"Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities"

- Richard E. Bellman
Origins

- A method for solving complex problems by breaking them into smaller, easier, sub problems
- Term *Dynamic Programming* coined by mathematician Richard Bellman in early 1950s
 - employed by Rand Corporation
 - Rand had many, large military contracts
 - Secretary of Defense, Charles Wilson “against research, especially mathematical research”
 - how could any one oppose "dynamic"?
Dynamic Programming

- Break big problem up into smaller problems ...

- Sound familiar?

- Recursion?

 $N! = 1$ for $N == 0$

 $N! = N \times (N - 1)!$ for $N > 0$
Fibonacci Numbers

- 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 114, ...
- $F_1 = 1$
- $F_2 = 1$
- $F_N = F_{N-1} + F_{N-2}$

Recursive Solution?
Failing Spectacularly

- Naïve recursive method

```java
// pre: n > 0
// post: return the nth Fibonacci number
public int fib(int n) {
    if (n <= 2)
        return 1;
    else
        return fib(n - 1) + fib(n - 2);
}
```

- Clicker 1 - Order of this method?

A. O(1) B. O(log N) C. O(N) D. O(N^2) E. O(2^N)
<table>
<thead>
<tr>
<th>nth fibonacci number:</th>
<th>1</th>
<th>Time: 4.467E-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2th fibonacci number:</td>
<td>1</td>
<td>Time: 4.47E-7</td>
</tr>
<tr>
<td>3th fibonacci number:</td>
<td>2</td>
<td>Time: 4.46E-7</td>
</tr>
<tr>
<td>4th fibonacci number:</td>
<td>3</td>
<td>Time: 4.46E-7</td>
</tr>
<tr>
<td>5th fibonacci number:</td>
<td>5</td>
<td>Time: 4.47E-7</td>
</tr>
<tr>
<td>6th fibonacci number:</td>
<td>8</td>
<td>Time: 4.47E-7</td>
</tr>
<tr>
<td>7th fibonacci number:</td>
<td>13</td>
<td>Time: 1.34E-6</td>
</tr>
<tr>
<td>8th fibonacci number:</td>
<td>21</td>
<td>Time: 1.787E-6</td>
</tr>
<tr>
<td>9th fibonacci number:</td>
<td>34</td>
<td>Time: 2.233E-6</td>
</tr>
<tr>
<td>10th fibonacci number:</td>
<td>55</td>
<td>Time: 3.573E-6</td>
</tr>
<tr>
<td>11th fibonacci number:</td>
<td>89</td>
<td>Time: 1.2953E-5</td>
</tr>
<tr>
<td>12th fibonacci number:</td>
<td>144</td>
<td>Time: 8.934E-6</td>
</tr>
<tr>
<td>13th fibonacci number:</td>
<td>233</td>
<td>Time: 2.9033E-5</td>
</tr>
<tr>
<td>14th fibonacci number:</td>
<td>377</td>
<td>Time: 3.7966E-5</td>
</tr>
<tr>
<td>15th fibonacci number:</td>
<td>610</td>
<td>Time: 5.0919E-5</td>
</tr>
<tr>
<td>16th fibonacci number:</td>
<td>987</td>
<td>Time: 7.1464E-5</td>
</tr>
<tr>
<td>17th fibonacci number:</td>
<td>1597</td>
<td>Time: 1.08984E-4</td>
</tr>
</tbody>
</table>
Failing Spectacularly

36th fibonacci number: 14930352 - Time: 0.045372057
37th fibonacci number: 24157817 - Time: 0.071195386
38th fibonacci number: 39088169 - Time: 0.116922086
39th fibonacci number: 63245986 - Time: 0.186926245
40th fibonacci number: 102334155 - Time: 0.308602967
41th fibonacci number: 165580141 - Time: 0.498588795
42th fibonacci number: 267914296 - Time: 0.793824734
43th fibonacci number: 433494437 - Time: 1.323325593
44th fibonacci number: 701408733 - Time: 2.098209943
45th fibonacci number: 1134903170 - Time: 3.392917489
46th fibonacci number: 1836311903 - Time: 5.506675921
47th fibonacci number: -1323752223 - Time: 8.803592621
48th fibonacci number: 512559680 - Time: 14.295023778
49th fibonacci number: -811192543 - Time: 23.030062974
50th fibonacci number: -298632863 - Time: 37.217244704
51th fibonacci number: -1109825406 - Time: 60.224418869
How long to calculate the 70th Fibonacci Number with this method?

