"The bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some interesting theoretical problems."

- Don Knuth
Previous Sorts

- Insertion Sort and Selection Sort are both average case $O(N^2)$
- Today we will look at two faster sorting algorithms.
 - quicksort
 - mergesort
Properties of Sorting Algorithms

- In place?
 - Do we use another data structure or not?
 - Program stack *typically* not considered another data structure if only using $O(\log N)$ space

- Comparison?
 - Works by comparing the items to be sorted to each other?
 - *How could we not?*

- Stable?
 - Next slide!
Stable Sorting

- A property of sorts
- If a sort guarantees the relative order of equal items stays the same then it is a *stable sort*

- \([7_1, 6, 7_2, 5, 1, 2, 7_3, -5]\) original data
 - subscripts added for clarity
- \([-5, 1, 2, 5, 6, 7_1, 7_2, 7_3]\) sorted data
 - result of stable sort

Real world example:
- sort a table in [Wikipedia](https://en.wikipedia.org) by one criteria, then another
- sort by country, then by major wins
Quicksort

- Invented by C.A.R. (Tony) Hoare
- A divide and conquer approach that uses recursion

1. If the list has 0 or 1 elements it is sorted
2. otherwise, pick any element p in the list. This is called the **pivot** value
3. **Partition** the list minus the pivot into two sub lists according to values less than or greater than the pivot. (equal values go to either)
4. return the quicksort of the first list followed by the quicksort of the second list
Quicksort in Action

39 23 17 90 33 72 46 79 11 52 64 5 71
Pick middle element as pivot: 46
Partition list
23 17 5 33 39 11 46 79 72 52 64 90 71
quick sort the less than list
Pick middle element as pivot: 33
23 17 5 11 33 39
quicksort the less than list, pivot now 5
{}
5 23 17 11
quicksort the less than list, base case
quicksort the greater than list
Pick middle element as pivot: 17
and so on.....
Quicksort on Another Data Set

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>68</td>
<td>191</td>
<td>119</td>
<td>119</td>
<td>37</td>
<td>83</td>
<td>82</td>
<td>191</td>
<td>45</td>
<td>158</td>
<td>130</td>
<td>76</td>
<td>153</td>
<td>39</td>
<td>25</td>
</tr>
</tbody>
</table>

Big O of Quicksort?
private static void swapReferences(Object[] a, int index1, int index2) {
 Object tmp = a[index1];
 a[index1] = a[index2];
 a[index2] = tmp;
}

private void quicksort(Comparable[] data, int start, int stop) {
 if (start < stop) {
 int pivotIndex = (start + stop) / 2;

 // Place pivot at start position
 swapReferences(data, pivotIndex, start);
 Comparable pivot = data[start];

 // Begin partitioning
 int j = start;

 // from first to j are elements less than or equal to pivot
 // from j to i are elements greater than pivot
 // elements beyond i have not been checked yet
 for(int i = start + 1; i <= stop; i++) {
 // is current element less than or equal to pivot
 if (data[i].compareTo(pivot) <= 0) {
 // if so move it to the less than or equal portion
 j++;
 swapReferences(data, i, j);
 }
 }

 //restore pivot to correct spot
 swapReferences(data, start, j);
 quicksort(data, start, j - 1); // Sort small elements
 quicksort(data, j + 1, stop); // Sort large elements
 } // else start >= stop, 0 or 1 element, base case, do nothing
What are the best case and worst case Orders (Big O) for quicksort?

<table>
<thead>
<tr>
<th>Best</th>
<th>Worst</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. O(NlogN)</td>
<td>O(N^2)</td>
</tr>
<tr>
<td>B. O(N^2)</td>
<td>O(N^2)</td>
</tr>
<tr>
<td>C. O(N^2)</td>
<td>O(N!)</td>
</tr>
<tr>
<td>D. O(NlogN)</td>
<td>O(NlogN)</td>
</tr>
<tr>
<td>E. O(N)</td>
<td>O(NlogN)</td>
</tr>
</tbody>
</table>
Is quicksort always stable?
A. No
B. Yes
Merge Sort Algorithm

Don Knuth cites John von Neumann as the creator of this algorithm

1. If a list has 1 element or 0 elements it is sorted
2. If a list has more than 1 split into 2 separate lists
3. Perform this algorithm on each of those smaller lists
4. Take the 2 sorted lists and merge them together
Merge Sort

When implementing one temporary array is used instead of multiple temporary arrays.

