
CS314 Exam 2 - Fall 2019 - Suggested Solution and Criteria 1

CS314 Fall 2019 Exam 2 Solution and Grading Criteria.
Grading acronyms:
AIOBE - Array Index out of Bounds Exception may occur.
BOD - Benefit Of the Doubt. Not certain code works, but, can't prove otherwise.
Gacky or Gack - Code very hard to understand even though it works. (Solution is not elegant.)
LE - Logic Error in code.
MCE - Major Conceptual Error. Answer is way off base, question not understood.
NAP - No Answer Provided. No answer given on test.
NN - Not Necessary. Code is unneeded. Generally, no points off.
NPE - Null Pointer Exception may occur.
OBOE - Off By One error. Calculation is off by one.
RTQ - Read The question. Violated restrictions or made incorrect assumption.

1. Answer as shown or -1 unless question allows partial credit. (Statements in parenthesis not required, only
for explanation of answer to students.)

A. 1133

B. 11113232

C. 38

D. 0.32 seconds

E. 16 (method simply sums up elements in array)

F. 7

G. syntax error OR compile error (Cannot

instantiate abstract classes)

H. -------------------------------------->

OKAY IF GARBAGE NODE NOT SHOWN

I. 4 seconds (method is O(N))

J. 45 seconds (method is O(N2) under given conditions

K. {0=AI, 2=null, 4=CS} (minor differences in spacing and brackets okay)

L. O(N)

M. 80 seconds

N. ArrayList is faster due to O(1) for accessing elements compared to

O(N) for accessing elements in LinkedList. (or words to that effect)

O. O(N2logN) (base 2 okay)

P. RTUPO

Q. O(N)

R. -->

S. 0 12 8 4 16

T. 3

CS314 Exam 2 - Fall 2019 - Suggested Solution and Criteria 2

2. Comments. O(N) approach: Determine the difference in size of the lists. Start at the first node in the larger
list and traverse a number of nodes equal to the difference in sizes. Now move both temporary references. If
the temp references are every the same, the lists converge. Nina pointed out (and many students saw) a
simple O(N) solution. Just go to the last node in each list and check if they are the same node. This is always
O(N), but does some unnecessary work in some cases.

 public boolean listsConverge(LinkedList314<E> other) {

 if (thisSize == 0 || otherSize == 0) {

 return false; // empty can't converge

 }

 int diff = this.size - other.size; // assume this is bigger

 Node<E> tempBig = this.first;

 Node<E> tempSmall = other.first;

 if (diff < 0) { // other bigger

 diff = -diff;

 tempBig = other.first;

 tempSmall = this.first;

 }

 // move the temp in the bigger list

 while (diff > 0) {

 tempBig = tempBig.next;

 diff--;

 }

 while (tempBig != null) {

 if (tempBig == tempSmall) {

 return true; // Same node! Lists converge.

 }

 tempBig = tempBig.next;

 tempSmall = tempSmall.next;

 }

 return false;

 }

22 points, Criteria:

 explanation is clear and concise, code matches explanation, 3 points (-1, -2 possible)

 return immediately if either list is size 0, 1 point

 temporary node references for this and other, 2 points

 move temp node in bigger list difference in size times correctly, 3 points

 main loop that goes until one or both temp nodes store null, 2 points

 correctly check if nodes equal and return true if so, 3 points

 move temp nodes correctly, 4 points

 stop when first shared node found, 3 points (-2 if all the way to end of each list)

 return false if do not converge and not empty, 1 point

Other deductions:

 using disallowed methods: size() -2, get() -4, others -> vary

 create new data structures, -7 alter either list, -7 create single new nodes, -2

 check data not nodes, -3 double work, check both ways, -1 start at front and just loop -9

 start at front and just loop in tandem, the MCE, tandem -9 NPE, -3

CS314 Exam 2 - Fall 2019 - Suggested Solution and Criteria 3

O(N2) approach: Have a temporary node reference in each list. For each node in this list, traverse all nodes in
the other list and see if any of them are equal to the node in this list. If so, stop, otherwise move the
temporary reference in this list to the next node. This is O(N2)

Many stduents were also concerned with finding the smaller list and make that the outer loop. This insured
O(1) if either list is empty, but otherwise had little effect on the worst case.Still traversing N * M nodes either
way in the worst case.

 public boolean listsConverge2(LinkedList314<E> other) {

 if (this.size == 0 || other.size == 0) {

 return false;

 }

 Node<E> tempThis = this.first;

 while (tempThis != null) {

 Node<E> tempOther = other.first;

 while (tempOther != null) {

 if (tempOther == tempThis) {

 return true;

 }

 tempOther = tempOther.next;

 }

 tempThis = tempThis.next;

 }

 return false;

 }

22 points, Criteria:

 explanation is clear and concise, code matches explanation, 3 points (-1, -2 possible)

 O(N2) approach, -5 efficiency

 return immediately if either list is size 0, 1 point

 temp Node variables for each list, 1 point

 outer loop based on size or until outer temp is null, 3 points

 reset inner temp node to start of other list (could be this) for each iteration, 3 points

 inner loop based on size or until inner temp is null, 2 points

 correctly check if nodes equal and return true if so, 3 points

 move temp nodes correctly, 5 points

 return false if do not converge and not empty, 1 point

Other deductions:

 not resetting the node to the list traversed in the inner loop, -3

 using disallowed methods: size() -2, get() -4, others -> vary

 create new data structures, -7

 alter either list, -7

 create single new nodes, -2

 checking data instead of nodes, -3

 just loop in tandem from start of lists, MCE tandem error, -9

 check each way, double the necessary work, -1

CS314 Exam 2 - Fall 2019 - Suggested Solution and Criteria 4

3. Comments: The map question! Biggest issues were: using an iterator and then remonving via the map. This results in a
ConcurrentModificationError. (create a new map or use the iterator remove, which does remove from the map even
though the iterator is going over the keyset), not using a TreeMap for the final result. (names had to be in sorted order),
not dealing with pairs of elements in the original array correctly, trying to increment or decrement Integer objects. This
is syntactically allowed due to unboxing, but Integers are immutable, so the new value must be put in the map or it is
discarded.