A. 37 seconds
B. 74 seconds
C. 740 seconds
D. 14,800 seconds
E. None of these
Aside - Overflow

- at 47th Fibonacci number overflows int
- Could use BigInteger class instead

```java
private static final BigInteger one = new BigInteger("1");

private static final BigInteger two = new BigInteger("2");

public static BigInteger fib(BigInteger n) {
    if (n.compareTo(two) <= 0)
        return one;
    else {
        BigInteger firstTerm = fib(n.subtract(two));
        BigInteger secondTerm = fib(n.subtract(one));
        return firstTerm.add(secondTerm);
    }
}
```
Aside - BigInteger

- Answers correct beyond 46th Fibonacci number
- Even slower, math on BigIntegers, object creation, and garbage collection

<table>
<thead>
<tr>
<th>Number</th>
<th>Number</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>37th</td>
<td>24157817</td>
<td>2.406739213</td>
</tr>
<tr>
<td>38th</td>
<td>39088169</td>
<td>3.680196724</td>
</tr>
<tr>
<td>39th</td>
<td>63245986</td>
<td>5.941275208</td>
</tr>
<tr>
<td>40th</td>
<td>102334155</td>
<td>9.63855468</td>
</tr>
<tr>
<td>41th</td>
<td>165580141</td>
<td>15.659745756</td>
</tr>
<tr>
<td>42th</td>
<td>267914296</td>
<td>25.404417949</td>
</tr>
<tr>
<td>43th</td>
<td>433494437</td>
<td>40.867030512</td>
</tr>
<tr>
<td>44th</td>
<td>701408733</td>
<td>66.391845965</td>
</tr>
<tr>
<td>45th</td>
<td>1134903170</td>
<td>106.964369924</td>
</tr>
<tr>
<td>46th</td>
<td>1836311903</td>
<td>178.981819822</td>
</tr>
<tr>
<td>47th</td>
<td>2971215073</td>
<td>287.052365326</td>
</tr>
</tbody>
</table>
Slow Fibonacci

- Why so slow?
- Algorithm keeps calculating the same value over and over
- When calculating the 40th Fibonacci number the algorithm calculates the 4th Fibonacci number \textbf{24,157,817} times!!!
Fast Fibonacci

- Instead of starting with the big problem and working down to the small problems...
- ... start with the small problem and work up to the big problem

```java
public static BigInteger fastFib(int n) {
    BigInteger smallTerm = one;
    BigInteger largeTerm = one;
    for (int i = 3; i <= n; i++) {
        BigInteger temp = largeTerm;
        largeTerm = largeTerm.add(smallTerm);
        smallTerm = temp;
    }
    return largeTerm;
}
```
<table>
<thead>
<tr>
<th>Fibonacci Number</th>
<th>Value</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1th</td>
<td>1</td>
<td>4.467E-6</td>
</tr>
<tr>
<td>2th</td>
<td>1</td>
<td>4.47E-7</td>
</tr>
<tr>
<td>3th</td>
<td>2</td>
<td>7.146E-6</td>
</tr>
<tr>
<td>4th</td>
<td>3</td>
<td>2.68E-6</td>
</tr>
<tr>
<td>5th</td>
<td>5</td>
<td>2.68E-6</td>
</tr>
<tr>
<td>6th</td>
<td>8</td>
<td>2.679E-6</td>
</tr>
<tr>
<td>7th</td>
<td>13</td>
<td>3.573E-6</td>
</tr>
<tr>
<td>8th</td>
<td>21</td>
<td>4.02E-6</td>
</tr>
<tr>
<td>9th</td>
<td>34</td>
<td>4.466E-6</td>
</tr>
<tr>
<td>10th</td>
<td>55</td>
<td>4.467E-6</td>
</tr>
<tr>
<td>11th</td>
<td>89</td>
<td>4.913E-6</td>
</tr>
<tr>
<td>12th</td>
<td>144</td>
<td>6.253E-6</td>
</tr>
<tr>
<td>13th</td>
<td>233</td>
<td>6.253E-6</td>
</tr>
<tr>
<td>14th</td>
<td>377</td>
<td>5.806E-6</td>
</tr>
<tr>
<td>15th</td>
<td>610</td>
<td>6.7E-6</td>
</tr>
<tr>
<td>16th</td>
<td>987</td>
<td>7.146E-6</td>
</tr>
<tr>
<td>17th</td>
<td>1597</td>
<td>7.146E-6</td>
</tr>
</tbody>
</table>
Fast Fibonacci

