
Topic 15

Implementing and Using Stacks
"stack n.

The set of things a person has to do in the future. "I haven't

done it yet because every time I pop my stack something new

gets pushed." If you are interrupted several times in the

middle of a conversation, "My stack overflowed" means

"I forget what we were talking about."

-The Hacker's Dictionary

Friedrich L. Bauer
German computer scientist

who proposed "stack method

of expression evaluation"

in 1955.

CS314

Stacks
2

Sharper Tools

Lists

Stacks

CS314

Stacks
3

Stacks
Access is allowed only at one point of the structure,

normally termed the top of the stack

– access to the most recently added item only

 Operations are limited:

– push (add item to stack)

– pop (remove top item from stack)

– top (get top item without removing it)

– isEmpty

Described as a "Last In First Out"

(LIFO) data structure

CS314

Stacks
4

Implementing a stack
need an underlying collection to hold the elements

of the stack

3 obvious choices?

– native array

– linked structure of nodes

– a list!!!

Adding a layer of abstraction.

A HUGE idea.

array implementation

linked list implementation

https://xkcd.com/2347/

https://xkcd.com/2347/
https://xkcd.com/2347/

CS314

Stacks
5

Uses of Stacks
The runtime stack used by a

process (running program) to

keep track of methods in

progress

Search problems

Undo, redo, back, forward

CS314

Stacks
6

Stack Operations
Assume a simple stack for integers.

Stack<Integer> s = new Stack<>();

s.push(12);

s.push(4);

s.push(s.top() + 2);

s.pop();

s.push(s.top());

//what are contents of stack?

CS314

Stacks
7

Clicker 1 - What is Output?
Stack<Integer> s = new Stack<>();

// put stuff in stack

for (int i = 0; i < 5; i++)

s.push(i);

// Print out contents of stack.

// Assume there is a size method.

for (int i = 0; i < s.size(); i++)

System.out.print(s.pop() + " ");

A 0 1 2 3 4 D 2 3 4

B 4 3 2 1 0 E No output due

C 4 3 2 to runtime error

CS314

Stacks
8

Corrected Version
Stack<Integer> s = new Stack<Integer>();

// put stuff in stack

for (int i = 0; i < 5; i++)

s.push(i);

// print out contents of stack

// while emptying it

final int LIMIT = s.size();

for (int i = 0; i < LIMIT; i++)

System.out.print(s.pop() + " ");

//or

// while (!s.isEmpty())

// System.out.println(s.pop());

CS314

Stacks
9

Stack Operations
Write a method to print out contents of stack

in reverse order.

Applications of Stacks

CS314

Stacks
11

Mathematical Calculations
What does 3 + 2 * 4 equal?

2 * 4 + 3? 3 * 2 + 4?

The precedence of operators affects the
order of operations.

A mathematical expression cannot simply be
evaluated left to right.

A challenge when evaluating a program.

Lexical analysis is the process of
interpreting a program.

What about 1 - 2 - 4 ^ 5 * 3 * 6 / 7 ^ 2 ^ 3

CS314

Stacks
12

Infix and Postfix Expressions
The way we are use to writing

expressions is known as infix
notation

Postfix expression does not

require any precedence rules

3 2 * 1 + is postfix of 3 * 2 + 1

evaluate the following postfix
expressions and write out a
corresponding infix expression:

2 3 2 4 * + * 1 2 3 4 ^ * +

1 2 - 3 2 ^ 3 * 6 / + 2 5 ^ 1 -

Clicker Question 2
What does the following postfix expression

evaluate to?

6 3 2 + *

A. 11

B. 18

C. 24

D. 30

E. 36

CS314

Stacks
13

CS314

Stacks
14

Evaluation of Postfix Expressions
Easy to do with a stack

given a proper postfix expression:

– get the next token

– if it is an operand push it onto the stack

– else if it is an operator

• pop the stack for the right hand operand

• pop the stack for the left hand operand

• apply the operator to the two operands

• push the result onto the stack

– when the expression has been exhausted the

result is the top (and only element) of the stack

CS314

Stacks
15

Infix to Postfix
Convert the following equations from infix to

postfix:

