
CS314 Exam 2 - Fall 2021 - Suggested Solution and Criteria 1

CS314 Fall 2021 Exam 2 Solution and Grading Criteria.
Grading acronyms:
AIOBE - Array Index out of Bounds Exception may occur.
BOD - Benefit Of the Doubt. Not certain code works, but, can't prove otherwise.
Gacky or Gack - Code very hard to understand even though it works. (Solution is not elegant.)
LE - Logic Error in code.
MCE - Major Conceptual Error. Answer is way off base, question not understood.
NAP - No Answer Provided. No answer given on test.
NN - Not Necessary. Code is unneeded. Generally, no points off.
NPE - Null Pointer Exception may occur.
OBOE - Off By One error. Calculation is off by one.
RTQ - Read The question. Violated restrictions or made incorrect assumption.

1. Answer as shown or -2 unless question allows partial credit. (Statements in parenthesis not required, only
for explanation of answer to students.)
No points off for minor differences in spacing, capitalization, commas, and braces.

A. 13

B. 19

C. 40

D. -1

E. INAA234

F. O(N2)

G. O(N)

H. O(N) (sum of 1 + 2 + 4 + 8 +

16 + ... + N/4 + N/2 + N) =

2N - 1 -> O(N)

I. add(E val) only -1 for each

other circled

J. 12 4 9 3

K. None are true (blank counted

as wrong)

L. 5 4 3 (size cross over)

M. O(N2) (near best case

insertion sort)

N. O(N2logN) (base 2 okay,

mergesort always NlogN)

O. {0=5, 5=4, 7=3}

P. O(N2)

Q. Mergesort

R. 4

S. T V D C J K X

T. {2=4, 3=2, 5=3}

U. compile error (cannot add

String when E is String[])

V. O(NlogN) (base 2 okay)

W. A and B only. -1 per

missing, -1 per extra

X. 40 seconds

Y. runtime error (Stack

overflow due to not hitting

base case any time soon)

CS314 Exam 2 - Fall 2021 - Suggested Solution and Criteria 2

2.
public static int updateAuthors(Map<String, List<String>> map,

 String[] authors) {

 if (authors.length == 1) {

 return 0;

 }

 for (String author : authors) {

 List<String> collabs = map.get(author);

 if (collabs == null) {

 collabs = new LinkedList<>();

 map.put(author, collabs);

 }

 for (String otherAuthor : authors) {

 if (!author.equals(otherAuthor)) {

 collabs.add(0, otherAuthor);

 }

 } // collabs is a reference so no need to put back

 }

 // now do the second part

 int result = 0;

 String first = authors[0];

 String last = authors[authors.length - 1];

 for (String name : map.get(first)) {

 if (name.equals(last)) {

 result++;

 }

 }

 return result;

 }

18 points, Criteria:

 return 0 right away if single author paper, 2 points

 outer loop for authors of paper (for each loop okay), 2 points

 create LinkedList only if current author not already in map, and put in map with current author as key ,2 points
(avoid creating unnecessary objects)

 if author was present, correctly access list of co-authors with get method, 2 points

 Only access list for authors present one time, not once for each co-author, 1 point

 add co-authors to this authors list of co-authors, adding at front, 2 point

 avoid adding current author as co-author for their selves, 1 point

 determine first and last author, 1 point

 access list of co-authors from first or last author from map, 2 points

 loop through list of co-authors (for each okay), 1 point

 correct check and logic for incrementing number of times first and last author of current paper have
collaborated, must use .equals method on Strings, 1 point

 track and return result, includes creating and initializing cumulative sum variable, 1 point

Other deductions:

alter elements of authors, array of Strings, -5 remove elements during count, -4

creating data structures besides lists to add to map for first time authors, -4

disallowed methods, (-1 to -5 depending on severity)

CS314 Exam 2 - Fall 2021 - Suggested Solution and Criteria 3

3. Comments

Simplest?
 public LinkedList314<E> interleave(LinkedList314<E> other) {

 LinkedList314<E> result = new LinkedList314<>();

 // add the first two elements. Precon, neither list empty

 result.first = new Node<>(first.data);

 result.first.next = new Node<>(other.first.data);

 Node<E> thisTemp = first.next;

 Node<E> otherTemp = other.first.next;

