
 

                   CS 314 – Final – Spring 2013  1 

    Points off    1           2             3             4                 5              6               Total off      Net Score 

         

 

CS 314 – Final – Spring 2013 
 

Your Name____________________________________ 

 

Your UTEID __________________________________  

 

Instructions:  
1. There are 6 questions on this test. The test is worth 80 points. Scores will be scaled to 300 for grade center. 

2. You have 3 hours to complete the test. 

3. You may not use any electronic devices while taking the test. 

4. When writing a method, assume the preconditions of the method are met.  

5. When writing a method you may add helper methods if you wish. 

6. When answering coding questions, ensure you follow the restrictions of the question. 

7. Test proctors will not answer any questions. 

8. When you complete the test show the proctor your UTID, give them the test and any scratch paper, and 

please leave the room quietly. 

 

1. (1 points each, 20 points total) Short answer. Place you answers on the attached answer sheet.  

a. If a question contains a syntax error or other compile error, answer “Compile error”. 

b. If a question would result in a runtime error or exception answer “Runtime error”. 

c. If a question results in an infinite loop answer “Infinite loop”. 

d. Recall when asked for Big O your answer should be the most restrictive correct Big O 

function. For example Selection Sort has an average case Big O of O(N
2
), but per the 

formal definition of Big O it is correct to say Selection Sort also has a Big O of O(N
3
) or 

O(N
4
). I want the most restrictive, correct Big O function. (Closest without going under.) 

 

 

A. What is returned by the method call a(6)? 

 

public int a(int x) { 

 if(x <= 3) 

  return x * 2; 

 else 

  return x / 2 + a(x - 1) + a(x - 1); 

} 

 

 

  



 

                   CS 314 – Final – Spring 2013  2 

B. What is the order (Big O) of method b? N = data.length 

 
public int b(int[] data) { 

 int total = 0; 

 for(int i = 0; i < data.length; i++) { 

   

  for(int j = data.length - 1; j > 0; j /= 2) 

   if(data[j] == data[i]) 

    total += data[i]; 

   

  for(int j = data.length - 1; j >= 0; j -= 2) 

   if(data[j] == data[i] / 2) 

    total += data[j]; 

 } 

 return total; 

} 

 

 

C. What is the worst case order (Big O) of method search? N = list.size().  

 list is a Java LinkedList. 

 
public int search(LinkedList<Integer> list, int tgt) { 

 int low = 0; 

 int high = list.size() - 1; 

 while(low <= high) { 

   int mid = (low + high) / 2; 

  if(list.get(mid) == tgt) 

   return mid; 

  else if(list.get(mid) < tgt) 

   low = mid + 1; 

  else 

   high = mid - 1; 

 } 

 return -1; 

} 

 

 

D. What is the order (Big O) of method d? N = n. The method uses the Java TreeSet class. 
 

public TreeSet<Integer> d(int n) { 

 TreeSet<Integer> result = new TreeSet<Integer>(); 

 final int LIMIT = n; 

 for(int i = 0; i < LIMIT; i++) // original said i, corrected 

  result.add(i); 

 return result; 

} 

 

 
 



 

                   CS 314 – Final – Spring 2013  3 

E. What is the order (Big O) of method e? N = n.  

The method uses the BinarySearchTree class from lecture and assignment 10.  

Assume the add method uses the iterative algorithm to add, not the recursive algorithm. 
 

public BinarySearchTree<Integer> e(int n) { 

 BinarySearchTree <Integer> result = new BinarySearchTree <Integer>(); 

 final int LIMIT = n; 

 for(int i = 0; i < LIMIT; i++)  

  result.add(i); 

 return result; 

} 

 

 

F. The following values are inserted in the order shown to a binary search tree using the traditional, 

naïve insertion algorithm. Draw the resulting tree. 

 
 7, 0, -1, 12, 7, 0, 5, 9 

 

 

G. The following values are inserted in the order shown to a min heap using the algorithm 

demonstrated in class. Draw the resulting tree. 

 
 7, 0, 12, 0, 7, 20 

 

 

H. What is the worst case order (Big O) of method h?  

 N = map.size() and M = data.length.   map is a Java HashMap. 

 
public int h(HashMap<Integer, Integer> map, int[] data) { 

 int result = 0; 

 

 for(int i = 0; i < data.length; i++) { 

  int temp = data[i]; 

  if(map.containsKey(temp)) 

   result += map.get(temp); 

 } 

 return result; 

} 

  

 

I. Given the following timing data for the SmoothSort algorithm for sorting N distinct values in 

random order, what is the most likely average case order (big O) of the SmoothSort algorithm? 

