
CS314 Exam 1 - Spring 2015 - Suggested Solution and Criteria 1

CS314 Spring 2015 Exam 1 Solution and Grading Criteria.

Grading acronyms:
AIOBE - Array Index out of Bounds Exception may occur
BOD - Benefit of the Doubt. Not certain code works, but, can't prove otherwise
Gacky or Gack - Code very hard to understand even though it works. (Solution is not elegant.)
GCE - Gross Conceptual Error. Did not answer the question asked or showed fundamental misunderstanding
LE - Logic error in code.
NAP - No answer provided. No answer given on test
NN - Not necessary. Code is unneeded. Generally no points off
NPE - Null Pointer Exception may occur
OBOE - Off by one error. Calculation is off by one.
RTQ - Read the question. Violated restrictions or made incorrect assumption.

1. Answer as shown or -1 unless question allows partial credit.
No points off for minor differences in spacing, capitalization, commas, and braces.

A. 3N2 + 6N + 4, + 1 on each coefficient and the constant

B. O(N2)

C. O(NlogN) // base 2 okay

D. O(N2) // even though starts at end what if we remove first half?

E. 2000 seconds

F. 10 seconds

G. O(N3) // when data double time goes up by factor of 8

H. [K, P, P, X] // missing commas or brackets okay

I. 5 8 -2 [8, 0, 2, 4] // missing commas or brackets okay

J. CC CC A C

K. M 11

L. 1. valid

 2. invalid // LabClass not a sub class of CrossListed

M. 1. invalid // cannot instantiate interface types

 2. invalid // AcademicClass not a sub class of CrossListed

N. I 21

O. GOV60 // extra spaces okay

P. ECO 1 // calls getStudents() based on dynamic type

Q. true

R. false true

S. runtime error // ClassCastException or Exception okay

T. true C25 // extra spaces okay

CS314 Exam 1 - Spring 2015 - Suggested Solution and Criteria 2

2A. Comments. Meant to be an easy problem using ArrayLists.

Common problems:

 base decade does not play any role in the this solution

 not handling the stored 0 case (convert to 1001)

 minor logic errors

Suggested Solution:

 public int[] getBestAndWorst() {

 // assume at least one rank

 int min = ranks.get(0);

 if(min == 0)

 min = 1001;

 int max = min;

 for(int i = 1; i < ranks.size(); i++) {

 int rank = ranks.get(i);

 if(rank == 0)

 rank = 1001;

 if(rank < min)

 min = rank;

 if(rank > max)

 max = rank;

 }

 return new int[]{min, max};

 }

10 points , Criteria:

 initialize min and max correctly, okay for max = 0, min = 1001, // 1 point

o okay to use array of length 2 for this

 loop through array list correctly 3 points

 adjust 0 to 1001 correctly, 2 points

 check for new min and max correctly, 2 points

 create array of length 2 and place min rank (best) in first pos, max rank (worst) in second pos

 return result correctly 1,point (must be an array)

CS314 Exam 1 - Spring 2015 - Suggested Solution and Criteria 3

2B. Comments: Also meant to be an easy problem. One tricky item to make solution more efficient in most
cases.

Common problems:

 not using getRank to stop as soon as one rank out of range. (Calling get bestAndWorst does
unnecessary work in many cases.

 not accessing nameList correctly

Suggested Solution:

public ArrayList<NameRecord> getConstrained(NameRecord source) {

 int[] bestAndWorst = source.getBestAndWorst();

 int bestSource = bestAndWorst[0];

 int worstSource = bestAndWorst[1];

 ArrayList<NameRecord> result = new ArrayList<NameRecord>();

 for(int i = 0; i < nameList.size(); i++) {

 NameRecord nr = nameList.get(i);

 boolean inRange = true;

 int decade = 0;

 while(inRange && decade < NUM_DECADES) {

 int rank = nr.getRank(decade);

 if(rank == 0)

 rank = 1001;

 inRange = bestSource< rank && rank < worstSource;

 decade++;

 }

 if(inRange)

 result.add(nr);

 }

 return result;

}

10 points , Criteria:

 get minMax for source, 1 point

 create result, 1 point

 loop though nameList, 1 point

 check current rank not outside range correctly, 5 points (-1 if call method)

 if constrained add to result, 1 point

 return correct result, 1 point

CS314 Exam 1 - Spring 2015 - Suggested Solution and Criteria 4

3. Comments: This was a tough problem. There were very few methods in the GenericList class you were allowed to use
and you had to keep track of three different GenericLists

Common problems:

 going through entire container array instead of active (size) portion

 assuming GenericList was Iterable (given header did not implement Iterable)

 assuming add, get, and size methods available

 ineffecient solutions that did not stop as soon as watch found

 using == instead of .equals

 not ensuring enough capacity in result.conatainer

 not updating result.size correctly

 adding too many items. Often occurred when add was inside inner loop

 no inner loop, in correct logic

 confusing GenericLists for arrays and vice versa

public GenericList<E> inOtherListOnly(GenericList<E> other) {

 GenericList<E> result = new GenericList<E>();

 result.container = getArray(other.size);

 for(int i = 0; i < other.size; i++) {

 E current = other.container[i];

 int indexThis = 0;

 boolean distinct = true;

 while(distinct && indexThis < this.size) {

 distinct = !current.equals(this.container[indexThis]);

 indexThis++;

 }

 if(distinct) {

 result.container[result.size] = current;

 result.size++;

 }

 }

 return result;

}

20 points, Criteria:

 create result: 1

 make resulting container large enough, 2

 loop through correct elements of other, 2

 check current from other not in this.container, 3

 equals called correctly, 3

 if not in this.container add to result correctly, 3

 does not confuse list with array and vice versa, 3

 update result.size correctly, 2

 return correct result, 1

Other deductions:

 iterable: -5

 add method: -5

 length of array not size: 3

 add too many: -4

CS314 Exam 1 - Spring 2015 - Suggested Solution and Criteria 5

4. Comments: A tough problem. Lots of abstraction going on. Had to keep track of current location in the outer
container.

Common problems:

 slow check in hasNext() instead of updating current position

 not decrementing outer bag size when remove

 using size of outer Bag instead of length of array in hasNext check. (index vs. number of items returned.)

 not searching for next non null in array

Suggested Solution:
 private class BagIterator implements Iterator<E> {

 private int numToReturn;

 private int index;

 private boolean removeOk;

 private BagIterator() {

 numToReturn = size;

 }

 public boolean hasNext() {

 return numToReturn > 0;

 }

 public E next() {

 if(!hasNext()) throw new NoSuchElementException();

 // find the next spot;

 while(container[index] == null) {

 index++;

 }

 removeOk = true;

 numToReturn--;

 E result = container[index];

 index++; // move past current item;

 return result;

 }

 public void remove() {

 if(!removeOk) throw new IllegalStateException();

 removeOk = false;

 container[index - 1] = null; // remove previous item

 size--;

 }

 }

15 points, Criteria:

• instance var for position, 2

• instance var for removeOK, 1

• constructor if necessary, 1

• hasNext() correct, 3

• next() correct, 4

• remove(), 3 (must be O(1) or -1), decrements size

• one of hasNext() and next() O(N), other O(1), 1

CS314 Exam 1 - Spring 2015 - Suggested Solution and Criteria 6

