 Points off 1 2 3 4 5 Total off Net Score

	
	
	
	
	
	
	
	

CS 307 – Final – Spring 2006
Name__

UTEID login name _______________________________

Circle your TA’s name:
Chendi

Vinod
Instructions:

1. Please turn off your cell phones.

2. There are 5 questions on this test. The are 120 points on the test.
3. You have 3 hours to complete the test.

4. You may not use a calculator on the test.

5. When code is required, write Java code.

6. Ensure your answers are legible.

7. You may add helper methods if you wish when answering coding questions.

8. When answering coding questions assume the preconditions of the methods are met.
1. (2 points each, 40 points total) Short answer. Place you answers on the attached answer sheet.
For questions that ask what is the output:
· If the code contains a syntax error or other compile error, answer “Compiler error”.

· If the code would result in a runtime error or exception answer “Runtime error”.

· If the code results in an infinite loop answer “Infinite loop”.

On questions that ask for the Big O of a method or algorithm, recall that when asked for Big O your answer should be the most restrictive Big O function. For example Selection Sort has an expected case Big O of O(N^2), but per the formal definition of Big O it is correct to say Selection Sort also has a Big O of O(N^3). Give the most restrictive Big O function. (Closest without going under.)

A.
The following numbers are inserted, one at a time, in the order shown, into a binary search tree with no checks to ensure or maintain balance. (i.e. the traditional naïve insertion algorithm.) The tree is initially empty. Draw the resulting tree.

2, 4, 8, 16, 7
For parts B - E consider the following binary tree. For each question assume when a node is processed the value in the node is printed out by the statement:

System.out.print(currentNode.getData() + " ");

[image: image1]
B.
What is the output of a preorder traversal of the above tree?

C.
What is the output of an inorder traversal of the above tree?

D.
What is the output of a postorder traversal of the above tree?

E.
Is the binary tree shown above a binary search tree?
F.
If 1000 elements are inserted one at a time into a binary search tree with no checks to ensure or maintain balance (i.e. the traditional naïve insertion algorithm.) what is the worst case height of the resulting tree? The actual number, not a Big O function. (The height of a tree is the number of links from the root to the deepest leaf. The height of the tree on this page is 2.)
G.
N elements are inserted one at a time into a Red Black tree. What is the worst case Big O of inserting all N items?
H.
In class we discussed the two ways Java allows the creation of generic data structures. The first method involves storing variables of type Object and relying on the fact that all objects are descendants of the Object class. The second method relies on parameterized data types, declaring the data type a particular data structure will hold when it is declared. For example the declaration

Stack<Integer> s1 = new Stack<Integer>();

declares a Stack that only holds Integer objects. Briefly describe the two major problems with the first technique, storing variables of type Object and relying on the fact that all objects are descendants of the Object class.
I.
What is the output of the following code?

Stack<Integer> s1 = new Stack<Integer>();

for(int i = 10; i >= 4; i -= 2)

s1.push(i);

Stack<Integer> s2 = new Stack<Integer>();

int j = 1;

while(!s1.isEmpty()){

if(j % 2 == 0)

s2.push(s1.top());

s2.push(s1.pop());

j++;

}

while(!s2.isEmpty()){

System.out.print(s2.pop() + “ “);

}

Assume a Queue is being implemented with an ArrayList as its internal storage container.

public class Queue<AnyType>{

private ArrayList<AnyType> myCon;

public Queue(){

myCon = new ArrayList<AnyType>();

}

public AnyType front(){

return myCon.get(0);

}

public AnyType dequeue(){

return myCon.remove(0);

}

public boolean isEmpty(){

return myCon.size() == 0;

}

public void enqueue(){

// implementation not shown

}

}
J.
For the Queue class shown above what is the Big O of the method front?
K.
Consider method emptyAndTotal, which uses the Queue class shown above. If a Queue contains N items what is the Big O of method emptyAndTotal?

public int emptyAndTotal(Queue<Integer> q){

int total = 0;

while(!q.isEmpty()){

total += q.dequeue();

}

return total;

}

Consider the following method total.

