 Points off 1 2 3 4 5 6 Total off Net Score

	
	
	
	
	
	
	
	

CS 307 – Midterm 2 – Fall 2002

Name____________________________________

Last 4 digits of SSN / Student ID ______________

Class Unique ID ___________________________

Instructions:

1. There are 5 questions on this test.

2. You have 3 hours to complete the test.

3. You may not use a calculator on the test.

4. When code is required, write Java code.

5. The style guide is not in effect, expect where noted.

6. Efficiency is not graded except where noted.

7. Ensure your answers are legible.

8. When writing code you may not use any methods or classes from the Java Standard Library except as noted and the System.out.print, System.out.println, and the equals method.

1. (2 points each, 20 points total) Java Mechanics and theory. If an error would occur answer "syntax error" or "runtime error" depending on what type of error it would be. Recall that when asked for Big O your answer should be the most precise Big O function. For example Selection Sort has an average case Big O of O(N^2), but per the formal definition of Big O it is technically correct to say Selection Sort also has a Big O of O(N^3). On this test I want the most precise Big O function. (Closest without going under.)

A.
What is the Big O of the following code in terms of N? methodA has a Big O proportional to the magnitude of the argument it is sent.

for(int i = 0; i < N; i++)

for(int j = 0; j < N; j++)

methodA(N);

B.
What is the Big O of the following code in terms of N?

int sum = 0;

for(int i = 1; i < N; i = i * 2)

for(int j = 0; j < N; j++)

sum++;
C.
What is the Big O of the following code in terms of N? methodC always takes the same amount of time to complete.

for(int i = N; i >= 0; i--)

for(int j = i; j < N; j++)

methodC();

D.
Consider a Linked List class that uses doubly linked nodes and has a reference to the head and tail nodes. What is the average case Big O of removing the tail node of the Linked List?

E.
Given an ArrayList Class that uses a native array of objects, what is the average case Big O for removing an arbitrary element from the List? What does N in the Big O function represent?

F.
Consider a Priority Queue. Each element inserted is given a priority and is placed in front of all items already in the queue that have a lower priority, but behind all items already in the queue that have a higher or equal priority. The Priority Queue is implemented using a Linked List. What is the average case Big O for enqueueing an item to the Priority Queue? What does N in the Big O function represent?

G.
Consider the following code from class M2

public static void probG(int x)

{
if(x <= 0)

System.out.print(x + " ");

else

{
probG(x / 2);

System.out.print(x + " ");

}

}

What is output by the method call M2.probG(15) ?

H.
Consider the following code from class M2:

public static int probH(int n)
{
if(n <= 1)

return 3;

else

return probH(n – 1) + probH(n – 3);

}

What is printed out by the following code?

System.out.println(M2.probH(6));

I.
What is the average case Big O of method probH(int n) from question 1, part H?

J.
Consider a Queue class can only store integer primitive. What is output by the following code?

Queue q = new Queue();// creates an empty Queue

q.enqueue(12);

q.enqueue(13);

q.dequeue();

System.out.print(q.front() + " ");

q.enqueue(q.front());

q.enqueue(15);

q.dequeue();

q.dequeue();

int x = q.front();

q.dequeue();

int y = x + q.front();

System.out.println(y + " ");

K.
If an array contains data that is sorted what is the average case Big O of an efficient search for an item in the array? What does N in the Big O function represent?

L.
Assume a singly Linked List is being searched to see if an item is present. Assuming the item is present in the List and the List contains 10,000 nodes, on average how many nodes must be examined before discovering the item is present?

M.
Assume an algorithm takes 2 seconds to process a data set of size of 1000. The algorithm has a Big O of (N^3). Approximately how long should it take the algorithm to process a data set of size 4000?

N.
Assume an algorithm takes 3 seconds to process a data set of size 1000. The algorithm has a Big O of (N log N). Approximately how long should it take the algorithm to process a data set of size 4000? log 1000 ~= 10.

O.
Given the following list of numbers, what would the list be after the first partition of a quicksort assuming the pivot is picked by selecting the middle item of the list.

81 96 23 17 82 79 45 52 48 70 94 74 67

2. (15 points, Linked Lists) Complete a removeFront method for a singly linked list class.

Use the following ListNode class

public class ListNode
{
// returns next node in list or null if no next node

public ListNode getNext()

// set next node to parameter

public void setNext(ListNode next)

// get the data in this node
public Object getData()

// other methods, implementation, and private data members

// not shown

}

This LinkedList class has a reference to the head node and tail node. The list nodes have references to the next node, but not the previous node. The last node of a nonempty list has its next reference set to null. An empty list is signified by the head and tail pointers both being set to null. There is also a private integer to track the number of elements in the list.

You may not use any of the other methods in the LinkedList class to complete the removeFront method. You may assume the precondition of the removeFront method is not violated. The method must operate in O(1) time.

public class LinkedList
{
private ListNode myHead;

private ListNode myTail;

private int iMySize;

// other methods not shown

// pre: isEmpty() == false;

// post: getSize() = old getSize – 1, first node removed.

