 Points off 1 2 3 4 5 6 Total off Net Score

	
	
	
	
	
	
	
	

CS 307 – Midterm 2 – Spring 2004

Name__

UTEID login name _______________________________

Section Leader's Name ___________________________

Instructions:

1. There are 4 questions on this test.

2. You have 2 hours to complete the test.

3. You may not use a calculator on the test.

4. When code is required, write Java code.

5. The style guide is not in effect except where noted.

6. Efficiency is not graded except where noted.

7. Ensure your answers are legible.

8. When writing code you may not use any methods or classes from the Java Standard Library except as noted and the System.out.print, System.out.println, the equals method, and native arrays.

9. In coding question you may add helper methods if you wish.

10. The last page of the test is scratch paper.

1. (2 points each, 30 points total) Short answer. If an error would occur answer "syntax error" or "runtime error" depending on what type of error it would be.

Recall that when asked for Big O your answer should be the most precise Big O function. For example Selection Sort has an average case Big O of O(N^2), but per the formal definition of Big O it is correct to say Selection Sort also has a Big O of O(N^3). I want the most precise Big O function. (Closest without going under.)

A.
What is the output of System.out.println(surprise(4));
public int surprise(int x)
{
if(x < 2)

return 1;

else

return 1 + surprise(x – 1);

}

B.
What is the output of sophie(5);
public void sophie(int y)
{
if(y < 0)

System.out.print(y + " ");

else

{
System.out.print(y + " ");

sophie(y – 1);

}

}

C.
What is the output of pollychrest(7);
public void pollychrest(int z)
{
System.out.print(z + " ");

if(z >= 0)

{
pollychrest(z – 2);

System.out.print(z + " ");

}

}

D.
What is the output of System.out.println(victory(4));
public int victory(int a)
{
if(a < 0)

return 1;

else

return 2 + victory(a – 1) + victory(a – 2);

}

E.
What is the Big O of the following code segment? (The variable n is an integer parameter sent to the method that contains this code segment.)

int total = 0;

for(int i = 0; i < n; i++)

{
total++;

}

F.
What is T(N), the actual number of executable statements, for the following code segment? Count the each of the initialization statements, boolean expressions, and increment statements in a for loop as separate statements, not as a single statement. (The variable n is an integer parameter sent to the method that contains this code segment.)

int total = 0;

for(int i = 0; i < n; i++)

{
for(int j = 0; j < n; j++)

{
total++;

}

}

G.
What is the Big O of the following code segment? Method lively is O(N) where N is equal to the argument sent to the method. (The variable n is an integer parameter sent to the method that contains this code segment.)

int total = 0;

for(int i = 0; i < n; i++)

{
total++;

lively(n);

}

H.
What is the Big O of the following code segment? (The variable n is an integer parameter sent to the method that contains this code segment.)

int t1 = 0;

int t2 = 0;

for(int i = 0; i < n; i++)

{
t1++;

}

for(int j = 2 * n; j >= 0; j--)

{
t2++;

}

I.
A What is the Big O of the following code segment? Method agamemnon has a Big O of O(1). (The variable n is an integer parameter sent to the method that contains this code segment.)

for(int i = 0; i < n / 2; i++)

{
for(int j = 1; j <= n; j *= 2)

{
agamemnon (j);

}

}

J.
What is the Big O of the following code segment? (The variable n is an integer parameter sent to the method that contains this code segment.)

int total = 0;

for(int i = 0; i < n; i++)

{
for(int j = i; j <= n; j++)

{
for(int k = j; k < n * n; k++)

{
total++;

}

}

}
K.
A program is O(N^2). It takes 2 seconds for the program to process a data set with 100,000 elements. How long do you expect this program to process a data set with 200,000 elements?

L.
A program is O(N log2 N). It takes 20 seconds for the program to process a data set with 500,000 items. How long do you expect this program to process a data set with 1,000,000 elements? log2 1,000,000 ~= 20. Give your answer in reduced form.

