 Points off 1 2 3 4 Admin Total off Net Score

	
	
	
	
	
	
	

CS 307 – Midterm 1 – Spring 2002

Name____________________________________

Last 4 digits of SSN / Student ID ______________

Class Unique ID ___________________________

Instructions:

1. There are 4 questions on this test.

2. You will have 2 hours to complete the test.

3. You may not use a calculator.

4. When code is required, write Java code.

5. Please make your answers legible.

6. The style guide is not in effect except as noted.

1. (2 points each, 30 points total) Java Mechanics. For all parts, what is the output of the code fragment? Write your answer on the line provided. Consider each piece of code in isolation. If an error would occur answer "syntax error" or "runtime error" depending on what type of error it would be.

A.

int limit = 20;
int[] intList = new int [limit / 3];

for (int i = 0; i < intList.length; i++)
{
if (i % 3 == 0)
 intList[i] = i;
 else
 intList[i] = -1;
}

for (int i = 0; i < intList.length; i++)
 System.out.println(intList[i]);

B. ___

 int x = 34;
 int y = 45;
 int z = 123;

 double answer;

 answer = (x / y) * (double)(y / z);

 System.out.println(answer);

C.

 int i = 0;
 int j = 4 / i;
 System.out.println("j = " + j);

D.

double a = 0.0;

double b = 2.5;

int x = 13;

int y = 28;

a = b + y % x;

System.out.println(a);

E. ___

 // The BigInteger class is part of the java.lang

 // package. It is a class that can be used to
 // represent arbitrary precision integers,
 // integer much larger than int or long can
 // represent. Passing a String to the BigInteger
 // constructor creates a new BigInteger object

 // representing the argument

 BigInteger b1 = new BigInteger("1212");

 BigInteger b2 = new BigInteger("1212");

 System.out.println(b1 == b2);

F. ___

// two BigInteger Objects are "equal" if the
 // integer values they are representing are equal.

BigInteger b1 = new BigInteger("1212");

BigInteger b2 = new BigInteger("1212");

System.out.println(b1.equals(b2));

G. ___

Assume the following two methods appear in the same class, Foo.

public int chalk(int m, int p)

{
int t = m;

m = m + 2 * p;

return t + m + p;

}

public void marker(int x, int y)

{
x = x + 2;

y++;

System.out.println(chalk(x, y) + " " + x + " " + y);

}

What is the output of the following method call?

someFooObject.marker(2, 4);

For parts H and I consider these three classes:

public abstract class Mammal

{

public String birthType()

{
return "Live Birth.";
}

//other methods and instance vars not shown

}

public class Platypus extends Mammal

{

public String birthType()

{
return "Lays eggs.";
}

//other methods and instance vars not shown

}

public class Whale extends Mammal

{

// no method named birthType declared in class Whale

//other methods and instance vars not shown

}

H. ___

What is output by the following code?

Platypus george = new Platypus();

System.out.println(george.birthType());

I. ___
What is output by the following code?

Whale skippy = new Whale();

System.out.println(skippy.birthType());

For part J consider the following class:

public class Strange
{
public String name;

public int x;

}

These two methods appear together in a class other than Lousy:

public void dolphin(Strange one, Strange two)

{
one.name = two.name;

two.name = "Olivia";

one.x = 28;

}

public void stingray()

{
Strange a = new Strange();

a.name = "Kelly";

a.x = 12;

Strange b = new Strange();

b.name = "David";

b.x = 20;

dolphin(a, b);

System.out.println(a.name + " " + a.x);

}

J. ___
What is output when method stingray is called?

K. ___

double a = 3 * 5 + 2.5 – 15 / 2;

System.out.println(a);

L. ___

int[] list = { 2, 3, 5, 7, 11, 13, 17 };

int x = list[list.length – 1] * list[3 / 5] + list[list[0]];

System.out.println(x);

M. ___

// new String("Dog") creates a new String object that contains the
// string "Dog"

String[] slist = new String[5];

for(int i = 0; i < slist.length; i++)

slist[i] = new String("Cat");

slist[2] = "Mud";

int total = 0;

for(int j = 0; j < slist.length; j++)

total += slist[j].length();

// the String method length() returns the number of characters in
// the String object

System.out.println(total);

N. ___

int[] list;

System.out.println(list.length);

O. ___

int limit = 6;

int total = 0;

for(int i = 0; i < limit; i++)

{
total += i;

limit--;

}

System.out.println(total);

This page intentionally blank. You may use it for scratch paper.

2. (25 points) Imagine a grocery store has unknowingly hired Timmy the evil Cracker as a stock boy. Timmy changes the store's computerized inventory each night to impress his friends on AOL. Each morning, the grocery store staff must rebuild the inventory. Complete the following method, rebuildInventory, which undoesTimmy's changes. The parameter inv contains all the StockItem objects that make up the store's inventory (the inv array is full). Each type of item the store carries should be represented by only one StockItem object in inv. However, in some cases, Timmy has put multiple StockItem objects into inv for each item. The method should merge together any StockItem objects in inv that represent the same item, and return a new array of StockItems in which each item only appears once, with the proper quantity.

