 Points off 1 2 3 4 5 Total off Net Score

	
	
	
	
	
	
	
	

CS 307 – Final – Spring 2007
Name__

UTEID login name _______________________________

Circle your TA’s name:
Alison

Aparajit

Vineet
Instructions:

1. Please turn off your cell phones.
2. There are 5 questions on this test.
3. You have 3 hours to complete the test.

4. You may not use a calculator on the test.

5. When code is required, write Java code.

6. Ensure your answers are legible.

7. When answering coding questions, you may add helper methods if you wish .

8. Some questions limit the other classes you may use when answering the question. You will not get full credit if you do not follow these limitations.

9. When answering questions 2 - 5, assume the preconditions of the methods are met.
1. (2 points each, 30 points total) Short answer. Place you answers on the attached answer sheet.
For questions that ask what is the output:
· If the code contains a syntax error or other compile error, answer “Compiler error”.

· If the code would result in a runtime error or exception answer “Runtime error”.

· If the code results in an infinite loop answer “Infinite loop”.

On questions that ask for the Big O of a method or algorithm, recall that when asked for Big O your answer should be the most restrictive Big O function. For example Selection Sort has an expected case Big O of O(N^2), but per the formal definition of Big O it is correct to say Selection Sort also has a Big O of O(N^3). Give the most restrictive, correct Big O function. (Closest without going under.)

A.
The following numbers are inserted, one at a time, in the order shown, into a binary search tree with no checks to ensure or maintain balance. (i.e. the traditional naïve insertion algorithm.) The tree is initially empty. Draw the resulting tree.

25, -5, 12, 7, 39
For parts B - E consider the following binary tree. For each question assume when a node is processed the value in the node is printed out by the statement:

System.out.print(currentNode.getData() + " ");

[image: image1]

B.
What is the output of a preorder traversal of the above tree?

C.
What is the output of an inorder traversal of the above tree?

D.
What is the output of a postorder traversal of the above tree?

E.
Is the binary tree shown above a binary search tree? Assume characters are compared based on alphabetical order.
F.
What is the output of the following code segment?
Stack<Integer> s1 = new Stack<Integer>();
Stack<Integer> s2 = new Stack<Integer>();

Stack<Integer> s3 = new Stack<Integer>();

int[] data = {3, 1, 4, 1, 5, 9};

for(int i = data.length - 1; i >= 0; i--)

s1.push(data[i]);

while(!s1.isEmpty()){

if(s1.top() % 3 == 0)

s2.push(s1.pop());

else

s3.push(s1.pop());

}

while(!s2.isEmpty())

System.out.print(s2.pop());

while(!s3.isEmpty())

System.out.print(s3.pop());

G.
What is the average case Big O for inserting N items into a red-black tree that is initially
empty?

H.
In Java, why must objects added to binary search trees be of type Comparable instead of
just Object?

I.
How many distinct items may be represented with 16 bits? Answer containing exponents are
acceptable.
J.
Consider the following method header and precondition. Is the precondition necessary?
Briefly explain why or why not.

//pre: data only contains Strings

public int countSomething(ArrayList<String> data){

K.
What is the Big O for inserting an element at position N into an ArrayList that already has K
items in it?
For questions L and M consider the following Stack class

public class Stack<AnyType>{

private SinglyLinkedList<AnyType> myCon;

/* The SinglyLinkedList class uses singly linked nodes.

 The SinglyLinkedList maintains a reference to the first

 node in the linked structure of nodes, but not to the last

 node.

*/

public Stack(){

myCon = new SinglyLinkedList<AnyType>();

}

public AnyType top(){

return myCon.get(myCon.size() - 1);

}

public AnyType pop(){

return myCon.remove(myCon.size() - 1);

}

public boolean isEmpty(){

return myCon.size() == 0;

}

public void push(AnyType data){

myCon.add(data);

}
}
L.
For a Stack that contains N items, what is the Big O of the top method?

M.
Briefly describe how the SinglyLinkedList class describe in the question would have to implement its size method so it is O(1).

N.
What is the average case Big O for getting the minimum value in a Binary Search Tree that uses the naïve insertion algorithm and contains N elements?

O.
Briefly explain why the Huffman coding compression algorithm does not usually result in compression for small files.

No material on this page.

