in dictionary

public void reduce(String word, SortedSet<String> result,

 SortedSet<String> dictionary){

// Scratch Paper

// Scratch Paper

// Scratch Paper

// Scratch Paper
// Scratch Paper

// Scratch Paper
// Scratch Paper

Name:_______________________________

TAs name: ___________________________

Answer sheet for question 1, short answer questions

A. _______________________________

B. _______________________________

C. _______________________________

D. _______________________________

E. _______________________________

F. _______________________________

G. _______________________________

H. _______________________________

I. _______________________________

J. _______________________________

K. _______________________________

L. _______________________________

M. _______________________________

N. _______________________________

O. _______________________________

CS 307 – Midterm 2 – Fall 2006
 17

