
CS314 Final Exam - Spring 2015 - Suggested Solution and Criteria 1

CS314 Spring 2015 Final Solution and Grading Criteria.
Grading acronyms:
AIOBE - Array Index out of Bounds Exception may occur
BOD - Benefit of the Doubt. Not certain code works, but, can't prove otherwise
Gacky or Gack - Code very hard to understand even though it works. (Solution is not elegant.)
GCE - Gross Conceptual Error. Did not answer the question asked or showed fundamental misunderstanding
LE - Logic error in code.
NAP - No answer provided. No answer given on test
NN - Not necessary. Code is unneeded. Generally no points off
NPE - Null Pointer Exception may occur
OBOE - Off by one error. Calculation is off by one.
RTQ - Read the question. Violated restrictions or made incorrect assumption.

1. Answer as shown or -1 unless question allows partial credit.
No points off for minor differences in spacing, capitalization, commas, and braces.

A. 32 seconds

B. 50,000 seconds (52,428.8 accepted but not required!)

C. 7 13 0 42

D. 15

E. sparse

F. 180 250

G. M 180 M 150

H. [10, 20][10, 20]

I. 7 2 -3 5 6 9

J. O(N)

K. O(N2)

L. O(N2)

M. -3 2 5 6

N. 45 seconds

O. 21 seconds

P. 4 (Black) Q. 10

 / \ / \

 2(red) 6(red) 6 8

 / \ /

 2 6 4

Q. (Heap shown above and to the right)

R. Less time to complete because HashSet add is O(1) while TreeSet add

is O(logN). (if order not specified -1)

S. 0 1 1 0 1 0 0 0

T. 120

CS314 Final Exam - Spring 2015 - Suggested Solution and Criteria 2

2. Comments. A good linked list question. Similar to method from linked list assignment, but this was with a
singly linked list

Common problems:

 not handling case when list empty correctly

 not updating size instance variable

 poor efficiency

 not handling case when first must refer to different node (first node in range being removed)

Suggested Solution:

 public void removeRange(int start, int stop) {

 if(start < stop) {

 Node<E> tempBeforeStart = first;

 for(int i = 1; i < start; i++)

 tempBeforeStart = tempBeforeStart.getNext();

 Node<E> tempAtStop = tempBeforeStart;

 int numMovesForStop = stop - start;

 if(start != 0)

 numMovesForStop++;

 for(int i = 0; i < numMovesForStop; i++)

 tempAtStop = tempAtStop.getNext();

 if(start == 0)

 first = tempAtStop;

 else

 tempBeforeStart.setNext(tempAtStop);

 size -= (stop - start);

 }

 // else start == stop, nothing to do

 }

20 points , Criteria:

 do nothing when start == stop, 1 point

 get node before start position, must move correctly, 5 points

 get node at stop position, must move correctly, 5 points

 handle case when start is 0, removing first node, moving one less time, 3 points

 correctly change next reference of node before start position (general case), 3 points

 update size correctly, 3 points

Other deductions:

-2 not handling empty case correctly
-1 double traversal

CS314 Final Exam - Spring 2015 - Suggested Solution and Criteria 3

3. Comments: A very interesting problem. Not much code required, but many students failed to check all the
nodes of each subtree. Solutions expected to be O(N2) given the restrictions.

Common problems:

 not using return values from methods

 not checking all elements in subtree for repeat of root of subtree (in a helper method)

 not handling empty tree correctly

 not checking roots of ALL subtrees

 solution immediately fails because root compared against itself

Suggested Solution:

 public boolean rootsNotInSubtrees() {

 return rootsNotInSubtree(root);

 }

 private boolean rootsNotInSubtree(BinaryNode<Integer> n) {

 if(n == null)

 return true;

 else

 return valueNotInSubtree(n.getData(), n.getLeft())

 && valueNotInSubtree(n.getData(), n.getRight())

 && rootsNotInSubtree(n.getLeft())

 && rootsNotInSubtree(n.getRight());

 }

 private boolean valueNotInSubtree(Integer data, BinaryNode<Integer> n)

{

 if(n == null)

 return true;

 else if(data == n.getData())

 return false;

 else

 return valueNotInSubtree(data, n.getLeft())

 && valueNotInSubtree(data, n.getRight());

 }

20 points , Criteria:

 kickoff recursion is given method, 1 point

 return correct answer, 1 point

 create method that checks roots of ALL subtrees and calls second helper to ensure root of subtree not

repeated in any descendant node of that subtree, 9 points (partial credit possible)

 create method that checks subtree to ensure a give value is not present, 9 points

other:

not using get methods: -1

CS314 Final Exam - Spring 2015 - Suggested Solution and Criteria 4

4A. Comments: Solution was VERY simply even though it was used recursive backtracking

Common problems:

 not accessing current.adjacent correctly

 private void addConnectedVertices(Set<Vertex> verts, Vertex current) {

 if(!verts.contains(current)) {

 verts.add(current);

 for(Edge e : current.adjacent)

 addConnectedVertices(verts, e.dest);

 }

 }

10 points, Criteria:

 base case, when vertex already present, do nothing, 2 points

 if vertex not present, added to set, 2 points

 loop through edges, 3 points

 make recursive call with destination of edge correctly, 3 points

CS314 Final Exam - Spring 2015 - Suggested Solution and Criteria 5

4B. Comments: Again, fairly simple problem. The real difficulty was understanding the abstraction of the graph, but if
you completed the graph assignment, that was easy.

Common problems:

 assuming scratch variables in vertices set to a given value at the start. Okay to use scratch, but had to write code
to ensure scratch was set to desired value

 Creating multiple sets. Restriction was to create a single set.

 Many students had a logic error where the method simply counted the number of vertices.

 public int getNumSubGraphs() {

 Set<Vertex> verts = new HashSet<Vertex>();

 int numSubgraphs = 0;

 for(Vertex v : vertices.values()) {

 if(!verts.contains(v)) {

 numSubgraphs++;

 addConnectedVertices(verts, v);

 }

 }

 assert (verts.size() == vertices.size()); // NN

 return numSubgraphs;

 }

10 points, Criteria:

 create single HashSet, 1 point

 correctly count number of subgraphs with local variable, 2 points

 loop through all keys or values, 2 points

 correct check for vertex not in set, incrementing number of subgraphs, and making call to recursive helper,
4 points

 return correct value, 1 point

CS314 Final Exam - Spring 2015 - Suggested Solution and Criteria 6

5. Comments: A good problem dealing with a new data structure. Should have been easy if you came to class the dat we
covered heaps.

Common problems:

 not stopping on correct element (deepest in tree)

 not stopping bubble up of new element when it is the root. (A lot of off by one errors as well)

 not starting from the back of the heap to try and find the deepest the fastest

 changing multiple instances of elements instead of just the deepest.

Suggested Solution:

public void decreaseKey(int elements, int amount) {

 int pos = size;

 while(pos > 0 && con[pos] != elements)

 pos--;

 if(pos != 0) {

 con[pos] -= amount;

 int newValue = con[pos];

 while(pos > 1 && newValue < con[pos / 2]) {

 con[pos] = con[pos / 2];

 pos /= 2;

 }

 con[pos] = newValue;

 }

 }

20 points, Criteria:
 find correct key to alter, 6 points

 efficiency of finding key, 2 points

 alter key correctly, 2 points

 move key up as necessary, 4 points

 stopping condition for root of heap correct, 3 points (-2 for oboe)

 stopping condition for parent less than or equal to new value correct, 3 points

