
CS314 Fall 2011 Midterm 2 Solution and Grading Criteria.

Grading acronyms:
AIOBE - Array Index out of Bounds Exception may occur
BOD - Benefit of the Doubt. Not certain code works, but, can't prove otherwise
ECF - Error carried forward.
Gacky or Gack - Code very hard to understand even though it works or solution is not elegant.
GCE - Gross Conceptual Error. Did not answer the question asked or showed fundamental misunderstanding
LE - Logic error in code.
NAP - No answer provided. No answer given on test
NN - Not necessary. Code is unneeded. Generally no points off
NPE - Null Pointer Exception may occur
OBOE - Off by one error. Calculation is off by one.

1. Answer as shown or -2 unless question allows partial credit.
No points off for differences in spacing, capitalization, commas, and braces

A. 15
B. 5
C. 46
D. v v x x u u y y
E. 25
F. 12 seconds
G. quicksort (ave case nlogn, worst case n2)
H. 1999 (2000 acceptable)
I. O(N2) (contains is O(N))
J. O(N2)
K. Sort then search, choice 2

1000 * 64,000 > 128,000 * 17 + 17 * 1000

6.4 * 10E7 < 2.2E6

L. -15

 \

 32

 /

 15

 /

 0

 \

 7

M. ZACJXHPM
N. CAXJZPHM
O. CXJAPMHZ

2. Comments. I apologize for the comment about O(1) space. The TAs and I did not communicate well over
what that meant. Most people ignored that the O(1) and used recursion as I intended. If not, we graded
leniently.

I thought this would be an easy problem. A simple tree traversal with a test for a certain property.

Common problems:

 Biggest problem was sending an int variable. It was incremented in recursive calls and this leads to
returning an answer that is much too large.

 Not having base case of value = null, not handling empty tree case

 Not making recursive call on single child. That node or nodes deeper in the tree may have nodes with
two children.

Suggested Solution:

public int numNodesWithTwoChildren() {

 return helper(root);

}

private int helper(BTNode<E> n) {

 if(n == null)

 return 0;

 int count = 0;

 if(n.getLeft() != null && n.getRight() != null)

 count++;

 count += helper(n.getLeft());

 count += helper(n.getRight());

 return count;

}

General Grading Criteria: 10 points

 helper 1 point

 correct base case 3 points (null or other checks)

 check two children correctly 2 points

 correct recursive calls 3 points

 return correct answer (local var or multiple returns) 1 point

Analysis:

A. Big O all methods should be O(N) 1 point

B. smallest = 0 2 points

 largest = (N / 2 - 1) N / 2 okay 2 points

3. Comments: A hard linked list problem. There were 3 or 4 special cases which made the question interesting.
I saw a variety of correct solutions.

Common problems:

 not handling empty case

 not updating first if tree was not empty (or more than 1 item) but element added is smallest and goes
in front

 not using compareTo correctly

 altering the list

 not actually moving through the list

 assuming an iterator was available

 not adding as last node if necessary

Suggested Solution:

public boolean add(E val) {

 // empty case and smallest value cases

 if(first == null || val.compareTo(first.getData()) < 0) {

 first = new Node(val, first);

 return true;

 // general case, I will use a trailer

 Node lead = first.getNext();

 Node trail = first;

 while(lead != null) {

 int diff = val.compareTo(lead.getData());

 if(diff == 0)

 return false; // already here

 else if(diff < 0)

 // this is the right spot, in between trail and lead

 trail.setNext(new Node(val, lead));

 return true;

 trail = lead;

 lead = lead.getNext();

 }

 // if we get here, must add at end. Imagine list with one

 // element and it is larger than first element

 trail.setNext(new Node(val, null));

 return true;

}

General Grading Criteria: 20 points

 handle empty case - 2

 adjust first if necessary - 1

 trailer or look ahead - 3

 loop, correct stopping case - 2

 use compareTo correctly - 2

 handle already present correctly - 1

 if time to add, add correctly - 1

 move through list correctly - 4

 add at end if necessary - 1

 return correct value - 1

4. Comments. Probably the easiest coding question. Students did well. A test of using iterators and other
classes. The E should have been PairSet<E> but that was ignored for the question. I was more interested in the
algorithm.

Common problems:

 using the for each loop, FuzzySets were not iterable

 not resetting inner iterator

Suggested Solution

public FuzzySet<E> getFuzzyIntersection(FuzzySet<E> other) {

 FuzzySet<E> result = new FuzzySet<E>();

 Iterator<SetPair<E>> thisIt = iterator();

 while(it.hasNext())

 SetPair<E> thisItem = thisIt.next();

 // look for thisItem in other set

 Iterator<SetPair<E>> otherIt = other.iterator();

 boolean found = false;

 while(!found && otherIt.hasNext()) {

 SetPair<E> otherItem = otherIt.next();

 if(thisItem.getElem().equals(otherItem.getElem())) {

 // found it! add to result and stop looking

 done = true;

 double degree = thisItem.getDegree() *

 otherItem.getDegree();

 SetPair newPair = new SetPair(thisItem.getElem(), degree);

 result.add(newPair);

 }

 }

 }

 return result;

}

General Grading criteria: 17 points

 create result 1 point

 iterate through one set (order can be switched) 2 points

 nested loop 2 point

 refresh inner iterator each time 3 points

 correct use of iterators 2 points

 inside inner loop check equality of items 2 points

 create new SetPair if match and set degree correctly 2 points

 add new SetPair to result 2 points

 return result 1 point

5. Comments: A hard problem. Having to return an array list of dice positioned correctly made the question a

lot harder. A saw a number of different, correct approaches.

Common problems:

 just using a nested loop which generates dice.length * 6 possibilities. There are dice.length ^ 6
possibilities and the nested loop does not try them all.

 not having a base case

 returning early before trying other choices

 not testing to see if a solution was found and stopping if it was

 not removing dice from ArrayList if choice didn't work (unless added all at start. That was a clever
alternate solution.)

Suggested Solution:

public ArrayList<Die> solvePuzzle(Die[] dice) {

 ArrayList<Die> result = new ArrayList<Die>();

 helper(dice, 0, '?', result);

 return result;

}

private boolean helper(Die[] dice, in pos, char lastColor,

 ArrayList<Die> result) {

 if(pos == dice.length)

 return true; // solved! dice must be positioned correctly

 // not solved, take 1 die and try all 6 positions

 Die die = dice[pos];

 result.add(die); // adding pointer, so if I change die

 // changes in result

 for(int i = 0; i < 6; i++) {

 die.positionLeftFace(i);

 // check if first die or matches previous color

 // last color is left side, getColor is right side

 if(pos == 0 || lastColor == die.getColorSide(i)) {

 // matches! go on to next, opposite face is right side

 if(helper(dice, pos + 1, result,

 die.getColorOppositeSide(i)) {

 // found solution! stop making choices

 return true;

 }

 }

 // never found solution, back track

 result.remove(result.size() - 1);

 return false;

}

General Grading criteria: 15 points
 create helper - 1, correct base case - 3, recursive case, loop 6 sides on one die - 3
 position current die - 1, check color matches on dice - 3, go on if current set up okay - 3
 check if solved and stop if it is - 3, return correctly answer helper and original - 1