 

 Num values  Time     

 1,000,000  5 seconds 

 2,000,000  10.5 seconds 

 4,000,000  22 seconds 

 8,000,000  46 seconds 

 

 



 

                   CS 314 – Final – Spring 2013  4 

 

 
J. What is the result of an in order traversal of the binary tree shown above? 
 

 

K. What is the result of a pre order traversal of the binary tree shown above? 

 

 

L.  Consider the following tree. It does not meet the requirements of a max heap. Why it is not a max 

heap? Be brief. 

 

 
 
  

 

M. Suppose you want to encode 25 distinct characters names using a fixed length encoding scheme.  

What is the minimum number of bits per character required to have a unique code for each character? 

 

    

  

    

X 

Y Q 

Z 

P K 

  T 

 

  
  

    

  

9 

9 5 

3 

-2 

2   4 



 

                   CS 314 – Final – Spring 2013  5 

N.  Given the following Huffman code tree, what does the given bit stream decode to? 

 

 
 

Given bit stream (spaces added for clarity):  0 0 0 1 1 0 0 1 0 0 1 1 

 
  

O. Consider the following class. 

 
 public class YetAnotherDataStructure<E> { 

 

  // creates an empty YetAnotherDataStructure 

  public YetAnotherDataStructure() 

 

  public Iterator<E> iterator()  

 

  // other methods and instance variables not shown 

 } 

 

 

Why doesn't  the following code compile? Be brief. 

 
 YetAnotherDataStructure<String> yads; 

 yads = new YetAnotherDataStructure<String>(); 

 for(String str : yads) 

  System.out.println(str); 

  

 

    

    

    

 

  

  

M 
 B 

S 

    

E 

  L 



 

                   CS 314 – Final – Spring 2013  6 

P. Consider the following adjacency matrix for a directed graph.  

 

 A weighted edge exists from the vertex at the start of a row to the vertex at the top of a column if 

the value in the cell is greater than 0.  

 

 The cost of the edge is the integer value in the cell.  

 

 If a cell contains a 0 then no edge exists between the vertex at the start of a row and the vertex at 

the top of a column.  

  

 Draw the resulting graph on the answer sheet. 

 

 A B C D E F 

A 0 0 10 2 0 3 

B 0 0 10 0 1 0 

C 0 0 0 0 0 0 

D 0 1 0 0 5 0 

E 9 0 0 0 0 0 

F 0 0 0 0 5 0 
 

 

Q.  Given the graph from part P, what is the cost of the lowest cost path (shortest, weighted path) from 

vertex A to vertex E? 

 

 

R Is the graph from part P a directed, acyclical graph? (Yes or No) 

 

 

S. Of the four sorting algorithms we studied in class (Selection, Insertion, Quick, and Merge) which 

were stable? 

 

 

T. Given an array of 1,000,000 distinct objects you are going to perform 100,000 searches, one at a 

time, using the linear search algorithm. Each element you are searching for is present in the array.  

 

 What is the expected, total number of time the equals method will be called when performing 

the 100,000 linear searches? 

 

Give an actual number. Do not use Big O notation.  

 

 

 

 

 



 

                   CS 314 – Final – Spring 2013  7 

2. (ArrayLists and Sets - 12 points) Complete a constructor for the UnsortedSet class that accepts an 

ArrayList as a parameter and creates a new UnsortedSet. The original ArrayList may have duplicate 

values. Your constructor must ensure the con instance variable does not contain any duplicates. 

 

The only methods you may use from the ArrayList class are: 

 
public E get(int pos) 

public int size() 

public E remove(int pos) - remove value at given position 

 

You may not use any other methods or constructors from the ArrayList class including iterators or the 

for-each loop. 