M.
Consider a stack class that holds ints. What is the output of the following code?

Stack s = new Stack();

for(int i = 0; i < 5; i++)

s.push(i);

while(!s.isEmpty());

{
System.out.print(s.top() + " ");

s.pop();

}

N.
Consider a stack class that holds ints. What is the output of the following code?

Stack s = new Stack();

for(int i = 0; i < 10; i += 2)

s.push(i);

for(int j = 0; j < s.size(); j++)

{
System.out.print(s.top() + " ");

s.pop();

}

O.
Consider a list class that holds ints. The add method places an item at the end of the list. The remove method removes the item at the position specified by the argument. The first item in the list is at position 0. Consider the following code:

List s1 = new List();

for(int i = 14; i >= 0; i -= 3)

s1.add(i);

s1.add(15);

s1.add(20);

s1.remove(0);

s1.remove(2);

s1.remove(3);

Show what the list represented by s1 after the following code has complete. (Simply list the elements of the list in order from first to last.)
2. (Using data structures, 25 points) Given a List, remove all elements equal to a given value from the List. The relative order of items that are not removed stays the same. For example given the following list:

0
1 2 3 4 5 6

"dog", "cat", "dog", "mouse", "hippo", "dog", "cat"

remove all elements equal to "dog". The resulting list is:

0 1 2 3

"cat", "mouse", "hippo", "cat"

This method does not appear in the List class. You may use the following methods from the List class and Iterator class.

	List Method Summary

	 void
	add(int index, Object element)
Inserts the specified element at the specified position in this

	 boolean
	add(Object o)
Appends the specified element to the end of this list

	 void
	clear()
Removes all of the elements from this list

	 boolean
	contains(Object o)
Returns true if this list contains the specified element.

	 Object
	get(int index)
Returns the element at the specified position in this list.

	 int
	indexOf(Object o)
Returns the index in this list of the first occurrence of the specified element, or -1 if this list does not contain this element.

	 boolean
	isEmpty()
Returns true if this list contains no elements.

	 Iterator
	iterator()
Returns an iterator over the elements in this list in proper sequence. (in order)

	 Object
	remove(int index)
Removes the element at the specified position in this list

	 Object
	set(int index, Object element)
Replaces the element at the specified position in this list with the specified element

	 int
	size()
Returns the number of elements in this list.

	Iterator Method Summary

	 boolean
	hasNext()
 Returns true if the iteration has more elements.

	 Object
	next()
 Returns the next element in the iteration.

	 void
	remove()
 Removes from the underlying collection the last element returned by the iterator

Complete the following method. This is not part of the List class.

public void removeAll(List items, Object target)

/*
pre: items != null, target != null

post: remove all elements equal to target from items. The relative order of items that are not removed stays the same.

*/

{

3. (Implementing data structures, 20 points). Implement a removeLast method for a LinkedList class. This linked list class uses singly linked nodes. It maintains a reference to the first node (myHead) and the last node in the list (myTail). It does not use dummy nodes. When the list is empty (iMySize = 0), myHead = null and myTail = null.

You may use the following Node class. You may not use any other methods in the LinkedList class.

public class Node

{
public Node(Object item, Node next)

public Object getData()

public Node getNext()

public void setData(Object item)

public void setNext(Node next)

}
public class LinkedList

{
private Node myHead;

private Node myTail;

private int iMySize;
Implement the following method. You may not use any other methods from the LinkedList class
/*
pre: size() > 0

post: size() = old size() – 1, returns old getLast(), getLast() = old get(size() – 1)

*/

public Object removeLast()

{

/*
pre: size() > 0

post: size() = old size() – 1, returns old getLast(), getLast() = old get(old size() – 2)

*/

public Object removeLast()

{

4. (Recursion, 25 points) In this question a region of land is represented by a rectangular, two dimensional array of integers. You will write a method that simulates the spread of fire across the land represented by the matrix of integers.

The values of the cells in the matrix of integers will be one of the following:

value
meaning

Chance of fire spreading to this cell from an adjacent cell on fire

-1
burned out by fire

0%

0
clear, no plant growth

0%

1
light brush only

25%

2
heavy brush only

50%

3
trees and light brush

50%

4
trees and heavy brush

100%

5
vegetation in cell on fire

0%

If the vegetation in a cell is on fire then the fire may spread to the cell above, below, to the left, and to the right of the cell that is on fire. Fire does not spread to cells that are diagonal to a cell. If a cell is on fire it burns immediately and there is only one check to see if fire spreads to adjacent cells. In other words, if a cell is on fire and the cell above it is light brush there is only one check to see if fire spreads from the cell on fire to the cell with light brush.