2. (Linked Lists, 15 points) Complete an instance method to insert an element at a specified position in a SinglyLinkedList . This SinglySinglyLinkedList class uses nodes that are singly linked.
· The SinglyLinkedList class has only one instance variable, a reference to the first node in the list, named head.
· The SinglyLinkedList class does not have a reference to the last node in the linked list, nor does it track the number of elements in the list.
· The last node in the list has its next reference set to null.

· You may not use any other methods of the SinglyLinkedList class in completing this method.
· Your method must be O(1) space, which means no matter how many elements are in the SinglyLinkedList your method uses the same number of variables and memory. In other words you can't use a temporary array or ArrayList.

Methods that are not O(1) space or that use other methods in the SinglyLinkedList class will not receive full credit.

[image: image2]
Here is the Node class:

public class Node

{
public Node()

public Node(Object data, Node next)

public Object getData()

public Node getNext()

public void setData(Object data)

public void setNext(Node next)
}
Here is the SinglyLinkedList class:

public class SinglyLinkedList
{
private Node head;

/*
complete the following method

pre: none

post: insert item at position pos in the list if pos is valid. (A

position equal to the number of elements currently in the list is
valid.)

If pos is valid all elements whose original position >= pos have
their position increased by 1.

returns: If pos is not valid, return false, otherwise return true.

Examples:

[A, B, C, D, E].add(F, 3) -> [A, B, C, F, D, E] and returns true.

[A, B, D, C].add(F, 4) -> [A, B, D, C, F] and returns true.

[A, B, D, C].add(F, 5) -> [A, B, D, C] and returns false.

[].add(A,0) -> [A] and returns true.

[].add(A, 2) -> [] and returns false.

[A].add(B, 0) -> [B, A] and returns true.

*/

public boolean insert(Object item, int pos){

// complete this method below.

3. (Binary Trees, 20 points) Complete a method to determine the number of nodes in a MaxHeap class that do not meet the max heap property which is explained below
· A max heap is a binary tree that stores Comparable items.

· the max heap property requires that the value in a node is greater than the value in both of its children, individually, if it has children. The value in a node does not have to greater than the sum of the value in its children, just each value in its children individually
· The tree is a complete binary tree.
· A complete binary tree us one in which every level, except possibly the deepest, is completely filled. At depth n, the height of the tree, all nodes must be as far left as possible.

· Your method will return the number of nodes in the tree that contain a value that is not greater than the values in its children, if they exist.

· Do not attempt to verify if the tree is complete or not.

· Assume all elements in nodes are from the same class.

Important. You method shall be no worse than O(h) space, where h is the height of the tree.
Here is an example. Consider the following binary tree.

For the tree shown above your method would return 0. The value every node is greater than the value in its children, if it has children.

For the tree shown above your method would return 2. There are 2 nodes whose value is not greater than the value in its children, if it has children.

· The node containing 10. 10 is not greater than the value in either child.

· The node containing -9. -9 is not greater than the value in its left child, 23.

Note:

1. Even though the node containing -9 is incorrect due to its left child equaling 23 it does not invalidate the node containing the 11.

2. The node containing 6 is valid because it is greater than both children. The value in a node does not have to be greater than the sum of its children.
3. The node containing 23 is correct because it doesn't have any children

Here is the TreeNode class:
public class TreeNode

{ public TreeNode()

 public TreeNode(Comparable initValue)

 public TreeNode(Comparable value, TreeNode left, TreeNode right)

 public Comparable getValue()

 public TreeNode getLeft()

 public TreeNode getRight()

 public void setValue(Comparable theNewValue)

 public void setLeft(TreeNode theNewLeft)
 public void setRight(TreeNode theNewRight)

}

Here is the MaxHeap class:

public class MaxHeap
{
private TreeNode root;

/*
complete the following method

pre: All elements of this Maxheap are of the same type.

post: Return the number of nodes in this MaxHeap that contain a
value that is not greater than the values in both its children, if

they exist.

This MaxHeap not altered as a result of this call.

*/
private int numIncorrectNodes(){
//more room for numIncorrectNodes if necessary
4. (Using / Implementing Data Structures, 20 points) Write a private instance method, numBadLinks, for an UndirectedGraph class. A graph consists of a set of vertices and a set of edges that connect the vertices. Vertices are analogous to the nodes of a linked list or a binary tree and edges are analogous to the links between nodes of a linked list or binary tree.

In an undirected graph if a link exists between two nodes movement is allowed back and forth, from one node to another, in either direction. This question involves undirected graphs.
Here is an example of a graph. Nodes are specified by an integer.