public int total(List <Integer> data){

int total = 0;

for(int i = 0; i < data.size(); i++)

total += data.get(i);

return total;

}

L.
If the List data is an ArrayList with N elements what is the expected Big O of method total?

M.
If the List data is a SinglyLinkedList with N elements what is the expected Big O of method total?
N.
If the List data is a SinglyLinkedList with N elements what changes could be made to method total to improve the Big O?
O.
On the last assignment you were required to implement a binary search tree. Assume the BinarySearchTree class uses the traditional add algorithm and is implemented using recursion. If a list of integers in ascending order are inserted into a BinarySearchTree object a StackOverflowException occurs after adding a few thousand items. Briefly explain why this occurs.
P.
In class I discussed a problem from the book Programming Pearls. The problem involved sorting integer values from a file. The integers were known to be in the range from 0 to 9,999,999 and no value could occur more than once. The solution presented required an array 10,000,000 bits in size. If the range of integers in the file was the same, but a given value could occur at most 8 times, how much space would the solution presented in class require?
Q.
What is the expected Big O for determining the height of a Binary Search Tree? (The height of a tree is the number of links from the root to the deepest leaf.)

R.
Consider the following ListNode class:

public class ListNode

{
public Object data;

public ListNode next;

public ListNode prev;

}

Draw the object variables and objects that exists after the following code is executed. Use a "/" to indicate any object references that are null. Recall that all object variables in Java are pointers.

ListNode n1 = new ListNode();

ListNode n2 = new ListNode();

n1.next = n2;

n1.next.prev = n1;

n2.data = n2.prev;

n1.next.next = n2;

S.
When discussing Stacks we looked at postfix expressions. For example 5 4 – 6 * . Briefly explain the major advantage of postfix expressions over infix expressions.
T.
Assume you have an ArrayList of approximately 1,000,000 items. The items can be sorted, but are not currently in sorted order. You do not expect to add any more items to the ArrayList. You wish to determine if given values are present in the ArrayList or not. You expect to have to process 125,000 checks to see if a given value is present or not. Which is more efficient, doing linear searches on the unsorted data or sorting the data via the quicksort algorithm and then doing binary searches. Briefly explain your reasoning including calculations
 2. (Binary Trees, 20 points) Complete a private instance method, oneChildPathLength, for a BinaryTree class that given a starting node, returns the number of nodes with 1 child from that node to the first node with 2 children or a leaf.
Important. You method shall be no worse than O(P) space and O(P) time where P is the path length from the starting node to the first descendant that has 2 children or is a leaf.
Here is an example. Consider the following binary tree.

· If the starting node is A, oneChildPathLength would return 0 because A has 2 children.

· If the starting node is B, oneChildPathLength would return 0 because B has 2 children.

· If the starting node is C, oneChildPathLength would return 0 because C is a leaf.

· If the starting node is D, oneChildPathLength would return 1 because D has 1 child but the next node, E is a leaf.

· If the starting node is E, oneChildPathLength would return 0 because E is a leaf.
· If the starting node is F, oneChildPathLength would return 2 because F has 1 child, G. That child G also has one child, H, but the next node, H is a leaf.

· If the starting node is G, oneChildPathLength would return 1 because G has 1 child but the next node, H is a leaf.

· If the starting node is H oneChildPathLength would return 0 because H is a leaf.

Here is the BinaryTree class:

public class BinaryTree

{
private TreeNode myRoot;

private int mySize;

// returns the number of items in this BinaryTree

public int size()

// to be completed by the student

/* Given a starting node n, returns the number of nodes with 1

 child from n to the first node with 2 children or a leaf.

 pre: n != null

 post: returns the number of nodes with 1

 child from n to the first node with 2 children or a leaf.

