CS314 Spring 2015 Final Solution and Grading Criteria.

Grading acronymes:

AIOBE - Array Index out of Bounds Exception may occur

BOD - Benefit of the Doubt. Not certain code works, but, can't prove otherwise

Gacky or Gack - Code very hard to understand even though it works. (Solution is not elegant.)
GCE - Gross Conceptual Error. Did not answer the question asked or showed fundamental misunderstanding
LE - Logic error in code.

NAP - No answer provided. No answer given on test

NN - Not necessary. Code is unneeded. Generally no points off

NPE - Null Pointer Exception may occur

OBOE - Off by one error. Calculation is off by one.

RTQ - Read the question. Violated restrictions or made incorrect assumption.

1. Answer as shown or -1 unless question allows partial credit.
No points off for minor differences in spacing, capitalization, commas, and braces.

32 seconds
50,000 seconds (52,428.8 accepted but not required!)
7 13 0 42
15
sparse
180 250
M 180 M 150
[10, 20][10, 20]
72 -35609
O(N)
O(N?)
O(N?)
-3 256
45 seconds
21 seconds
4 (Black) Q. 10

/ 0\ / \

2 (red) 6(red) 6 8

H O 2 2 H " g H D Q "1 H 9 Q W >

Q. (Heap shown above and to the right)
R. Less time to complete because HashSet add is O(1l) while TreeSet add
is O(logN). (if order not specified -1)
01101000
T. 120
CS314 Final Exam - Spring 2015 - Suggested Solution and Criteria 1

0N



2. Comments. A good linked list question. Similar to method from linked list assignment, but this was with a
singly linked list

Common problems:
e not handling case when list empty correctly
e not updating size instance variable
e poor efficiency
e not handling case when first must refer to different node (first node in range being removed)

Suggested Solution:

public void removeRange (int start, int stop) {
if (start < stop) {
Node<E> tempBeforeStart = first;
for(int i = 1; 1 < start; i++)
tempBeforeStart = tempBeforeStart.getNext ()
Node<E> tempAtStop = tempBeforeStart;

int numMovesForStop = stop - start;
if (start != 0)
numMovesForStop++;
for(int i = 0; 1 < numMovesForStop; i++)
tempAtStop = tempAtStop.getNext (),
if (start == 0)
first = tempAtStop;
else
tempBeforeStart.setNext (tempAtStop) ;
size -= (stop - start);
}
// else start == stop, nothing to do

}

20 points, Criteria:
e do nothing when start == stop, 1 point
e get node before start position, must move correctly, 5 points
e get node at stop position, must move correctly, 5 points
e handle case when start is 0, removing first node, moving one less time, 3 points
e correctly change next reference of node before start position (general case), 3 points
e update size correctly, 3 points

Other deductions:

-2 not handling empty case correctly
-1 double traversa

CS314 Final Exam - Spring 2015 - Suggested Solution and Criteria 2



3. Comments: A very interesting problem. Not much code required, but many students failed to check all the
nodes of each subtree. Solutions expected to be O(N?) given the restrictions.

Common problems:
e not using return values from methods
e not checking all elements in subtree for repeat of root of subtree (in a helper method)
e not handling empty tree correctly
e not checking roots of ALL subtrees
e solution immediately fails because root compared against itself

Suggested Solution:

public boolean rootsNotInSubtrees () {
return rootsNotInSubtree (root);

}

private boolean rootsNotInSubtree (BinaryNode<Integer> n) {
if(n == null)
return true;
else
return valueNotInSubtree(n.getData(), n.getlLeft())
&& valueNotInSubtree (n.getData (), n.getRight())
&& rootsNotInSubtree (n.getlLeft ())
&& rootsNotInSubtree (n.getRight());
}

private boolean valueNotInSubtree (Integer data, BinaryNode<Integer> n)

if(n == null)
return true;
else if (data == n.getDatal())
return false;
else
return valueNotInSubtree(data, n.getLeft())
&& valueNotInSubtree (data, n.getRight());

}
20 points, Criteria:
e kickoff recursion is given method, 1 point
e return correct answer, 1 point
e create method that checks roots of ALL subtrees and calls second helper to ensure root of subtree not
repeated in any descendant node of that subtree, 9 points (partial credit possible)

e create method that checks subtree to ensure a give value is not present, 9 points
other:

not using get methods: -1

CS314 Final Exam - Spring 2015 - Suggested Solution and Criteria 3



4A. Comments: Solution was VERY simply even though it was used recursive backtracking

Common problems:
e not accessing current.adjacent correctly

private void addConnectedVertices (Set<Vertex> verts, Vertex current) {
if (!verts.contains (current)) {
verts.add (current) ;
for (Edge e : current.adjacent)
addConnectedVertices (verts, e.dest);

10 points, Criteria:
e base case, when vertex already present, do nothing, 2 points
e if vertex not present, added to set, 2 points
loop through edges, 3 points
make recursive call with destination of edge correctly, 3 points

CS314 Final Exam - Spring 2015 - Suggested Solution and Criteria 4



4B. Comments: Again, fairly simple problem. The real difficulty was understanding the abstraction of the graph, but if
you completed the graph assignment, that was easy.

Common problems:
e assuming scratch variables in vertices set to a given value at the start. Okay to use scratch, but had to write code
to ensure scratch was set to desired value
e Creating multiple sets. Restriction was to create a single set.
e Many students had a logic error where the method simply counted the number of vertices.

public int getNumSubGraphs () {
Set<Vertex> verts = new HashSet<Vertex> () ;
int numSubgraphs = 0;
for (Vertex v : vertices.values()) {
if (!verts.contains (v)) {
numSubgraphs++;
addConnectedVertices (verts, v);

}

assert (verts.size() == vertices.size()); // NN
return numSubgraphs;

10 points, Criteria:
e create single HashSet, 1 point
e correctly count number of subgraphs with local variable, 2 points
o loop through all keys or values, 2 points
e correct check for vertex not in set, incrementing number of subgraphs, and making call to recursive helper,
4 points
e return correct value, 1 point

CS314 Final Exam - Spring 2015 - Suggested Solution and Criteria 5



5. Comments: A good problem dealing with a new data structure. Should have been easy if you came to class the dat we

covered heaps.

Common problems:

not stopping on correct element (deepest in tree)

not stopping bubble up of new element when it is the root. (A lot of off by one errors as well)
not starting from the back of the heap to try and find the deepest the fastest

changing multiple instances of elements instead of just the deepest.

Suggested Solution:
public void decreaseKey(int elements, int amount) {

int pos = size;

while (pos > 0 && con[pos] != elements)
pos—-;

if (pos != 0) {
con[pos] -= amount;
int newValue = con/[pos];

while (pos > 1 && newValue < con[pos / 2]) {

con[pos] = conl[pos / 2];
pos /= 2;
}
con[pos] = newValue;
}
}

20 points, Criteria:

find correct key to alter, 6 points

efficiency of finding key, 2 points

alter key correctly, 2 points

move key up as necessary, 4 points

stopping condition for root of heap correct, 3 points (-2 for oboe)

stopping condition for parent less than or equal to new value correct, 3 points

CS314 Final Exam - Spring 2015 - Suggested Solution and Criteria