 Node<E> resultTemp = result.first.next;

 // Now add until both used up.

 while (thisTemp != null || otherTemp != null) {

 if (thisTemp != null) {

 resultTemp.next = new Node<>(thisTemp.data);

 resultTemp = resultTemp.next;

 thisTemp = thisTemp.next;

 }

 if (otherTemp != null) {

 resultTemp.next = new Node<>(otherTemp.data);

 resultTemp = resultTemp.next;

 otherTemp = otherTemp.next;

 }

 }

 return result;

 }

18 points, Criteria:

 create resulting linked list, 1 point

 create first node in result and add first element or elements to result, 3 points

 while loop until one null (or combine with if inside until both null, don't need other loops.) Lose if use size, 3
points (miss last node, OBOE - 2)

 add nodes with data to result, 3 points

 advance references in lists, 4 points

 add left over data if one list is longer, 3 points (can be handled in single loop)

 return result, 1 point

Other:

 New data structures or arrays -4

 > O(N), -4 (typically due to a O(N) implemented as part of solution)

 NPE not covered by other criteria, -4

 not creating new nodes, -8 (If the lists share nodes, then future logic errors VERY likely)

 assuming add method available, - 9 (defeats the whole purpose of the question, creating and linking nodes)

 destroy or alter either implicit or explicit parameter, -5

 assuming Iterator available, -7

 assuming size instance variable, -4

 public methods that expose nodes, -3

 assuming header node, -3 (first would not be null when empty list if list had a header node)

CS314 Exam 2 - Fall 2021 - Suggested Solution and Criteria 4

LL Alternative (More complicated?)

 public LinkedList314<E> interleaveAlt(LinkedList314<E> other) {

 LinkedList314<E> result = new LinkedList314<>();

 Node<E> thisTemp = first;

 Node<E> otherTemp = other.first;

 // add the first two elements. Precon, neither list empty

 result.first = new Node<>(thisTemp.data);

 thisTemp = thisTemp.next;

 result.first.next = new Node<>(otherTemp.data);

 otherTemp = otherTemp.next;

 Node<E> resultTemp = result.first.next;

 // Now add pairs

 while (thisTemp != null && otherTemp != null) {

 resultTemp.next = new Node<>(thisTemp.data);

 resultTemp = resultTemp.next;

 thisTemp = thisTemp.next;

 resultTemp.next = new Node<>(otherTemp.data);

 resultTemp = resultTemp.next;

 otherTemp = otherTemp.next;

 }

 // one of thisTemp or otherTemp must be null

 addRest(resultTemp, thisTemp);

 addRest(resultTemp, otherTemp);

 return result;

 }

 private void addRest(Node<E> to, Node<E> from) {

 while (from != null) {

 to.next = new Node<>(from.data);

 to = to.next;

 from = from.next;

 }

 }

CS314 Exam 2 - Fall 2021 - Suggested Solution and Criteria 5

4. Comments:

public static void findWords(String word, Set<String> d,

 List<String> result) {

 if (word.length() > 0) {

 if (d.contains(word) && !result.contains(word)) {

 result.add(word);

 }

 for (int i = 0; i < word.length(); i++) {

 String reduced = word.substring(0, i) +

 word.substring(i + 1);

 findWords(reduced, d, result);

 }

 }

 }

// Method is O(N!)

14 points, Criteria:

 Base case, empty String, do nothing. Can be in middle of loop. (Lose if check dictionary and / or
resulting list for empty String) 1 point

 recursive case, check if current word in dictionary, 1 point

 recursive case, if word IS in dictionary, check that current word not already in result, 1 point

 recursive case, add new words to result (at end), 1 point

 recursive case, loop for length of String. (Can handle what appear as special cases elsewhere.), 2 points

 recursive case, create some reductions of current word (this is the partial credit part), 1 point

 recursive case, correctly create all reductions of current word, 2 points

 recursive case, correct recursive call (lose if infinite recursion, for example by sending in word
unchanged or multiple, unnecessary calls. Lose if early return), 4 points

 Statement of order, must be O(N!), 1 point

Other:

 creating any Objects besides Strings, -3

 use of charAt (disallowed), -2

 checking present in result list with anything other than contains method, -3

 attempting to return anything at end of method (void method), -2

 output to System.out, -2

 adding a helper, -2