2 ^ 3 ^ 3 + 5 * 1

11 + 2 - 1 * 3 / 3 + 2 ^ 2 / 3

Problems:

Negative numbers?

parentheses in expression

CS314

Stacks
16

Infix to Postfix Conversion
Requires operator precedence parsing algorithm

– parse v. To determine the syntactic structure of a
sentence or other utterance

Operands: add to expression

Close parenthesis: pop stack symbols until an open
parenthesis appears

Operators:

Have an on stack and off stack precedence

Pop all stack symbols until a symbol of lower
precedence appears. Then push the operator

End of input: Pop all remaining stack symbols and
add to the expression

CS314

Stacks
17

Simple Example
Infix Expression: 3 + 2 * 4

PostFix Expression:

Operator Stack:

Precedence Table

Symbol Off Stack On Stack

Precedence Precedence

+ 1 1

- 1 1

* 2 2

/ 2 2

^ 10 9

(20 0

CS314

Stacks
18

Simple Example
Infix Expression: + 2 * 4

PostFix Expression: 3

Operator Stack:

Precedence Table

Symbol Off Stack On Stack

Precedence Precedence

+ 1 1

- 1 1

* 2 2

/ 2 2

^ 10 9

(20 0

CS314

Stacks
19

Simple Example
Infix Expression: 2 * 4

PostFix Expression: 3

Operator Stack: +

Precedence Table

Symbol Off Stack On Stack

Precedence Precedence

+ 1 1

- 1 1

* 2 2

/ 2 2

^ 10 9

(20 0

CS314

Stacks
20

Simple Example
Infix Expression: * 4

PostFix Expression: 3 2

Operator Stack: +

Precedence Table

Symbol Off Stack On Stack

Precedence Precedence

+ 1 1

- 1 1

* 2 2

/ 2 2

^ 10 9

(20 0

CS314

Stacks
21

Simple Example
Infix Expression: 4

PostFix Expression: 3 2

Operator Stack: + *

Precedence Table

Symbol Off Stack On Stack

Precedence Precedence

+ 1 1

- 1 1

* 2 2

/ 2 2

^ 10 9

(20 0

CS314

Stacks
22

Simple Example
Infix Expression:

PostFix Expression: 3 2 4

Operator Stack: + *

Precedence Table

Symbol Off Stack On Stack

Precedence Precedence

+ 1 1

- 1 1

* 2 2

/ 2 2

^ 10 9

(20 0

CS314

Stacks
23

Simple Example
Infix Expression:

PostFix Expression: 3 2 4 *

Operator Stack: +

Precedence Table

Symbol Off Stack On Stack

Precedence Precedence

+ 1 1

- 1 1

* 2 2

/ 2 2

^ 10 9

(20 0

CS314

Stacks
24

Simple Example
Infix Expression:

PostFix Expression: 3 2 4 * +

Operator Stack:

Precedence Table

Symbol Off Stack On Stack

Precedence Precedence

+ 1 1

- 1 1

* 2 2

/ 2 2

^ 10 9

(20 0

CS314

Stacks
25

Example
11 + 2 ^ 4 ^ 3 - ((4 + 5) * 6) ^ 2

Show algorithm in action on above equation

CS314

Stacks
26

Balanced Symbol Checking
In processing programs and working with

computer languages there are many

instances when symbols must be balanced

{ } , [] , ()

A stack is useful for checking symbol balance.

When a closing symbol is found it must match

the most recent opening symbol of the same

type.

Applicable to checking html and xml tags!

CS314

Stacks
27

Algorithm for Balanced

Symbol Checking
Make an empty stack

read symbols until end of file

– if the symbol is an opening symbol push it onto

the stack

– if it is a closing symbol do the following

• if the stack is empty report an error

• otherwise pop the stack. If the symbol popped does

not match the closing symbol report an error

At the end of the file if the stack is not empty

report an error

CS314

Stacks
28

Algorithm in practice
list[i] = 3 * (44 - method(foo(list[2 * (i + 1) + foo(

list[i - 1])) / 2 *) - list[method(list[0])];

Complications

– when is it not an error to have non matching symbols?

Processing a file

– Tokenization: the process of scanning an input stream.

Each independent chunk is a token.

Tokens may be made up of 1 or more characters