45th Fibonacci number: 1134903170 - Time: 1.7419E-5
46th Fibonacci number: 1836311903 - Time: 1.6972E-5
47th Fibonacci number: 2971215073 - Time: 1.6973E-5
48th Fibonacci number: 4807526976 - Time: 2.3673E-5
49th Fibonacci number: 7778742049 - Time: 1.9653E-5
50th Fibonacci number: 12586269025 - Time: 2.01E-5
51st Fibonacci number: 20365011074 - Time: 1.9207E-5
52th Fibonacci number: 32951280099 - Time: 2.0546E-5

67th Fibonacci number: 44945570212853 - Time: 2.3673E-5
68th Fibonacci number: 72723460248141 - Time: 2.3673E-5
69th Fibonacci number: 117669030460994 - Time: 2.412E-5
70th Fibonacci number: 190392490709135 - Time: 2.4566E-5
71th Fibonacci number: 308061521170129 - Time: 2.4566E-5
72th Fibonacci number: 498454011879264 - Time: 2.5906E-5
73th Fibonacci number: 806515533049393 - Time: 2.5459E-5
74th Fibonacci number: 1304969544928657 - Time: 2.546E-5

200th Fibonacci number: 280571172992510140037611932413038677189525 - Time: 1.0273E-5
Memoization

- Store (cache) results from functions for later lookup

- Memoization of Fibonacci Numbers

```java
public class FibMemo {

    private static List<BigInteger> lookupTable
            = new ArrayList<BigInteger>();

    private static final BigInteger one
            = new BigInteger("1");

    static {
        // no fib for n == 0
        lookupTable.add(null);
        lookupTable.add(one);
        lookupTable.add(one);
    }
```
public static BigInteger fib(int n) {
 // check lookup table
 if (n < lookupTable.size())
 return lookupTable.get(n);

 // must calculate nth fibonacci
 // don't repeat work
 BigInteger smallTerm = lookupTable.get(lookupTable.size() - 2);
 BigInteger largeTerm = lookupTable.get(lookupTable.size() - 1);
 for (int i = lookupTable.size(); i <= n; i++) {
 BigInteger temp = largeTerm;
 largeTerm = largeTerm.add(smallTerm);
 lookupTable.add(largeTerm); // memo
 smallTerm = temp;
 }

 return largeTerm;
}
Dynamic Programming

- When to use?
 - When a big problem can be broken up into sub problems.

- **Solution to original problem can be calculated from results of smaller problems.**

- Sub problems **must** have a natural ordering from smallest to largest OR simplest to hardest.
 - larger problems depend on previous solutions

- **Multiple techniques within DP**
DP Algorithms

- Step 1: Define the *meaning* of the subproblems (in English for sure, Mathematically as well if you find it helpful).
- Step 2: Show where the solution will be found.
- Step 3: Show how to set the first subproblem.
- Step 4: Define the order in which the subproblems are solved.
- Step 5: Show how to compute the answer to each subproblem using the previously computed subproblems. (This step is typically polynomial, once the other subproblems are solved.)
Dynamic Programming Requires:

- **overlapping sub problems:**
 - problem can be broken down into sub problems
 - obvious with Fibonacci
 - \(\text{Fib}(N) = \text{Fib}(N - 2) + \text{Fib}(N - 1) \) for \(N \geq 3 \)

- **optimal substructure:**
 - the optimal solution for a problem can be constructed from optimal solutions of its sub problems
 - In Fibonacci just sub problems, no optimality
 - \(\min \text{ coins } \text{opt}(36) = 1_{12} + \text{opt}(24) \) \([1, 5, 12]\)
Another simple example

Finding the best solution involves finding the best answer to simpler problems

Given a set of coins with values \((V_1, V_2, \ldots V_N)\) and a target sum \(S\), find the fewest coins required to equal \(S\)

What is Greedy Algorithm approach?