[image: image3]
A Map is a data structure that stores key-value pairs. Each key is associated with a value. The methods for the Map class are listed below.

This UndirectedGraph class uses a Map that uses Integers as keys and Sets of Integers as values. The Map represents the links that exist between nodes

public class UndirectedGraph{

private Map< Integer, Set<Integer> > myLinks;
Here is a visualization of myLinks for the graph above. Each row is a key in myLinks and its associated value.
Key / Node Number Associated Value -> Set of Integers
	0
	 {1}

	1
	 {0, 9, 5}

	2
	 {9}

	9
	 {2, 1, 6}

	12
	 {5, 6}

	5
	 {7, 6, 1, 8, 12}

	6
	 {9, 12, 5}

	7
	 {5}

	8
	 {5}

In the example graph, node 0 in myLinks would be represented as an Integer key equal to 0, and a value equal to a Set with one element, the Integer 1.

Node 1 in myLinks would be represented as an Integer key equal to 1, and a value equal to a Set with 3 elements, the Integers, 0, 9 and 5.
The above example has 0 bad links for the graph shown.

The numBadLinks method returns the number of bad links in the UndirectedGraph. A Bad link exists if a link exists from a given node, A to another node, B, but node B does not contain a link back to A.

Here is another example of the graph shown on the previous page with some bad links.

Key / Node Number Associated Value -> Set of Integers

	0
	 {1}

	1
	 {0, 9, 5}

	2
	 {4}

	9
	 {1, 6}

	12
	 {5}

	5
	 {7, 6, 1, 8, 12}

	6
	 {9, 12, 5}

	7
	 {5}

	8
	 {5}

Node 2 connects to node 4, which does not exist. That is 1 bad link.

Node 6 connects to node 12, but node 12 does not connect to node 6. That is 1 bad link.

The method would return 2

Here are the given methods for Maps, Sets, and Iterators.

	Map<KeyType, ValType> Method Summary

	
	Map()
 Create a new, empty Map.

	 boolean
	containsKey(Object key)
 Returns true if this map contains a mapping for the specified key.

	 boolean
	containsValue(Object value)
 Returns true if this map maps one or more keys to the specified value.

	 ValType
	get(Object key)
 Returns the value to which this map maps the specified key.

	 Set<KeyType>
	keySet()
 Returns a set view of the keys contained in this map.

	 ValType
	put(KeyType key, ValType value)
 Associates the specified value with the specified key in this map.

	 V
	remove(Object key)
 Removes the mapping for this key from this map if it is present.

	 int
	size()
 Returns the number of key-value mappings in this map.

	Set<AnyType> Method Summary

	
	Set()
 Create a new, empty Set.

	 boolean
	add(AnyType o)
 Adds the specified element to this set if it is not already present

	 void
	clear()
 Removes all of the elements from this set.

	 boolean
	contains(Object o)
 Returns true if this set contains the specified element.

	 Iterator<AnyType>
	iterator()
 Returns an iterator over the elements in this set.

	 boolean
	remove(Object o)
 Removes the specified element from this set if it is present.

	 int
	size()
 Returns the number of elements in this set (its cardinality).

	Iterator<AnyType> Method Summary

	 boolean
	hasNext()
 Returns true if the iteration has more elements.

	 AnyType
	next()
 Returns the next element in the iteration.

	 void
	remove()
 Removes from the underlying collection the last element returned by the iterator .

Complete the numBadLinks method on the next page. This is a method inside the UndirectedGraph class. You may not use any other classes besides, Map, Set, Iterator, and Integer.
public class UndirectedGraph{

private Map< Integer, Set<Integer> > myLinks;

//other methods not shown

/*
Complete this method.

pre: none

post: return the number of bad links in this UndirectedGraph.
This UndirectedGraph is not changed as a result of this
method.

You may not use any other classes besides, Map, Set, Iterator, and Integer.

*/

private int numBadLinks(){

//more room for numBadLinks if necessary

5. (Using Data Structures. 15 points) Write a method to determine if the all the elements in a Stack, s, are present in present in a Queue, q. It does not matter if all of the elements in the Queue are present in the Stack. In other words check to see if the elements in the Stack s are a subset of the elements in the Queue q.

· You not use any other classes expect Object, Queue, and Stack. Not even arrays.

