    Points off    1            2             3            4                                       Total off       Net Score

	
	
	
	
	
	
	
	



CS 307 – Midterm 2 – Fall 2004

Name__________________________________________

UTEID login name _______________________________

TA's Name  ___________________________ (Allen, Alison, or Peter)

Instructions: 

1. There are 4 questions on this test. 

2. You have 2 hours to complete the test.

3. You may not use a calculator on the test. 

4. When code is required, write Java code. 

5. The style guide is not in effect except where noted.

6. Efficiency is not graded except where noted.

7. Ensure your answers are legible. 

8. When writing code you may not use any methods or classes from the Java Standard Library except as noted and the System.out.print, System.out.println, the equals method, and native arrays.

9. In coding question you may add helper methods if you wish.

10. The last page of the test is scratch paper.

1. (2 points each, 30 points total) Short answer. Place you answers on the attached answer sheet. If an error would occur answer "syntax error" or "runtime error" depending on what type of error it is. 

Recall that when asked for Big O your answer should be the most precise Big O function. For example Selection Sort has an average case Big O of O(N^2), but per the formal definition of Big O it is correct to say Selection Sort also has a Big O of O(N^3). I want the most precise Big O function. (Closest without going under.)

A.
What is the output of System.out.println( perch(5) );
public int perch(int n)
{
if( n < 1 )



return 2;


else



return 2 + perch( n - 1);

}




B.
What is the output of tang(4);
public void tang(int n)
{
if( n <= 0 )



System.out.print( '*' );


else


{
tang( n – 1);



System.out.print( n + " " );


}

} 

C.
What is the output of System.out.println( strake(6));
public int strake(int n)
{
if( n <= 3)



return 3;


else



return 3 + strake(n – 1) + strake(n - 1);

} 

D.
What is Big O of the following code segment? (The variable n is an integer parameter sent to the method that contains this code segment.)

int s = 0;

for(int i = n; i >= 0; i--)

{
s += i * i;

}

E.
What is the Big O of the following code segment? (The variable n is an integer parameter sent to the method that contains this code segment.)


int x = 1;


int j = 1;


while( j <= n )


{
x *= j;



j *= 2;


}

F.
What is the Big O of the following method? 


public int[][] tautog(int[][] mat)

{
//pre: mat != null, mat.length >= 10, 

//
mat[0].length >= 10

int[][] result = new int[10][10];



for(int r = 0; r < result.length; r++)




for(int c = 0; c < result[0].length; c++)





result[r][c] = mat[r][c];



return result;


}
G.
What is the Big O of the following code segment? Method guppy is O(1). Method shark is O(1).  (The variable n is an integer parameter sent to the method that contains this code segment.)


int foo = 0;


for(int i = 0; i < n; i++)



for(int j = 0; j < i; j++)



{
guppy();




shark();




foo++;



}
H.
What is the Big O of the following code segment? Method dolphin is O(1). (The variables n and m  are integer parameters sent to the method that contains this code segment.)



for(int i = 0; i < n; i++)


dolphin();

for(int j = 0; j < m; j++)

{
dolphin();


dolphin();

}

I.
What is the Big O of the following code segment? Method grayling returns an integer and has a Big O of O(N) where N is the magnitude of the argument sent to the method. (The variable n is an integer parameter sent to the method that contains this code segment.)


int count = 0;

for(int j = 0; j < n; j++)



{
count = grayling(n);


}

J.
A program is O(N). It takes 5 seconds for the program to process a data set with 10,000 elements. How long do you expect this program to process a data set with 30,000 elements?

K.
A program is O(N^3). It takes 3 seconds for the program to process a data set with 100,000 elements. How long do you expect this program to process a data set with 200,000 elements?

L.
A program is O(N log2 N). It takes 10 seconds for the program to process a data set with 1,000 items. How long do you expect this program to process a data set with 8,000 elements? log2 1,000 ~= 10. Give your answer in reduced form.

M.
Consider a stack class that holds ints. What is the output of the following code?


Stack s = new Stack();


for(int i = 9; i >= 5; i--)



s.push( i );


while( !s.isEmpty() );


{
System.out.print( s.top() + " " );



s.pop();


}

For questions N and O consider a list class that holds ints. What is the output of the following code? The default add method adds an item to the end of the list.  When adding or removing elements from the list other items are shifted to the left or right in the list as necessary. The first element of the list is numbered 0.

// add at end of List

public void add(int x)

// add at position pos in list, 0 <= pos <= size()

public void add(int pos, int x)

//remove element from list. 0 <= pos < size()

public int remove(int pos)

//access element from list. 0 <= pos < size()

public int get(int pos)

//return number of elements in list

public int size()

N. 
What is the output of the following code?


IntList list = new IntList();


list.add(2);


list.add(7);


list.add(5);


list.add(11);


list.add(0, 13);


list.remove(2);


for(int i = 0; i < list.size(); i++)



System.out.print( list.get( i ) + " "  );

O.
What is the output of the following code?


IntList list = new IntList();


list.add(4);


list.add(0, 3);


list.add(1, 6);


list.add(8);


for(int i = 0; i < 4; i++)



list.add( 4 – i, i * i );


list.remove(2);


list.remove(0);


for(int i = 0; i < list.size(); i++)



System.out.print( list.get( i ) + " " );

2. (Using data structures / Implementing data structures 20 points) Assume a Set class uses an ArrayList as its internal storage container. 

Implement the difference method for the set class. You may not use any other methods from the Set class other than the default constructor and helper methods that your write. You may use the following methods from the List class. 