Does it always work?

\(\{1, 5, 12\}\) and target sum = 15

Could use recursive backtracking …
Minimum Number of Coins

- To find minimum number of coins to sum to 15 with values \{1, 5, 12\} start with sum 0
 - recursive backtracking would likely start with 15
- Let $M(S) = \text{minimum number of coins to sum to } S$
- At each step look at target sum, coins available, and previous sums
 - pick the smallest option
Minimum Number of Coins

- $M(0) = 0$ coins
- $M(1) = 1$ coin (1 coin)
- $M(2) = 2$ coins (1 coin + $M(1)$)
- $M(3) = 3$ coins (1 coin + $M(2)$)
- $M(4) = 4$ coins (1 coin + $M(3)$)
- $M(5) = $ interesting, 2 options available:
 - $1 + \text{others}$ OR single 5
 - if 1 then $1 + M(4) = 5$, if 5 then $1 + M(0) = 1$
 - clearly better to pick the coin worth 5
Minimum Number of Coins

- $M(0) = 0$
- $M(1) = 1$ (1 coin)
- $M(2) = 2$ (1 coin + $M(1)$)
- $M(3) = 3$ (1 coin + $M(2)$)
- $M(4) = 4$ (1 coin + $M(3)$)
- $M(5) = 1$ (1 coin + $M(0)$)
- $M(6) = 2$ (1 coin + $M(5)$)
- $M(7) = 3$ (1 coin + $M(6)$)
- $M(8) = 4$ (1 coin + $M(7)$)
- $M(9) = 5$ (1 coin + $M(8)$)
- $M(10) = 2$ (1 coin + $M(5)$) options: 1, 5
- $M(11) = 2$ (1 coin + $M(10)$) options: 1, 5
- $M(12) = 1$ (1 coin + $M(0)$) options: 1, 5, 12
- $M(13) = 2$ (1 coin + $M(12)$) options: 1, 12
- $M(14) = 3$ (1 coin + $M(13)$) options: 1, 12
- $M(15) = 3$ (1 coin + $M(10)$) options: 1, 5, 12
KNAPSACK PROBLEM - RECURSIVE BACKTRACKING AND DYNAMIC PROGRAMMING
Knapsack Problem

- A variation of a *bin packing* problem
- Similar to fair teams problem from recursion assignment
- You have a set of items
- Each item has a weight and a value
- You have a knapsack with a weight limit
- Goal: Maximize the *value* of the items you put in the knapsack without exceeding the weight limit
Knapsack Example

- **Items:**

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Weight of Item</th>
<th>Value of Item</th>
<th>Value per unit Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>6.0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>11</td>
<td>5.5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>12</td>
<td>3.0</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>19</td>
<td>3.167</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>12</td>
<td>1.714</td>
</tr>
</tbody>
</table>

- **Weight Limit = 8**

- One greedy solution: Take the highest ratio item that will fit: (1, 6), (2, 11), and (4, 12)

- Total value = 6 + 11 + 12 = 29

- **Clicker 3** - Is this optimal? A. No B. Yes
Knapsack - Recursive Backtracking

```java
private static int knapsack(ArrayList<Item> items,
    int current, int capacity) {

    int result = 0;
    if(current < items.size()) {
        // don't use item
        int withoutItem = knapsack(items, current + 1, capacity);
        int withItem = 0;
        // if current item will fit, try it
        Item currentItem = items.get(current);
        if(currentItem.weight <= capacity) {
            withItem += currentItem.value;
            withItem += knapsack(items, current + 1,
                capacity - currentItem.weight);
        }
        result = Math.max(withoutItem, withItem);
    }
    return result;
}
```
Recursive backtracking starts with max capacity and makes choice for items: choices are:
- take the item if it fits
- don't take the item