· You may use temporary Stacks and Queues if you wish.

· The Stack and Queue are restored to their original state when the method is completed.

· The method is not part of the Stack or the Queue class.

· The Stack and Queue classes only have the traditional stack and queue methods.
Examples:

s = [3, 2, 1] (top element is leftmost element, 3)

q = [1, 1, 4, 5, 3, 2] (front is leftmost element 1)

would return true

s = [3, 2, 1, 1]

q = [2, 2, 3, 3, 1]

would return true. Even though there is only one 1 in the queue it can match to both 1's in s.

s = [1, 2]

q = [2, 2, 3, 3]

would return false

/*
Complete this method.

pre: s != null, q != null

 post: return true if the elements in the Stack s are a subset
of the elements in the Queue q, false otherwise.

s and q are restored to their original state when the method
is completed.

*/

public boolean isSubset(Stack<Integer> s, Queue<Integer> q){
// ********* complete this method on the next page ********

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

//complete your method here
//more room for isSubset if necessary
Name:_______________________________

Answer sheet for question 1, short answer questions

__

A.

B.

C.

D.

E.

F.

G.

H.

I.

J.

K.

__

L.

M.

N.

O.

Java class reference sheet. Throughout this test, assume that the following classes and methods are available.

class Object

// all classes inherit and may override these methods

• boolean equals(Object other)

• String toString()

• int hashCode()

interface Comparable

• int compareTo(Object other)
// return value < 0 if this is less than other

// return value = 0 if this is equal to other

// return value > 0 if this is greater than other
class Integer implements Comparable

• Integer(int value) // constructor

• int intValue()
class Double implements Comparable

• Double(double value) // constructor

• double doubleValue()
class String implements Comparable

• int length()

• String substring(int from, int to)
// returns the substring beginning at from

// and ending at to-1
• String substring(int from)
// returns substring(from, length())
• int indexOf(String s)
// returns the index of the first occurrence of s;

// returns -1 if not found
class Math

• static int abs(int x)

• static double abs(double x)

• static double pow(double base, double exponent)

• static double sqrt(double x)
class Random

• int nextInt(int n)
// returns an integer in the range from 0 to n-1 inclusive

• double nextDouble()
// returns a double in the range [0.0, 1.0)
interface List<AnyType>
• int size()

• boolean add(AnyType x)
 // appends x to end of list; returns true
• AnyType get(int index)
• boolean contains(AnyType elem)
// returns true if elem is present in this List

• AnyType set(int index, AnyType x)
// replaces the element at index with x
// returns the element formerly at the specified position
• Iterator iterator()

class ArrayList<AnyType> implements List

Methods in addition to the List methods:

• void add(int index, AnyType x)
// inserts x at position index, sliding elements

// at position index and higher to the right

// (adds 1 to their indices) and adjusts size
• AnyType remove(int index)
// removes element from position index, sliding elements

// at position index + 1 and higher to the left

// (subtracts 1 from their indices) and adjusts size

// returns the element formerly at the specified position
class LinkedList<AnyType> implements List

Methods in addition to the List methods:

• void addFirst(AnyType x)

• void addLast(AnyType x)

• AnyType getFirst()

• AnyType getLast()

• AnyType removeFirst()

• AnyType removeLast()
interface Set<AnyType>
• boolean add(AnyType x)

• boolean contains(AnyType x)

• boolean remove(AnyType x)

• int size()

• Iterator<AnyType> iterator()
class HashSet<AnyType> implements Set

class TreeSet<AnyType> implements Set
interface Map<KeyType, ValType>
• Object put(KeyType key, ValType value)
 // associates key with value

// returns the value formerly associated with key

// or null if key was not in the map
• ValType get(KeyType key)

• ValType remove(KeyType key)

• boolean containsKey(KeyType key)

• int size()

• Set<KeyType> keySet() //get a Set of all keys in this map

class HashMap<KeyType, ValType> implements Map

class TreeMap<KeyType, ValType> implements Map

interface Iterator<AnyType>
• boolean hasNext()

• AnyType next()

• void remove()
 23

 -10

-20

 11

 'P'

'U'

 'O'

 'T'

 -10

'M'

'E'

10

7

6

5

12

 0

 -8

head

-5

 7

 1

 10

15

12

 -9

9

2

1

0

root

'C'

root of tree

data next

 6

root

8

 5

 5

 4

CS 307 – Final – Spring 2007
 15