 

The only other method you may use is the Object equals method. You may not use any other classes or 

methods including native arrays or other methods from the UnsortedSet class. Your solution shall be as 

efficient as possible given the constraints of the question. 

 
public class UnsortedSet<E> { 

 

  private ArrayList<E> con; // contains elements of this UnsortedSet 

 

  // pre: init != null, no elements of init == null 

  public UnsortedSet(ArrayList<E> init) { 

      con = new ArrayList(init); // adds all elements in init to con 

 

    

  



 

                   CS 314 – Final – Spring 2013  8 

3. (Linked Lists - 12 points) Complete an instance method, removePairs, for a LinkedList class 

that stores integers. The method removes consecutive pairs of elements that equal a target int. 

 

 You may not use any other methods in the LinkedList class unless you implement them yourself as 

a part of this question. 

 Your solution must be O(1) space, meaning no matter how many elements are in the LinkedList, 

your solution always uses the same amount of space. In other words you can't use an auxiliary array or 

List. Do not use recursion in your solution. 

 The LinkedList class uses doubly linked nodes. 

 The list uses a dummy, header node. The next reference in the header node always refers to the second 

node in the list (unless the list is empty, in which case it refers to the header node) and the previous 

reference always refers to the last node in the list (unless the list is empty in which case it refers to the 

header node.) 

 The list is circular. The last node 's next reference refers to the header node. 

 You may use the nested Node class. You may not use any other Java classes. 

 Your method shall be as efficient as possible give the constraints of the question. 

 

The structure of the internal storage container for an empty LinkedList is shown below, on the left. 

(Arrows indicate the references stored by variables.) 

 

The structure of the internal storarage container for a list that contains the values [5, 7, 5] is shown 

above on the right:  

 

The method removePairs removes consecutive pairs of ints (and the nodes that contain them) that equal 

some target value from the linked structure of nodes. 
 

For example if the initial list is [2, 3, 3, 4, 6, 7] and the target is 6 the resulting list is [6, 7]. 

 

Initially the 3, 3 pair is removed. This changes the list to [2, 4, 6, 7]. The 2 and 4 are now consecutive 

elements and equal the target 6, so they must be removed. 

 
Other examples: 
[1, 1, 1, 1, 1, 1].removePairs(2) -> [] 

[1, 2, 0, 1].removePairs(2) -> [] 

[1, 1, 1, 1, 1, 1].removePairs(3) -> [1, 1, 1, 1, 1, 1]. 

[].removePairs(2) -> [] 

[1, 2, 2, 2, 1].removePairs(2) -> [1, 2, 2, 2, 1] 

[3, 3, 3, 3, 3].removePairs(6) -> [3] 

 



 

                   CS 314 – Final – Spring 2013  9 

public class LinkedList { 

 private Node head; 

 private int size; 

 

 // recall outer class can access private fields in nested class 

 private static class Node { 

  private Node prev; 

  private int data; 

  private Node next; 

 } 

 

 // pre: none 

 // post: no consecutive pairs of elements equal tgt and  

 // size has been adjusted correctly 

 public void removePairs(int tgt) { 

 

  

 

 



 

                   CS 314 – Final – Spring 2013  10 

4. (Hashtables - 12 points) Write the remove method for a hash table that uses open address hashing. In 

open address hashing each element in the array holds a reference to an actual object, null, or a reference 

to the EMPTY object if the element in the array stored an actual object at one point, but that object has 

subsequently been removed. Elements that refer to EMPTY could be used to store new values. 

 

The hash table uses linear probing. Recall when adding or removing an element, linear probing moves 

down one spot at a time looking for an open spot (null or EMPTY) when adding or the target element 

when removing. The probe wraps around to the front of the array if necessary. 

 

Considering the following example: Assume "E"'s hash code mod 8 (length of the array) is 3. When "E" 

was added to the hash table, there were already values at indices 3 and 4. The value at index 4 was 

subsequently removed. The second diagram shows the hash table after "E" has been removed. 

 
Complete the remove method for the HashTable class on the next page. Recall the hashCode method 

from the object class, which returns the hash code for an object. You may not use any other methods or classes 

other than the Object hashCode and equals methods and the Math.abs method. 

 

Your method shall be as efficient as possible give the constraints of the question. 
  

B A E 

EMPTY 

0        1               2                 3  4         5   6 7 

 

B A 

EMPTY 



 

                   CS 314 – Final – Spring 2013  11 

public class HashTable<E> { 

 

 private static final Object EMPTY = new Object(); 

 

 private int size; // number of elements in this HashTable 

 private E[] con; // internal container 

 

*/ pre: target != null 

 post: target removed from this HashTable if it was present. 