	ArrayList Method Summary

	 void
	add(int index, Object element) 
Inserts the specified element at the specified position in this list.  O(N)

	 boolean
	add(Object o) 
Appends the specified element to the end of this list. O(1)

	 void
	clear() 
Removes all of the elements from this list. O(N)

	 boolean
	contains(Object o) 
Returns true if this list contains the specified element. O(N)

	 Object
	get(int index) 
Returns the element at the specified position in this list. O(1)

	 int
	indexOf(Object o) 
Returns the index in this list of the first occurrence of the specified element, or -1 if this list does not contain this element. O(N)

	 boolean
	isEmpty() 
Returns true if this list contains no elements. O(1)

	 Iterator
	iterator() 
Returns an iterator over the elements in this list in proper sequence. (in order) O(1)

	 Object
	remove(int index) 
Removes the element at the specified position in this list . O(N)

	 Object
	set(int index, Object element) 
Replaces the element at the specified position in this list with the specified element. O(1)

	 int
	size() 
Returns the number of elements in this list. O(1)


	Iterator Method Summary

	 boolean
	hasNext() 
          Returns true if the iteration has more elements. O(1)

	 Object
	next() 
          Returns the next element in the iteration. O(1)

	 void
	remove() 
          Removes from the underlying collection the last element returned by the iterator. O(N) for ArrayList


public class Set

{
private ArrayList myCon; 


// class invariant. Each element of myCon is unique and not


// equal to any other elements of myCon

public Set()

{
myCon = new ArrayList();
}

}

The difference of two sets are the elements of the first set, in this case the calling object, that are not in the second set, in this case the parameter otherSet.

For example given set A = {7, 5, 3, 8, 2} and set B = {3, 8, 10, 12, 7}

A diff B = {5, 2}

B diff A = {10, 12}

A. Complete the following method.  This method is part of the Set class. 

public Set difference(Set otherSet)

/*
pre: otherSet != null

post: return a new Set that is the difference of this Set and otherSet. In other words return a new Set that contains objects in this Set that are not in otherSet. this set and otherSet are not altered as a result of this method.

*/

{

B. Assuming the calling Object has N items and otherSet has M items what is the Big O of your method in part A? Explain.

//Blank page

3. (Implementing data structures, 25 points). Implement a containsAll method for a SortedLinkedList class. This sorted linked list class uses singly linked nodes and the data in the list is maintained is ascending order based on the compareTo method from the Comparable interface. It maintains a reference to the first node (myHead) and the last node in the list (myTail). It does not use dummy nodes. When the list is empty ( iMySize = 0 ), myHead = null and myTail = null.

You may use the following Node class and the compareTo method from the Comparable intrface. You may not use any other methods in the LinkedList class.

public class SortableNode

{
public SortableNode(Comparable item, Node next)


public Comparable getData()


public SortableNode getNext()


public void setData(Comparable item)


public void setNext(Node next)

}

The compareTo method from the Comparable interface has the following signature:

public int compareTo(Object other)

/*
pre: other is the same type as the calling object

post: return an int < 0 if the calling object is less than other, return 0 if the calling object is equal to other, and return an int > 0 if the calling object is greater than other.

*/
public class SortedLinkedList

{
private SortableNode myHead;


private SortableNode myTail;


private int iMySize;
Implement the following method. You may not use any other methods from the LinkedList class and your method must operate in no worse than O(N + M) time where N is the number of items in the calling object and M is the number of items in the parameter.
/*
pre: other != null

post: return true if this SortedLinkedList contains at least one instance of all the items in other, false otherwise

*/

public boolean containsAll(SortedLinkedList other)

{
// complete this method on the next page

/*
pre: other != null

post: return true if this SortedLinkedList contains at least one instance of all the items in other, false otherwise

*/

public boolean containsAll(SortedLinkedList other)

{

4. (Recursion, 25 points) Crazy lists. Someone has written a class that creates CrazyLists. These are linked lists made up of singly linked nodes. But instead of making a nice sequential list, the class creates crazy linked structure. Some nodes data field point to other nodes instead of data. This leads to a branching structure that could look like this:

myHead


data
next






Notes;

· all data pointers that are not shown are pointing to non-Node objects or are null.

· Write a method that determines the distance (number of links) from the head node to the tail node. 

· the tail node could be pointing at ANY of the nodes in the structure

· There will be only one path from myHead to myTail

· the Crazy list will not contain cycles, circular references that create loops in the structure. So for example the following structure is not possible:

myHead


data
next






You may use the following Node class:

public class Node
{
public Object getData()


public Node getNext()

}

Hint: use the instanceof operator to determine if a Node's data is another Node or not.

if( temp.getData() instanceof Node)


//do something

Complete the distanceFromHeadToTail method in the CrazyList class. You may not use any other methods in the CrazyList class other than helper methods you create.

public class CrazyList

{
private Node myHead;


private Node myTail;


private int distanceFromHeadToTail()


{
/*
pre: none

post: return the number of links from the node myHead is pointing to the node myTail is pointing to. If both myHead and myTail are null or they are pointing at the same node, return 0.

*/

// more room on next sheet if needed.

Scratch paper

Scratch Paper

Name:_______________________________

TAs name: ___________________________

Answer sheet for question 1, short answer questions

A. _______________________________





B. _______________________________





C. _______________________________





D. _______________________________





E. _______________________________





F. _______________________________





G. _______________________________





H. _______________________________






I. _______________________________





J. _______________________________





K. _______________________________





L. _______________________________





M. _______________________________





N. _______________________________



O. _______________________________
















myTail





myTail









CS 307 – Midterm 2 – Fall 2004
 17