*/

private int oneChildPathLength(TreeNode n)

// other methods not shown

}

Here is the TreeNode class:
public class TreeNode

{ public TreeNode()
 public TreeNode(Object initValue)
 public TreeNode(Object initValue, TreeNode initLeft,

TreeNode initRight)

 public Object getValue()
 public TreeNode getLeft()
 public TreeNode getRight()

 public void setValue(Object theNewValue)
 public void setLeft(TreeNode theNewLeft)
 public void setRight(TreeNode theNewRight)
}

// to be completed by the student
/* Given a starting node n, returns the number of nodes with 1

 child from n to the first node with 2 children or a leaf.

 pre: n != null

 post: returns the number of nodes with 1

 child from n to the first node with 2 children or a leaf.

*/
private int oneChildPathLength(TreeNode n){
3. (Binary Trees, 20 points) Complete a public instance method, maxSingleLinkPath, for a BinaryTree class that returns the longest path in the tree of consecutive nodes with 1 child. For example, given the tree in question 2 the longest path length of consecutive nodes with 1 child in the tree is 2, starting at node F.
In writing maxSingleLinkPath use the method oneChildPathLength from question 2. Assume oneChildPathLength works as intended regardless of what you wrote in question 2.
Do not re-implement method oneChildPathLength in this method.
Use the same BinaryTree and TreeNode classes from question 2. You may add other helper methods if you wish.
/*
pre: none

post: return the longest path in this tree of consecutive
nodes with 1 child.
*/

public int maxSingleLinkPath(){
// more room on next page if needed

// more room for question 3 if needed
4. (Using / Implementing Data Structures, 20 points) Write a private instance method, verifyLinks, for an undirected graph class. A graph consists of a set of vertices and a set of edges that connect the vertices. Vertices are analogous to the nodes of a linked list or a binary tree and edges are analogous to the links between nodes of a linked list or binary tree.
In an undirected graph if an link exists between two nodes movement is allowed back and forth, from one node to another, in either direction. This question involves undirected graphs.
Here is an example of a graph. In the example each node is numbered 0 to N-1 where N is the number of nodes in the graph. Nodes are specified by an integer.

[image: image2]
The UndirectedGraph class in this questions uses an ArrayList of ArrayLists of Integers to track what nodes are present in the graph and what links exist between nodes.

public class UndirectedGraph{

private ArrayList< ArrayList<Integer> > myNodesAndLinks;
Here is a visualization of myNodesAndLinks. Each row is an element in myNodesAndLinks.

Node / Index

Associated ArrayList of Integers

	0
	 [1]

	1
	 [0, 3, 5]

	2
	 [3]

	3
	 [2, 1, 6]

	4
	 [5, 6]

	5
	 [7, 6, 1, 4, 8]

	6
	 [4, 3, 5]

	7
	 [5]

	8
	 [5]

In the example graph, element 0 in myNodesAndLinks would be an ArrayList with 1 element, the Integer 1. Element 1 in myNodesAndLinks would be an ArrayList with 3 elements, the Integers 0, 3, and 5. The Integers in the inner ArrayLists are not in any particular order. If the ArrayList at element 1 did not contain a 0, but the ArrayList at element 0 contained a 1, the graph would have an error and verifyLinks would return false.
The verifyLinks method checks that if a link exists from a given node, A to another node, B, then node B has a link to node A, for all links in the graph. So in the example graph if the ArrayList at element 0 in myNodesAndLinks contains a 1 then element 1 in myNodesAndLinks should contain a 0.
Complete the verifyLinks method. See the attached sheet for a summary of methods from the ArrayList class.
/*
pre: none

post: return true if for every node in the graph, A, a links
exists to another node B, then a link exists from B to A.
Return false otherwise.

*/

private boolean verifyLinks()
// more room on next page if necessary

// more room if necessary for verifyLinks

// Scratch paper

5. (Using data structures. 20 points) [Based on a problem from the 2004 APCS AB Exam.]

In approval voting there are at least two candidates and there are many voters. Each voter votes by submitting a ballot that represents a set of candidates of whom the voter approves. The winner of the election is the candidate that is listed on the most ballots, that is, the candidate who is approved by the most voters.
For example, suppose there are four candidates: Chris, Jamie, Pat, and Sandy. Seven voters vote as follows. (order is unimportant, each ballot represents the set of candidates chosen by that voter).