For example, if inv contains the following data before method rebuildInventory is called:

index: | 0 | 1 | 2 | 3 | 4 |
Code: | 12837 | 00342 | 12837 | 01343 | 01343 |
Price: | $3.29 | $9.95 | $3.29 | $8.34 | $8.34 |
Quantity: | 34 | 160 | 98 | 8 | 22 |

Then rebuildInventory should return an array like this:

index: | 0 | 1 | 2 |

Code: | 12837 | 00342 | 01343 |

Price: | $3.29 | $2.95 | $8.34 |
Quantity: | 132 | 160 | 30 |
The order of the StockItems in the returned array could vary, but notice how each StockItem appears only once (based on Codes) and the quantity is correct.

Here is the public interface for the StockItem class:

public class StockItem
{
// pre: code != null, price > 0, quantity > 0

// post getCode() = code, getPrice() = price,

//
getQuantity = quantity

public StockItem(String code, double price, int quantity)

// pre: none

// post: return code

public String getCode()

// pre: none

// post: return price

public double getPrice()

// pre: none

// post: return quantity

public int getQuantity()

}
Do not assume any other methods are in the StockItem class.

Explain your algorithm in English below. This is worth 5 points.

Complete the following method as described on the pervious page. This method is not part of the StockItem class

/* pre: inv != null, inv[n] != null for n = 0 to (inv.length – 1)

You may also assume any StockItems whose codes are equal will

have the same price

 post: return an array of StockItems such that no item with

 the same product code appears more than once in the array and
 the quantity of each item in the returned array is equal to

the total quantity of items with the same code in inv. The
returned array shall not have any null pointers in it.

*/

public StockItem[] rebuildInventory(StockItem[] inv)

{

// more space available on next page

Intentionally blank. Complete rebuildInventory here if more space is needed.

3. (20 points) Implement a class to model cars in a traffic simulation. Each car has a speed which will be an integer and an ID number, also an integer. Speed is not in miles per hour. The units are different, but unstated. Complete a default constructor and a constructor where initial speed and ID number may be specified. For the following methods be sure you use the names specified. getSpeed and getID should both return ints. The accelerate method increases a car's speed by 1 unit length per unit time. So if getSpeed() = 3 then after calling accelerate once getSpeed()= 4. Car's cannot accelerate to a speed greater than the maximum speed. The decelerate method takes an integer parameter and reduces speed by that amount, not to go below 0. A car's maximum speed is 5, so 0 <= car's speed <= 5 at all times. Also write a toString method and an equals method. Two cars are considered equal if their speeds are the same. Ensure all instance variables are private and use the my iMy prefix.

4. (25 points) Write a method to simulate traffic moving along a stretch of highway named step. The highway is represented by an array of Car objects from question number 3. You may assume your Car class works for this question. This method is not part of the Car class. Any element of the highway (array) that is not currently occupied by a car is equal to null. Movement of cars occurs from the 0 index towards the length – 1 index of the array. Here is an example

index: 0
|
1
|
2
|
3
|
4
|
5
|
6
value: |
 null
 null

|
 null

|
 null
Cars - - -
Speed: 1

3

3
ID:
 1 2 3

Car 1 in element 0 has a speed of 1, car 2 in element 3 has a speed of 3, and car 3 in element 5 has a speed of 3.

Your method will simulate 1 time unit of movement. All cars first check to see if they can accelerate or if they must maintain speed or decelerate. To do this cars look forward, towards the end of the array. They do not examine other cars' speeds. Acceleration and deceleration occur before movement. Cars use the following rules to govern speed.

A. If possible accelerate by one unit of speed. To do this all spaces must be clear from the current space forward to the destination space. For example car 1 is at a speed of 1. If it accelerates its speed will be 2. When the time for movement comes, it is safe to move forward two spaces to element 2. Note, all the spaces between the car and its projected location must be clear for the acceleration to take place. If a car is already at maximum speed it should not try to accelerate any more. Also note, if element 3 were null car 1 would still only accelerate to a speed of 2, because cars will only accelerate by one unit of speed at a time.

B. If the car cannot accelerate due to cars in its path then it must either maintain speed of decelerate. Cars in the path are based on current positions, not projected positions. This is to simulate cautious drivers. For example if there were a car in element 1 then Car 1 in element 0 would have to decelerate to a speed of 0, regardless of the speed of the car in element 1. Note this rule affects car 2 in element 3. Its speed is 3, which would place it in element 6. However, there is a car in element 5, so car 2 must decelerate to a speed of 1. This will put it in a safe spot, element 4 when the time to move comes.

C. If a car's speed would take it off the highway and the array is clear then the car is assumed to exit the portion of the highway the array represents and it is removed from the array.

After adjusting all cars' speeds the cars are moved along the array. Each unit of speed moves a car one element forward in the array. Given the previous array, after method step the array would look like this:

index: 0
|
1
|
2
|
3
|
4
|
5
|
6
value:null null
 |
 null

|
 null
 null
Cars -

-
Speed:

2

1

ID:
 1 2

The key thing to remember is a car's speed is adjusted based on the current position of the other cars, not the anticipated position of the other cars.

Complete the following method as described on the previous page. Remember it is not a part of the Car class

public void step(Car[] highway)

{

CS 307 – Midterm 1 – Fall 2001
 3