 Returns true if this HashTable changed as a result of this 

 method call, false otherwise. Size updated properly. */ 

 public boolean remove(E target) { 



 

                   CS 314 – Final – Spring 2013  12 

5. (Red Black Trees - 12 points) This question has two parts.  

Recall the path rule for a red black tree states ALL paths from the root node to the null children in the tree 

MUST contain the same number of BLACK nodes. 

 

You may not use any other classes or methods except the RBNode class.  

Your solutions shall be as efficient as possible given the constraints of the question. 
 

Part A. 5 points. Complete a method that determines the number of black nodes in the path from the root 

of the tree to the node that contains the minimum value in the tree. Count the root and the node that 

contains the min if they are black. 

 
public class RedBlackTree<E extends Comparable<E>> { 

 

 private RBNode<E> root; // if size == 0, root == null 

 private int size; 

 

 // recall outer class can access private fields in nested class 

 private static class RBNode<E> { 

     

  private E data; 

  

  // true if node is black, false if it is red 

  private boolean isBlackNode;  

 

  private RBNode<E> left, right; 

 } 

 

 // Complete the following method.  

 // returns the number of black nodes in the path from the  

 // root node to the node in the tree that contains the min 

 private int blackNodesInRootToMinPath() { 

  



 

                   CS 314 – Final – Spring 2013  13 

Part B - 7 points. Complete an instance method for the RedBlackTree class that determines if the 

path rule is met.  

 

 Call the blackNodesInRootToMinPath once. 

 You may not use any other classes or methods except the RBNode class and the 

blackNodesInRootToMinPath.  

 Your solutions shall be as efficient as possible given the constraints of the question. 

 Hint: You should add a helper method. 

// complete the following instance method for the RedBlackTree class. 

private boolean pathRuleMet() { 

 

  



 

                   CS 314 – Final – Spring 2013  14 

6. (Graphs - 12 points) Implement an instance method for a Graph class that determines if the Graph 

contains a Hamiltonian Path.  

 

A Hamilton Path is a path through a graph where every vertex is visited exactly once.  

Note: It is not necessary to visit every edge in the graph. The start and end vertices are different. 

 

Consider the following Hamiltonian Paths. Used edges are solid and unused edges are dashed. 

                
 

 

Recall the Graph class: 
public class Graph { 

 

    private Map<String, Vertex> vertices; 

 

    private void clearAll() // calls reset on all Vertex objects in vertices 

  

    private static class Vertex { 

         

        private String name; 

        private List<Edge> adjacent; 

        private int scratch; 

        private double distance; 

 

        public void reset() { 

            distance = INFINITY; 

            prev = null; 

            scratch = 0; 

        } 

    } 

 

    private static class Edge { 

        private Vertex dest; 

        private double cost; 

    } 

  



 

                   CS 314 – Final – Spring 2013  15 

You may use the Java Map, List, and Iterator methods (including for-each loops)  in addition 

to the Edge and Vertex classes. Do not use any other methods from the Graph class or Vertex 

class unless you implement them yourself. 

 

Do not use any auxiliary data structures other than iterators.  

 
public boolean containsHamiltonianPath() { 

 clearAll(); 

 for(String name : vertices.keySet()) 

  if(helper(name, 0)) 

   return true; 

 return false; 

} 

 

private boolean helper(String currentVertex, int verticesVisited) { 

 // complete this method 

 

 

 

 

 
 

  



 

                   CS 314 – Final – Spring 2013  16 

Question 1 Answer Sheet. Name________________________________   UTEID ___________________

 

 

A.  ___________________________________ 

 

 

B. ___________________________________ 

 

 

C. ___________________________________ 

 

 

D. ___________________________________ 

 

 

E. ___________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

F. ___________________________________ 

 

       

 

 

 

 

 

 

 

 

 

 

 

G.  ___________________________________ 

   

 

H. ___________________________________ 

 

 

I. ___________________________________ 

J.   __________________________________ 

 

 

K.  ___________________________________ 

 

 

L.   ___________________________________ 

 

 

M.  ___________________________________ 

 

 

N.   ___________________________________ 

 

 

O.  ___________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P. ___________________________________ 

 

 

Q. ___________________________________ 

 

 

R. ___________________________________ 

 

 

S. ___________________________________ 

 

 

T. __________________________________ 