Example. Assume the following matrix:

 0 1 2 3 4

	0
	0
	0
	0
	0
	0

	1
	0
	0
	0
	0
	0

	2
	0
	0
	4
	1
	0

	3
	0
	2
	1
	2
	0

	4
	0
	0
	1
	0
	0

Assume cell (3,2) catches fire:

 0 1 2 3 4

	0
	0
	0
	0
	0
	0

	1
	0
	0
	0
	0
	0

	2
	0
	0
	4
	1
	0

	3
	0
	2
	5
	2
	0

	4
	0
	0
	1
	0
	0

The fire could spread to cells (2,2), (3,3), (4,2), and (3,1). The fire will spread to cell (2,2) because that cell contains trees and heavy brush. The fire may spread to the other cells. Use the Math.random() method to pick a random number to determine if a cell catches fire. Assume the fire does spread to cell (3,3) but not spread to cells (4,2) or (3,1). The matrix will now look like this:

 0 1 2 3 4

	0
	0
	0
	0
	0
	0

	1
	0
	0
	0
	0
	0

	2
	0
	0
	5
	1
	0

	3
	0
	2
	-1
	5
	0

	4
	0
	0
	1
	0
	0

Now deal with cell (2,2) which is on fire. The only cell it may spread to is (2,3). Assume the fire does not spread. Notice how cell (3,2) was on fire but did not spread to cell (3,1). There is no longer a chance of fire spreading from cell (3,2) to (3,1).

 0 1 2 3 4

	0
	0
	0
	0
	0
	0

	1
	0
	0
	0
	0
	0

	2
	0
	0
	-1
	1
	0

	3
	0
	2
	-1
	5
	0

	4
	0
	0
	1
	0
	0

Now deal with cell (3,3). The only cell the fire might spread to is (2, 3). Assume the fire does spread to this cell:

 0 1 2 3 4

	0
	0
	0
	0
	0
	0

	1
	0
	0
	0
	0
	0

	2
	0
	0
	-1
	5
	0

	3
	0
	2
	-1
	-1
	0

	4
	0
	0
	1
	0
	0

The fire cannot spread to any of the four cells adjacent to cell (2,3). They are all clear or burned out by fire. The matrix now looks like this:

 0 1 2 3 4

	0
	0
	0
	0
	0
	0

	1
	0
	0
	0
	0
	0

	2
	0
	0
	-1
	-1
	0

	3
	0
	2
	-1
	-1
	0

	4
	0
	0
	1
	0
	0

No cells are on fire so we are finished.

Write a method that simulates the spread of fire in a given matrix. You may evaluate cells and the spread of fire in whatever order you want. The edge and corner cells do not wrap around.

/*
pre: land is a rectangular matrix, land.length > 0, land[0].length > 0. All elements of land are equal to 0, 1, 2, 3, 4, or 5. Exactly 1 element of land = 5. row and col specify the cell the fire starts in. 0 <= row < land.length, 0 <= col < land[0].length, land[row][col] = 5

post: alter land to show the spread of fire as described in the problem statement. You may use the Math.random() method to determine if fire spreads to cells where the probability is not equal to 0% or 100%

*/

public void fire(int[][] land, int row, int col)
Math.random():

	static double
	random()
Returns a double value with a positive sign, greater than or equal to 0.0 and less than 1.0.

Complete the method below. You may write helper methods if you wish:

/*
pre: land is a rectangular matrix, land.length > 0, land[0].length > 0. All elements of land are equal to 0, 1, 2, 3, 4, or 5. Exactly 1 element of land = 5. row and col specify the cell the fire starts in.
0 <= row < land.length, 0 <= col < land[0].length, land[row][col] = 5

post: alter land to show the spread of fire as described in the problem statement. You may use the Math.random() method to determine if fire spreads to cells where the probability is not equal to 0% or 100%

*/

public void fire(int[][] land, int row, int col)

CS 307 – Midterm 2 – Spring 2004
 13

