
CS314 Exam 2 - Spring 2015 - Suggested Solution and Criteria 1

CS314 Spring 2015 Exam 2 Solution and Grading Criteria.
Grading acronyms:
AIOBE - Array Index out of Bounds Exception may occur
BOD - Benefit of the Doubt. Not certain code works, but, can't prove otherwise
Gacky or Gack - Code very hard to understand even though it works. (Solution is not elegant.)
GCE - Gross Conceptual Error. Did not answer the question asked or showed fundamental misunderstanding
LE - Logic error in code.
NAP - No answer provided. No answer given on test
NN - Not necessary. Code is unneeded. Generally no points off
NPE - Null Pointer Exception may occur
OBOE - Off by one error. Calculation is off by one.
RTQ - Read the question. Violated restrictions or made incorrect assumption.

1. Answer as shown or -1 unless question allows partial credit.
No points off for minor differences in spacing, capitalization, commas, and braces .

A. 15

B. GIU_A!

C. 190

D. Compiler error OR Syntax error

E. O(N2)

F. O(N) // linked list remove with iterator O(1)

G. O(N2) // remove for ArrayList O(N) even with iterator

H. BST for S.

I. 52.5 or 105 / 2 seconds (no logs in answer)

J. Insertion sort

K. 320 seconds

L. -17

M. (3 + 2) * (17 - 4)

N. 5 10 5 3 8 5 OR Compile Error

O. r s j

P. A B D G H C E I F

Q. B G D H A E I C F

R. G H D B I E F C A

S. See above next to node drawing on H

T. 2000 seconds

CS314 Exam 2 - Spring 2015 - Suggested Solution and Criteria 2

2. Comments. A simple toy problem using Stacks and Queues

Common problems:

 not dealing with first element. Topping an empty stack generally causes an exception.
 not handling the case of an empty queue

 using == instead of .equals

Suggested Solution:

 public static <E> void removeConsecutiveDuplicates(Queue<E> q) {

 Stack<E> st = new Stack<E>();

 while(!q.isEmpty()) {

 E element = q.dequeue();

 if(st.isEmpty() || !element.equals(st.top())) {

 st.push(element);

 }

 }

 while(!st.isEmpty())

 q.enqueue(st.pop());

 }

20 points , Criteria:

 create Stack, 2 points

 while loop for queue, 5 points

 push element from queue only if Stack empty or top element does not match, 5 points

 while loop for stack, 5 points

 enqueue and pop correctly, 3 points

CS314 Exam 2 - Spring 2015 - Suggested Solution and Criteria 3

3. Comments: A decent LinkedList problem. Not too easy, not too hard. Dealing with consecutive elements
was the real trick.

Common problems:

 comparing nodes (which are not Comparable) instead of the data in the nodes

 Null Pointer Exception on the last node.
 not advancing through the list

 not dealing with empty list correctly

 Using O(N) space instead of O(1) space

 destroying the list
 O(N2) solution instead of O(N)

Suggested Solution:

 public boolean isSorted() {

 if(first == null)

 return true; // trivial case

 // 1 or more elements

 E previousData = first.getData();

 Node<E> temp = first.getNext();

 boolean sorted = true;

 while(sorted && temp != null) {

 E currentData = temp.getData();

 sorted = previousData.compareTo(currentData) <= 0;

 previousData = currentData;

 temp = temp.getNext();

 }

 return sorted;

 }

20 points , Criteria:

 handle case when list empty (okay for 1 element as well), 3 points

 temp node variable assigned value in first, 1 point

 loop until end of list correctly, 2 points

 correctly compare consecutive values, 4 points

 stop as soon as answer known, 3 points

 move through linked structure of nodes correctly, 6 points

 return correct result, 1 point

CS314 Exam 2 - Spring 2015 - Suggested Solution and Criteria 4

4. Comments: A lot of code to write for this. A lot of abstractions to deal with. Determining the number of problems
solved was just like the map example we did in class. A good problem because there were many different, viable
solutions.

Common problems:

 assuming map is Iterable
 assuming sets have a get based on position

 adding frequency to result instead of problem number

 O(N2) instead of O(N) where N is the total number of problems solved
 calling contains on map instead of containsKey

 accessing maps and sets like arrays

public static TreeSet<Integer> getMostSolverProblems(Map<String,

 Set<Integer>> solved) {

 HashMap<Integer, Integer> freqs = new HashMap<Integer, Integer> ();

 // determine frequency of problems solved

 for(String name : solved.keySet()) {

 for(int problem : solved.get(name)) {

 if(freqs.containsKey(problem)) {

 int prev = freqs.get(problem);

 freqs.put(problem, prev + 1);

 }

 else

 freqs.put(problem, 1);

 }

 }

 // find the problem solved the maximum number of times

 // (could track max in previous part as well)
 int max = Integer.MIN_VALUE;

 for(int problem : freqs.keySet()) {

 int numSolved = freqs.get(problem);

 if(numSolved > max)

 max = numSolved;

 }

 // add problems solved max number of times to result

 TreeSet<Integer> result = new TreeSet<Integer>();

 for(int problem : freqs.keySet()) {

 int numSolved = freqs.get(problem);

 if(numSolved == max)

 result.add(problem);

 }

 return result;

 }

20 points, Criteria:

 use HashMap<Integer, Integer> to correctly determine number of times each problem solved, 9
o includes obtaining key, obtaining value, using iterators or for-each loop correctly, getting and putting in

HashMap correctly

 determine which problem solved the most, 5
 add all problems solved the max number of times to result, 5

 return result, 1

CS314 Exam 2 - Spring 2015 - Suggested Solution and Criteria 5

5. Comments: A nifty recursive backtracking problem. For the most part students did well.

Common problems:

 stopping when path total greater than target (or target less than zero if subtracting node data from target)
Negative values lower in the tree may make it possible so find a path equal to the total. There was an example
like this in the question. Target of 3 = 5 + -2 = 3

 not handling case when target == 0 and tree is NOT empty (trivially true)

 not adding root to path total

 not checking base case on leaf nodes after adding there data to total
 destroying the tree

Suggested Solution:
 public boolean hasPath(int tgt) {

 if(tgt == 0)

 return true;

 else if(root == null)

 return false;

 return hasPathHelp(root, tgt, root.data);

 }

 private boolean hasPathHelp(IntNode n, int tgt, int pathTotal) {

 // base case, DONE! no more node's necessary

 if(pathTotal == tgt)

 return true;

 else {

 // try children in path

 for(IntNode child : n.children) {

 boolean solved = hasPathHelp(child, tgt,

 pathTotal + child.data);

 if(solved)

 return true;

 }

 // no good

 return false;

 }

 }

20 points, Criteria:

 kickoff method handles special cases if tree empty or target 0, 1

 kickoff calls helper, 1

 helper method created, 1

 helper adds current nodes value to total and correctly uses all nodes in path (or subtracts from goal), 3

 checks base case correctly, 4

 if not at base case, tries children, 4

 returns only if solved, 5 (not an early return on first result)

 if children don't work, returns false, 1