Why?
/*
 * perform a merge sort on the elements of data
 * @param data data != null, all elements of data
 * are the same data type
 */

public static void mergeSort(Comparable[] data) {
 Comparable[] temp = new Comparable[data.length];
 sort(data, temp, 0, data.length - 1);
}

private static void sort(Comparable[] data, Comparable[] temp, int low, int high) {
 if (low < high) {
 int center = (low + high) / 2;
 sort(data, temp, low, center);
 sort(data, temp, center + 1, high);
 merge(data, temp, low, center + 1, high);
 }
}
private static void merge(Comparable[] data, Comparable[] temp,
 int leftPos, int rightPos, int rightEnd) {
 int leftEnd = rightPos - 1;
 int tempPos = leftPos;
 int numElements = rightEnd - leftPos + 1;
 //main loop
 while(leftPos <= leftEnd && rightPos <= rightEnd){
 if(data[leftPos].compareTo(data[rightPos]) <= 0) {
 temp[tempPos] = data[leftPos];
 leftPos++;
 }
 else{
 temp[tempPos] = data[rightPos];
 rightPos++;
 }
 tempPos++;
 }
 //copy rest of left half
 while(leftPos <= leftEnd){
 temp[tempPos] = data[leftPos];
 tempPos++;
 leftPos++;
 }
 //copy rest of right half
 while(rightPos <= rightEnd){
 temp[tempPos] = data[rightPos];
 tempPos++;
 rightPos++;
 }
 //Copy temp back into data
 for (int i = 0; i < numElements; i++, rightEnd--){
 data[rightEnd] = temp[rightEnd];
 }
What are the best case and worst case Orders (Big O) for mergesort?

Best Worst
A. O(N\log N) O(N^2)
B. O(N^2) O(N^2)
C. O(N^2) O(N!)
D. O(N\log N) O(N\log N)
E. O(N) O(N\log N)
Clicker 4

- Is mergesort always stable?
 A. No
 B. Yes
Clicker 5

You have 1,000,000 distinct items in random order that you will be searching. How many searches need to be performed before the data is changed to make it worthwhile to sort the data before searching?

A. ~40
B. ~100
C. ~500
D. ~2,000
E. ~500,000
Comparison of Various Sorts (2001)

<table>
<thead>
<tr>
<th>Num Items</th>
<th>Selection</th>
<th>Insertion</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.016</td>
<td>0.005</td>
<td>0 ??</td>
</tr>
<tr>
<td>2000</td>
<td>0.059</td>
<td>0.049</td>
<td>0.006</td>
</tr>
<tr>
<td>4000</td>
<td>0.271</td>
<td>0.175</td>
<td>0.005</td>
</tr>
<tr>
<td>8000</td>
<td>1.056</td>
<td>0.686</td>
<td>0 ??</td>
</tr>
<tr>
<td>16000</td>
<td>4.203</td>
<td>2.754</td>
<td>0.011</td>
</tr>
<tr>
<td>32000</td>
<td>16.852</td>
<td>11.039</td>
<td>0.045</td>
</tr>
<tr>
<td>64000</td>
<td>expected?</td>
<td>expected?</td>
<td>0.068</td>
</tr>
<tr>
<td>128000</td>
<td>expected?</td>
<td>expected?</td>
<td>0.158</td>
</tr>
<tr>
<td>256000</td>
<td>expected?</td>
<td>expected?</td>
<td>0.335</td>
</tr>
<tr>
<td>512000</td>
<td>expected?</td>
<td>expected?</td>
<td>0.722</td>
</tr>
<tr>
<td>1024000</td>
<td>expected?</td>
<td>expected?</td>
<td>1.550</td>
</tr>
</tbody>
</table>

times in seconds
Comparison of Various Sorts (2011)