// data in old front node removed

public Object removeFront()

{
// complete this method on the next page.

}
// pre: isEmpty() == false;

// post: getSize() = old getSize – 1, first node removed.

// data in old front node removed

public Object removeFront()

{
// complete the method below
3. (15 points, Array Lists) Complete the a remove range method for the ArrayList class. Your implementation shall be no worse than O(N) where N is the number of items in the list prior to removal.

public void removeRange(int fromIndex, int toIndex)

Removes from this List all of the elements whose index is between fromIndex, inclusive and toIndex, exclusive. Shifts any succeeding elements to the left (reduces their index). This call shortens the list by (toIndex - fromIndex) elements. (If toIndex == fromIndex, this operation has no effect.)

fromIndex - index of first element to be removed.

toIndex - index after last element to be removed.

You may assume the ArrayList class has the following private data members:

public class ArrayList

{
private Object[] myCon;

private int iMySize;

// other data and methods not shown.

Complete the following method

// pre: fromIndex < size(), toIndex <= size()

// post: as described above

public void removeRange(int fromIndex, int toIndex)

{
// complete the method on the following page

// pre: fromIndex < size(), toIndex <= size()

// post: as described above

public void removeRange(int fromIndex, int toIndex)

{
// complete the method below

4. (20 points, Using ArrayLists) In testing the Lexicon class many students added large numbers of words to their Lexicon. Many large lists of words can be found, but they are usually in alphabetical order. It is appropriate to test the Lexicon by feeding it words in alphabetical order. Another appropriate test would be to add words that are in random order. In this question you will write a method to shuffle the entries in an ArrayList. This method is not in the ArrayList class. You may use the following methods from the ArrayList class.

	 boolean
	add(Object o)
 Appends the specified element to the end of this list. O(1)

	 Object
	get(int index)
 Returns the element at the specified position in this list. O(1)

	 boolean
	isEmpty()
 Tests if this list has no elements. O(1)

	 Object
	remove(int index)
 Removes the element at the specified position in this list. O(N)

	 Object
	set(int index, Object element)
 Replaces the element at the specified position in this list with the specified element. O(1)

	 int
	size()
 Returns the number of elements in this list. O(1)

	 void
	add(int index, Object element)
 Inserts the specified element at the specified position in this list. O(N)

You may also use the following constructor and method from the Random class:

	Random()
 Creates a new random number generator.

	 int
	nextInt(int n)
 Returns a pseudorandom, uniformly distributed int value between 0 (inclusive) and the specified value (exclusive), drawn from this random number generator's sequence.

You may also declare variables of type Object in this method.

Complete the following method that shuffles the contents of the parameter in no worse than O(N) time, where N is equal to the number of elements in the ArrayList

// pre: data != null

// post: elements in data shuffled (in no worse than O(N) time)

public void shuffle(ArrayList data)

{
// complete this method on the next page

// pre: data != null

// post: elements in data shuffled (in no worse than O(N) time)

public void shuffle(ArrayList data)

{
// complete this method below

5. (20 points, Recursion) Frequent flier programs are offered by airlines to reward travelers for flying a lot. One feature of these programs is that one airline will accept and honor another airlines frequent flyer miles. For example United airlines honors miles from these other airlines

Aeromar, Aloha Airlines, BWIA West Indies Airways, Cayman Airways, Delta Air Lines, Emirates, LAPA, Spanair, [image: image1.png]

US Airways

And these airlines in turn accept miles from United.

Now assume Delta Air lines has deals with United Air Lines, Aloha Airlines, and Southwest airlines. It is possible to redeem you miles from United on Southwest by converting them from United to Delta and then to Southwest. In this problem you will determine if miles on a given airline can be redeemed on another airline through a series of transactions.
For this question use the following class:

public class Airline

{
/*
returns an ArrayList of Airline objects. All Airlines in

the ArrayList are partners with this Airline. These airlines accept this airlines frequent flyer miles and this airline accepts these airlines miles.

*/

public ArrayList partners()

//true if the calling object equals the parameter object

public boolean equals(Object otherObject)

// other methods and private data not shown

}

For this question you may also use the following constructor and methods from the ArrayList class:

	ArrayList() Constructs an empty list with an initial capacity of ten.

	 boolean
	add(Object o)
 Appends the specified element to the end of this list.

	 void
	clear()
 Removes all of the elements from this list.

	 boolean
	contains(Object elem)
 Returns true if this list contains the specified element.

	 Object
	get(int index)
 Returns the element at the specified position in this list.

	 boolean
	isEmpty()
 Tests if this list has no elements.

	 Object
	remove(int index)
 Removes the element at the specified position in this list.

	 int
	size()
 Returns the number of elements in this list.

Complete the following method. You may write a helper method if you wish:

// pre: origAirline != null, destAirline != null

// post: return true if miles on orig can be used on dest via any // path of transformations through partner airlines. If

// orig.equals(dest) method shall return true.

public boolean milesAreValid(Airline orig, Airline destAir)

{

CS 307 – Midterm 2 – Fall 2002
 8

