
CS314 Fall 2011 Midterm 2 Solution and Grading Criteria.

Grading acronyms:
AIOBE - Array Index out of Bounds Exception may occur
BOD - Benefit of the Doubt. Not certain code works, but, can't prove otherwise
ECF - Error carried forward.
Gacky or Gack - Code very hard to understand even though it works or solution is not elegant.
GCE - Gross Conceptual Error. Did not answer the question asked or showed fundamental misunderstanding
LE - Logic error in code.
NAP - No answer provided. No answer given on test
NN - Not necessary. Code is unneeded. Generally no points off
NPE - Null Pointer Exception may occur
OBOE - Off by one error. Calculation is off by one.

1. Answer as shown or -2 unless question allows partial credit.
No points off for differences in spacing, capitalization, commas, and braces

A. 15
B. 5
C. 46
D. v v x x u u y y
E. 25
F. 12 seconds
G. quicksort (ave case nlogn, worst case n2)
H. 1999 (2000 acceptable)
I. O(N2) (contains is O(N))
J. O(N2)
K. Sort then search, choice 2

1000 * 64,000 > 128,000 * 17 + 17 * 1000

6.4 * 10E7 < 2.2E6

L. -15

 \

 32

 /

 15

 /

 0

 \

 7

M. ZACJXHPM
N. CAXJZPHM
O. CXJAPMHZ

2. Comments. I apologize for the comment about O(1) space. The TAs and I did not communicate well over
what that meant. Most people ignored that the O(1) and used recursion as I intended. If not, we graded
leniently.

I thought this would be an easy problem. A simple tree traversal with a test for a certain property.

Common problems:

 Biggest problem was sending an int variable. It was incremented in recursive calls and this leads to
returning an answer that is much too large.

 Not having base case of value = null, not handling empty tree case

 Not making recursive call on single child. That node or nodes deeper in the tree may have nodes with
two children.

Suggested Solution:

public int numNodesWithTwoChildren() {

 return helper(root);

}

private int helper(BTNode<E> n) {

 if(n == null)

 return 0;

 int count = 0;

 if(n.getLeft() != null && n.getRight() != null)

 count++;

 count += helper(n.getLeft());

 count += helper(n.getRight());

 return count;

}

General Grading Criteria: 10 points

 helper 1 point

 correct base case 3 points (null or other checks)

 check two children correctly 2 points

 correct recursive calls 3 points

 return correct answer (local var or multiple returns) 1 point

Analysis:

A. Big O all methods should be O(N) 1 point

B. smallest = 0 2 points

 largest = (N / 2 - 1) N / 2 okay 2 points

3. Comments: A hard linked list problem. There were 3 or 4 special cases which made the question interesting.
I saw a variety of correct solutions.

Common problems:

 not handling empty case

 not updating first if tree was not empty (or more than 1 item) but element added is smallest and goes
in front

 not using compareTo correctly

 altering the list

 not actually moving through the list

 assuming an iterator was available

 not adding as last node if necessary

Suggested Solution:

public boolean add(E val) {

 // empty case and smallest value cases

 if(first == null || val.compareTo(first.getData()) < 0) {

 first = new Node(val, first);

 return true;

 // general case, I will use a trailer

 Node lead = first.getNext();

 Node trail = first;

 while(lead != null) {

 int diff = val.compareTo(lead.getData());

 if(diff == 0)

 return false; // already here

 else if(diff < 0)

 // this is the right spot, in between trail and lead

 trail.setNext(new Node(val, lead));

 return true;

 trail = lead;

 lead = lead.getNext();

 }

 // if we get here, must add at end. Imagine list with one

 // element and it is larger than first element

 trail.setNext(new Node(val, null));

 return true;

}

General Grading Criteria: 20 points

 handle empty case - 2

 adjust first if necessary - 1

 trailer or look ahead - 3

 loop, correct stopping case - 2

 use compareTo correctly - 2

 handle already present correctly - 1

 if time to add, add correctly - 1

 move through list correctly - 4

 add at end if necessary - 1

 return correct value - 1

4. Comments. Probably the easiest coding question. Students did well. A test of using iterators and other
classes. The E should have been PairSet<E> but that was ignored for the question. I was more interested in the
algorithm.

Common problems:

 using the for each loop, FuzzySets were not iterable

 not resetting inner iterator

Suggested Solution

public FuzzySet<E> getFuzzyIntersection(FuzzySet<E> other) {

 FuzzySet<E> result = new FuzzySet<E>();

 Iterator<SetPair<E>> thisIt = iterator();

 while(it.hasNext())

 SetPair<E> thisItem = thisIt.next();

 // look for thisItem in other set

 Iterator<SetPair<E>> otherIt = other.iterator();

 boolean found = false;

 while(!found && otherIt.hasNext()) {

 SetPair<E> otherItem = otherIt.next();

 if(thisItem.getElem().equals(otherItem.getElem())) {

 // found it! add to result and stop looking

 done = true;

 double degree = thisItem.getDegree() *

 otherItem.getDegree();

 SetPair newPair = new SetPair(thisItem.getElem(), degree);

 result.add(newPair);

 }

 }

 }

 return result;

}

General Grading criteria: 17 points

 create result 1 point

 iterate through one set (order can be switched) 2 points

 nested loop 2 point

 refresh inner iterator each time 3 points

 correct use of iterators 2 points

 inside inner loop check equality of items 2 points

 create new SetPair if match and set degree correctly 2 points

 add new SetPair to result 2 points

 return result 1 point

5. Comments: A hard problem. Having to return an array list of dice positioned correctly made the question a

lot harder. A saw a number of different, correct approaches.

Common problems:

 just using a nested loop which generates dice.length * 6 possibilities. There are dice.length ^ 6
possibilities and the nested loop does not try them all.

 not having a base case

 returning early before trying other choices

 not testing to see if a solution was found and stopping if it was

 not removing dice from ArrayList if choice didn't work (unless added all at start. That was a clever
alternate solution.)

Suggested Solution:

public ArrayList<Die> solvePuzzle(Die[] dice) {

 ArrayList<Die> result = new ArrayList<Die>();

 helper(dice, 0, '?', result);

 return result;

}

private boolean helper(Die[] dice, in pos, char lastColor,

 ArrayList<Die> result) {

 if(pos == dice.length)

 return true; // solved! dice must be positioned correctly

 // not solved, take 1 die and try all 6 positions

 Die die = dice[pos];

 result.add(die); // adding pointer, so if I change die

 // changes in result

 for(int i = 0; i < 6; i++) {

 die.positionLeftFace(i);

 // check if first die or matches previous color

 // last color is left side, getColor is right side

 if(pos == 0 || lastColor == die.getColorSide(i)) {

 // matches! go on to next, opposite face is right side

 if(helper(dice, pos + 1, result,

 die.getColorOppositeSide(i)) {

 // found solution! stop making choices

 return true;

 }

 }

 // never found solution, back track

 result.remove(result.size() - 1);

 return false;

}

General Grading criteria: 15 points
 create helper - 1, correct base case - 3, recursive case, loop 6 sides on one die - 3
 position current die - 1, check color matches on dice - 3, go on if current set up okay - 3
 check if solved and stop if it is - 3, return correctly answer helper and original - 1