<table>
<thead>
<tr>
<th>Num Items</th>
<th>Selection</th>
<th>Insertion</th>
<th>Quicksort</th>
<th>Merge</th>
<th>Arrays.sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.002</td>
<td>0.001</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2000</td>
<td>0.002</td>
<td>0.001</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4000</td>
<td>0.006</td>
<td>0.004</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8000</td>
<td>0.022</td>
<td>0.018</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16000</td>
<td>0.086</td>
<td>0.070</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>32000</td>
<td>0.341</td>
<td>0.280</td>
<td>0.004</td>
<td>0.005</td>
<td>0.003</td>
</tr>
<tr>
<td>64000</td>
<td>1.352</td>
<td>1.123</td>
<td>0.008</td>
<td>0.010</td>
<td>0.007</td>
</tr>
<tr>
<td>128000</td>
<td>5.394</td>
<td>4.499</td>
<td>0.017</td>
<td>0.022</td>
<td>0.015</td>
</tr>
<tr>
<td>256000</td>
<td>21.560</td>
<td>18.060</td>
<td>0.035</td>
<td>0.047</td>
<td>0.031</td>
</tr>
<tr>
<td>512000</td>
<td>86.083</td>
<td>72.303</td>
<td>0.072</td>
<td>0.099</td>
<td>0.066</td>
</tr>
<tr>
<td>1024000</td>
<td>???</td>
<td>???</td>
<td>0.152</td>
<td>0.206</td>
<td>0.138</td>
</tr>
<tr>
<td>2048000</td>
<td>0.317</td>
<td>0.434</td>
<td>0.287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4096000</td>
<td>0.663</td>
<td>0.911</td>
<td>0.601</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8192000</td>
<td>1.375</td>
<td>1.885</td>
<td>1.246</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Various Sorts (2020)

<table>
<thead>
<tr>
<th>Num Items</th>
<th>Selection</th>
<th>Insertion</th>
<th>Quicksort</th>
<th>Mergesort</th>
<th>Arrays.sort(int)</th>
<th>Arrays.sort(Integer)</th>
<th>Arrays.parallelSort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td><0.001</td>
<td><0.001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2,000</td>
<td>0.001</td>
<td><0.001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4,000</td>
<td>0.004</td>
<td>0.003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8,000</td>
<td>0.017</td>
<td>0.010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16,000</td>
<td>0.065</td>
<td>0.040</td>
<td>0.002</td>
<td>0.002</td>
<td>0.003</td>
<td>0.011</td>
<td>0.007</td>
</tr>
<tr>
<td>32,000</td>
<td>0.258</td>
<td>0.160</td>
<td>0.002</td>
<td>0.003</td>
<td>0.002</td>
<td>0.008</td>
<td>0.003</td>
</tr>
<tr>
<td>64,000</td>
<td>1.110</td>
<td>0.696</td>
<td>0.005</td>
<td>0.008</td>
<td>0.004</td>
<td>0.011</td>
<td>0.001</td>
</tr>
<tr>
<td>128,000</td>
<td>4.172</td>
<td>2.645</td>
<td>0.011</td>
<td>0.015</td>
<td>0.009</td>
<td>0.024</td>
<td>0.002</td>
</tr>
<tr>
<td>256,000</td>
<td>16.48</td>
<td>10.76</td>
<td>0.024</td>
<td>0.034</td>
<td>0.018</td>
<td>0.051</td>
<td>0.004</td>
</tr>
<tr>
<td>512,000</td>
<td>70.38</td>
<td>47.18</td>
<td>0.049</td>
<td>0.68</td>
<td>0.040</td>
<td>0.114</td>
<td>0.008</td>
</tr>
<tr>
<td>1,024,000</td>
<td>-</td>
<td>-</td>
<td>0.098</td>
<td>0.143</td>
<td>0.082</td>
<td>0.259</td>
<td>0.017</td>
</tr>
<tr>
<td>2,048,000</td>
<td>-</td>
<td>-</td>
<td>0.205</td>
<td>0.296</td>
<td>0.184</td>
<td>0.637</td>
<td>0.035</td>
</tr>
<tr>
<td>4,096,000</td>
<td>-</td>
<td>-</td>
<td>0.450</td>
<td>0.659</td>
<td>0.383</td>
<td>1.452</td>
<td>0.079</td>
</tr>
<tr>
<td>8,192,000</td>
<td>-</td>
<td>-</td>
<td>0.941</td>
<td>1.372</td>
<td>0.786</td>
<td>3.354</td>
<td>0.148</td>
</tr>
</tbody>
</table>
Concluding Thoughts

Language libraries often have sorting algorithms in them
- Java Arrays and Collections classes
- C++ Standard Template Library
- Python sort and sorted functions

Hybrid sorts
- when size of unsorted list or portion of array is small use insertion sort, otherwise use $O(N \log N)$ sort like Quicksort or Mergesort
Concluding Thoughts

- Sorts still being created!
- Timsort (2002)
 - created for python version 2.3
 - now used in Java version 7.0+
 - takes advantage of real world data
 - real world data is usually partially sorted, not totally random
- Library Sort (2006)
 - Like insertion sort,
 but leaves gaps for later elements