Voter

Ballot

	0
	Chris, Jamie

	1
	Chris, Sandy

	2
	Chris, Sandy, Pat, Jamie

	3
	Pat

	4
	Sandy, Jamie

	5
	Sandy, Pat, Jamie

	6
	Jamie, Chris

One voter’s ballot is represented as a Set of Strings, that contains the names of the candidates approved by that voter. All of ballots in a given election is represented as a Set of voter’s ballots. In other words, a Set of Sets of Strings.

public class Election{

private Set< Set<String> > allBallots;
Complete the Election class public instance method candidatesPresent. The method candidatesPresent returns an ArrayList of Strings of the names of candidates in this election that appear on one or more ballots. The names in the resulting ArrayList do not have to be in any particular order, but a each candidate’s name shall appear exactly once.
/*
pre: none

post: returns an ArrayList of candidates in this election
*/

public ArrayList<String> candidatesPresent(){

//complete this method on the next page
/*
pre: none

post: returns an ArrayList of candidates in this election
*/

public ArrayList<String> candidatesPresent(){
Scratch Paper

Scratch Paper

Scratch Paper

Name:_______________________________

Answer sheet for question 1, short answer questions

__

A.

B.

C.

D.

E.

F.

G.

H.

I.

J.

K.

__

L.

M.

N.

O.

P.

Q.

__

R.

S.

T.
Java class reference sheet. Throughout this test, assume that the following classes and methods are available.
class Object

// all classes inherit and may override these methods

• boolean equals(Object other)

• String toString()

• int hashCode()

interface Comparable

• int compareTo(Object other)
// return value < 0 if this is less than other

// return value = 0 if this is equal to other

// return value > 0 if this is greater than other
class Integer implements Comparable

• Integer(int value) // constructor

• int intValue()
class Double implements Comparable

• Double(double value) // constructor

• double doubleValue()
class String implements Comparable

• int length()

• String substring(int from, int to)
// returns the substring beginning at from

// and ending at to-1
• String substring(int from)
// returns substring(from, length())
• int indexOf(String s)
// returns the index of the first occurrence of s;

// returns -1 if not found
class Math

• static int abs(int x)

• static double abs(double x)

• static double pow(double base, double exponent)

• static double sqrt(double x)
class Random

• int nextInt(int n)
// returns an integer in the range from 0 to n-1 inclusive

• double nextDouble()
// returns a double in the range [0.0, 1.0)
interface List

• int size()

• boolean add(Object x)
 // appends x to end of list; returns true
• Object get(int index)
• boolean contains(Object elem)
// returns true if elem is present in this List

• Object set(int index, Object x)
// replaces the element at index with x
// returns the element formerly at the specified position
• Iterator iterator()

class ArrayList implements List

Methods in addition to the List methods:

• void add(int index, Object x)
// inserts x at position index, sliding elements

// at position index and higher to the right

// (adds 1 to their indices) and adjusts size
• Object remove(int index)
// removes element from position index, sliding elements

// at position index + 1 and higher to the left

// (subtracts 1 from their indices) and adjusts size

// returns the element formerly at the specified position
class LinkedList implements List

Methods in addition to the List methods:

• void addFirst(Object x)

• void addLast(Object x)

• Object getFirst()

• Object getLast()

• Object removeFirst()

• Object removeLast()
interface Set

• boolean add(Object x)

• boolean contains(Object x)

• boolean remove(Object x)

• int size()

• Iterator iterator()
class HashSet implements Set

class TreeSet implements Set
interface Map

• Object put(Object key, Object value)
 // associates key with value

// returns the value formerly associated with key

// or null if key was not in the map
• Object get(Object key)

• Object remove(Object key)

• boolean containsKey(Object key)

• int size()

• Set keySet()
class HashMap implements Map

class TreeMap implements Map

interface Iterator

• boolean hasNext()

• Object next()

• void remove()

 51

5

 12

 39

 E

5

10

8

7

6

5

 H

 G

F

 C

 D

 B

A

4

3

2

1

0

root of tree

CS 307 – Final – Spring 2006
 1

