 Points off 1 2 3 4 Admin
 Total off Net Score

	
	
	
	
	
	
	

CS 307 – Final Exam– Fall 2002

Name____________________________________

Last 4 digits of SSN / Student ID ______________

Section Leaders Name ___________________________

Instructions:

1. There are 4 questions on this test. Question 1 is worth 40 points; all others are worth 20 points each.

2. You have 3 hours to complete the test.

3. You may not use a calculator.

4. When code is required, write Java code.

5. You may not use any classes or methods from the Java Standard Library other than the ones specifically mentioned on each question.

6. The style guide is not in effect except where noted

7. Please make your answers legible.

1. Short answer questions. (2 points each) Write the answer to each question in the space provided. If code results in an error indicate if it is a compile error or runtime error.

A.
The following numbers are inserted in the order shown into a binary search tree with no checks to ensure or maintain balance. The tree is initially empty. Draw the resulting tree.

195 156 20 68 162 150

For parts B, C, and D consider the following binary tree. For each question assume when a node is processed the value in the node is printed out by the statement:

System.out.print(currentNode.data + " ");

B.
What is the output of a preorder traversal of the tree?

__

C.
What is the output of an inorder traversal of the tree?

__

D.
What is the output of a postorder traversal of the tree?

__

E.
Is the tree on page 2 a binary search tree?

F.
In a priority queue each element enqueued is placed in front of all elements already in the queue that have a lower priority, but behind all elements already in the queue that have a higher or equal priority? If the internal storage container for the priority queue is a doubly linked list with a head and tail reference what is the average case Big O for enqueueing an item to the priority queue?

G.
What is the worst case Big O for inserting N items into an initially empty Binary search Tree with no checks or procedures to maintain balance?

​​​​​​________________________

H.
What is the worst case Big O for inserting N items into an initially empty Red Black tree?

__

I.
Consider the list data structure. A particular list uses an array as its internal storage container. When the container is full the array is always resized with space for 10 additional elements. What is the average case Big O for the default add operation, which always adds the new element to the end of the list? Give a brief explanation of your answer.

__

J.
Consider the list data structure. A particular list uses an array as its internal storage container. When the container is full the array is always resized by creating a new array with a length equal to 3 times the length of the original array. What is the average case Big O for the default add operation which always adds the new element to the end of the list? Give a brief explanation of your answer

K.
What is the Big O of this code?

 int N = 1000;

 int total = 0;

 for(int i = 0; i < N; i++)

 for(int k = 0; k < i; k++)

 for(int j = N; j > 0; j /= 2)

 total++;

L.
What is the actual number of executed statements in the following code in terms of N. Assume N is declared and assigned a value prior to this code

int total = 0;

for(int i = 0; i < N; i++)

total++;

for(int j = N; j > 0; j++)

total++;

for(int k = 0; k < N/2; k++)

total++;

M.
What is the Big O of the code from part L?

N.
Assume an algorithm takes 10 seconds to process a data set of size 1000. The algorithm has a Big O of O(N log2 N). How long do you expect the algorithm to process a data set of size 4000?
log2 1000 approximately equals 10

O.
Assume an algorithm takes 20 seconds to process a data set of size 10,000. The algorithm has a Big O of O(N ^ 3). How long do you expect the algorithm to process a data set of size 40,000?

P.
Assume a native array of objects is used as the storage container for a stack. What is the best case Big O for popping all N elements in a stack? How must the stack me implemented to achieve this?

__

Q.
Consider the following ListNode class:

public class ListNode
{
public Object data;

public ListNode next;

public ListNode prev;

}
Draw the object variables and objects that exists after the following code is executed. Use a "/" to indicate any object references that are null.

ListNode N1 = new ListNode();

ListNode N2 = new ListNode();

N1.next = N1;

N2.prev = N1;

ListNode N3 = new ListNode();

N3.data = N2;

N1.prev = N3;

__

R.
Because all object variables in Java are really pointers and because all classes are descendants of the Object class there is an interesting possibility for implementation of a stack using native arrays of Objects. This implementation requires no recopying of elements at any time. Instead the initial storage container is a native array of objects of some fixed size, assume 10. After pushing 9 items with no pops the container only has one element left. When the 10th element is pushed instead of actually adding it to the container the last element is made to point to a native array of objects of length 20. When this container has 19 elements it is made to point at a native array of length 40. Visually the container would look like this:

array elements 0 – 8 element 9

	
	

array elements 0 – 18 element 19

	
	

array elements 0 – 38 element 39

	
	

Briefly describe any difficulties, if any, involved with this implementation of a stack.

 __

S.
A set is a group of elements with no implied order. Duplicate elements are not allowed. Many programming language libraries provide a Set abstract data type. Assume a doubly linked list is used as the internal storage container for the Set. What is the Big O of a method that determines if an item is present in a set? What does the N in your Big O function represent?

__

T.
Imagine a tree where each node may have a maximum of three children (left, center, right). (A trinary tree?) The height of a tree is the path length from the root to the deepest leaf. What is the maximum number of nodes in a such a tree of height 3?