 public static Map<String, Integer> getTeams(String[] games, int cutoff) {

 HashMap<String, Integer> allTeams = new HashMap<>();

 for (int i = 0; i < games.length; i += 2) {

 String winner = games[i];

 update(allTeams, winner, 1);

 String loser = games[i + 1];

 update(allTeams, loser, -1);

 }

 TreeMap<String, Integer> result = new TreeMap<>();

 for (String key : allTeams.keySet()) {

 int diff = allTeams.get(key);

 if (diff >= cutoff) {

 result.put(key, diff);

 }

 }

 return result;

 }

 private static void update(Map<String, Integer> map,

 String team, int add) {

 Integer diff = map.get(team);

 if (diff == null) {

 diff = new Integer(add);

 } else {

 diff = new Integer(diff + add);

 }

 map.put(team, diff);

 }

22 points, Criteria:

 correctly loop through array of results, 1 point

 correctly increase winner's value in map by +1, 4 points (-4 if NPE possible)

 correctly decrease loser's value in map by -1, 4 points

 after processing array: loop through all results keyset correctly, 3 points

 determine if team's win difference is above cutoff correctly, 3 points

 add to result correctly, 4 points (lose if use map.remove during iteration. CME)
Explicit iterator remove from keySet okay or Iterator.remove())

 return TreeMap, 2 points (must be in order)

 return result, 1 point

Others:

 using disallowed methods, -4 if first loop increments by 1 instead of 2, and no math, -4

 worse than O(NlogN), -6 Integer immutable logic error, -4

 altering games array, -5 int == null check (syntax error), -2

 off by one errors, -2

 CME -> ConcurrenModificationError, -4

CS314 Exam 2 - Fall 2019 - Suggested Solution and Criteria 5

4. Comments: A relatively simple tree problem. The restriction on the number of parameters for the helper was meant
to prevent students from adding an unnecessary accumulator variable which typically leads to a logic error. Several
students misunderstood the question and though we were looking for a path of nodes equal to the target. This was a
past test question, but here we are looking at groups of nodes, parent value + children's values if they exist. The target
value should never change in recursive calls.

public int numNodeAndChildrenEqualValue(int tgt) {

 return helper(root, tgt);

}

private int helper(BNode n, int tgt) {

 int result = 0;

 if (n != null) {

 int temp = n.data;

 if (n.left != null)

 temp += n.left.data;

 if (n.right != null)

 temp += n.right.data;

 if (temp == tgt)

 result++;

 // could incorporate recursive calls with null checks

 result += helper(n.left, tgt) + helper(n.right, rgt);

 }

 return result;

}

14 points, Criteria:

 helper method with current node and tgt, 1 point

 correctly handle case of empty tree (can be base case null check or special case in original method), 1 point

 correctly check if children exist, 2 points

 correctly check if current node's value and child nodes' values (if they exist) equal target, 3 points

 correctly make recursive calls, 4 points

 add result of recursive calls to local variable, 2 points

 return correct result, 1 point

Other:

 assuming we are looking for paths of nodes values that equal target, -7 MCE

 hard coding target value, -4

 more than 2 parameters to helper, -4

 referring to left or right without n. ,-2

 null pointer exceptions possible, NPE, -4

 .equals on int (doesn't autobox), -2

 -2 not matching parameters correctly, -2

 altering tree, -6

 early return, -7

 any other data structures -4

 disallowed methods, -4

 using disallowed classes and /or objects (arrays, ArrayLists), -5

CS314 Exam 2 - Fall 2019 - Suggested Solution and Criteria 6

5. Comments: Interestingly, we DON'T need a helper method. This is actually a graph problem. This was a fairly straight
forward recursive backtracking problem. The biggest issue was not setting the current start building to visited right away
as this can lead to paths that go through the start building twice, once at the start and later going back through.

 public static boolean pathExists(String start, String end, int links,

 BuildingMap map) {

 if (start.equals(end)) {

 return links == 0;

 } else if (links > 0) {

 // now visiting start

 map.setVisited(start, true);

 int nextLinks = links - 1;

 String[] connections = map.connected(start);

 for (int i = 0; i < connections.length; i++) {

 String nextBuilding = connections[i];

 if (!map.visitedStatus(nextBuilding)) {

 boolean solved = pathExists(nextBuilding, end,

 nextLinks, map);

 if (solved) {

 // undo change

 map.setVisited(start, false); // GACK

 return true;

 }

 }

 }

 // maybe another through this building?

 map.setVisited(start, false); // GACK

 }

 return false;

 }

22 points, Criteria:

 success base case, 2 points

 failure base case of links is < 0, 2 points (Efficiency)

 recursive case items:

 set current node (start to visited), 2 points

 loop through choices, 2 points

 check if current choice visited or not, 2 points

 if current choice not visited already (could be alternate base case at top of method), make correct recursive call, 6 points

 if call succeeds, undo visited and return true, 3 points

 if all choices fail, undo visited, 2 points

 if all choices fail, correctly return false, 1 point

Other:

 not setting start to visited right away, -2

 early return -6
 creating other data structures, besides the String[] returned from the building map

 links-- in the parameter list, argument is just links in this case (-4)

 not using .equals for Strings, -2

 never undoing visitied, -4

 multiple links decrements in method, (logic error), -4