__

2.
(Trees) Write a method to remove all the leaves in a tree. For example given the tree:

The resulting tree from a call to removeLeaves would be:

You may use the following class for the question

public class BTNode

{
public BTNode() // left and right children null

public BTNode(BTNode left, BTNode right)

public BTNode getLeft()

public BTNode getRight()

public void setLeft(BTNode left)

public void setRight(BTNode right)

}

Your method shall operate in no worse than O(N) time.

/* pre: none

 post: all leaves of n removed

*/

public void removeLeaves(BTNode n)

{ // complete the method in the space below

 // you may create helper methods if you wish

3. (Implementing Data Structures) A deque (pronounced deck) is a data structure similar to a double-ended stack. It has two access points, the front and the back. Items can be added or removed from either the front or the back. If an item is removed or accessed from the front or back it will be the item that was last added to that point in the deque (the front or back).

The deque class you are working with has the following private instance variables

public class deque
{
private Object[] myCon;

private int iMyFront;

private int iMyBack;

private int iMySize;

}

This deque class uses a native array of objects as its storage container. You are to complete the addFront method. This adds the parameter sent to the front of the deque. The method should operate in constant time O(1) as often as possible, although it may occasionally, operate in O(N) time if necessary.

You may not call on any other methods from the deque class.

/* pre: none

 post: getFront() = item, size() = old size() + 1

*/
public void addFront(Object item)
{
// complete the method on the next page

/* pre: none

 post: getFront() = item, size() = old size() + 1

*/
public void addFront(Object item)
{
// complete the method below

4. (Using data structures) A graph is a data structure similar to a tree that is made up of nodes and links between nodes. The links may either be directed, indicating an allowed direction of travel between two nodes or undirected, indicating you can freely move back and forth between two nodes that have a link between them.

Simple undirected graph with 2 nodes
Simple directed graph with 2 nodes
and 1 link. Movement between

and 1 link. Can only move from C to D.

A and B is allowed.

One way of representing a graph is with adjacency matrix. The matrix has rows and columns both equal to the number of nodes in the graph. Each element has a 1 if the node corresponding to the row is adjacent to the node corresponding to the column. For example if the two graphs above were considered one graph with two disjoint parts one possible adjacency matrix would be:

	
	A
	B
	C
	D

	A
	1
	1
	0
	0

	B
	1
	1
	0
	0

	C
	0
	0
	1
	1

	D
	0
	0
	0
	1

A 1 in the matrix means travel is allowed from the node that is represented by the row to the node that is represented by the column. Note it is always possible to travel from a node to itself, thus the 1s along the diagonal. If the graph was undirected and nodes C and D were still connected then there would be a 1 in the element [D][C].

In this problem you will write a method to determine how many disjoint parts a given graph has. You may not use recursion. You may use the following data structures and methods.

public class Graph
{
// returns number of nodes in Graph. 0 Indicates no nodes.

public int numNodes()

/* pre: 0 < node1 <= numNodes(), 0 < node2 <= numNodes

post: return true if travel from node1 to node2 is permitted.

*/

public boolean adjacent(int node1, int node2)

}

// this is a standard queue

public class Queue

{
// create an empty queue

public Queue()

// get num items in queue

public int size()

// access the front item

// pre: size() > 0

public Object front()

// remove and return the front item

// pre: size() > 0

public Object dequeue()

// add int to back of queue

public void enqueue(Object item)

}

You may use ArrayLists, but only the following methods:

	 ArrayList() create a new, empty ArrayList

	 boolean
	add(Object o)
 Appends the specified element to the end of this list. O(1)

	 Object
	get(int index)
 Returns the element at the specified position in this list. O(1)

	 boolean
	isEmpty()
 Tests if this list has no elements. O(1)

	 Object
	remove(int index)
 Removes the element at the specified position in this list. O(N)

	 Object
	set(int index, Object element)
 Replaces the element at the specified position in this list with the specified element. O(1)

	 int
	size()
 Returns the number of elements in this list. O(1)

	 void
	add(int index, Object element)
 Inserts the specified element at the specified position in this list. O(N)

You may also use the Integer class, but only the following methods:

Integer(int value)
 Constructs a newly allocated Integer object that represents the specified int value.

	 int
	intValue()
 Returns the value of this Integer as an int.

Complete the following method

/* pre: g != null, g is an undirected graph

 post: return the number of disjoint parts in the graph g

*/

public static int numDisjointParts(Graph g)

{

You may assume that g is a representation of an undirected graph as described

above. Your function should return 0 for an empty graph (one with no nodes), and it

should return 1 for a graph with a single node and no arcs. For the graph shown above, it

should return 4. For a completely connected graph it should return 1.

Remember you are not allowed to use recursion on this question.
/* pre: g != null, g is an undirected graph

 post: return the number of disjoint parts in the graph g

*/

public static int numDisjointParts(Graph g)

{
J

root of tree

 135

32

138

-42

-5

-22

D

-42

161

81

32

C

 135

81

161

-22

-5

root of tree

B

81

A

-22

-5

-42

root of tree

138

I

H

F

G

E

D

C

B

A

CS 307 – Final Exam – Fall 2002
 1