Dynamic Programming, start with simpler problems
Reduce number of items available
... AND Reduce weight limit on knapsack
Creates a 2d array of possibilities
Knapsack - Optimal Function

- OptimalSolution(items, weight) is best solution given a subset of items and a weight limit

- 2 options:
 - OptimalSolution does not select i^{th} item
 - select best solution for items 1 to $i - 1$ with weight limit of w
 - OptimalSolution selects i^{th} item
 - New weight limit = $w -$ weight of i^{th} item
 - select best solution for items 1 to $i - 1$ with new weight limit
Knapsack Optimal Function

- OptimalSolution(items, weight limit) =

 0 if 0 items

 OptimalSolution(items - 1, weight) if weight of ith item is greater than allowed weight $w_i > w$ (In others ith item doesn't fit)

 max of (OptimalSolution(items - 1, w), value of ith item + OptimalSolution(items - 1, w - w_i)
Knapsack - Algorithm

- Create a 2d array to store value of best option given subset of items and possible weights

- In our example 0 to 6 items and weight limits of of 0 to 8

- Fill in table using OptimalSolution Function
Knapsack Algorithm

Given N items and WeightLimit

Create Matrix M with N + 1 rows and WeightLimit + 1 columns

For weight = 0 to WeightLimit
 M[0, w] = 0

For item = 1 to N
 for weight = 1 to WeightLimit
 if(weight of ith item > weight)
 M[item, weight] = M[item - 1, weight]
 else
 M[item, weight] = max of
 M[item - 1, weight] AND
 value of item + M[item - 1, weight - weight of item]
Knapsack - Table

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>items / capacity</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>{1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1, 2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1, 2, 3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1, 2, 3, 4}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5, 6}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Knapsack - Completed Table

<table>
<thead>
<tr>
<th>items / weight</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>{1} [1, 6]</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>{1, 2} [2, 11]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>{1, 2, 3} [4, 1]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>{1, 2, 3, 4} [4, 12]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5} [6, 19]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5, 6} [7, 13]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
<td>30</td>
</tr>
</tbody>
</table>
Knapsack - Items to Take

<table>
<thead>
<tr>
<th>items / weight</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>{1} [1, 6]</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>{1,2} [2, 11]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>{1, 2, 3} [4, 1]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>{1, 2, 3, 4} [4, 12]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5} [6, 19]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5, 6} [7, 12]</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>29</td>
</tr>
</tbody>
</table>

The maximum value that can be obtained is 30, which is achieved by selecting items 1, 2, 3, 4, 5, and 6.
public static int knapsack(ArrayList<Item> items, int maxCapacity) {
 final int ROWS = items.size() + 1;
 final int COLS = maxCapacity + 1;
 int[][][] partialSolutions = new int[ROWS][COLS];

 for(int item = 1; item <= items.size(); item++) {
 for(int capacity = 0; capacity <= maxCapacity; capacity++) {
 Item currentItem = items.get(item - 1);
 int best = partialSolutions[item - 1][capacity];
 if(currentItem.weight <= capacity) {
 int withItem = currentItem.value;
 int capLeft = capacity - currentItem.weight;
 withItem += partialSolutions[item - 1][capLeft];
 if(withItem > best) {
 best = withItem;
 }
 }
 partialSolutions[item][capacity] = best;
 }
 }
 return partialSolutions[ROWS - 1][COLS - 1];
}
Dynamic vs. Recursive Backtracking

Number of items: 34. Capacity: 258
Recursive knapsack. Answer: 433, time: 111.77610595
Dynamic knapsack. Answer: 433, time: 2.6353E-5

Number of items: 35. Capacity: 199
Recursive knapsack. Answer: 318, time: 154.049166387
Dynamic knapsack. Answer: 318, time: 2.3673E-5

Number of items: 36. Capacity: 260
Recursive knapsack. Answer: 436, time: 451.122478468
Dynamic knapsack. Answer: 436, time: 3.0373E-5

Number of items: 37. Capacity: 238
Recursive knapsack. Answer: 411, time: 636.560835011
Dynamic knapsack. Answer: 411, time: 3.5285E-5

Number of items: 38. Capacity: 308
Which approach to the knapsack problem uses more memory?

A. the recursive backtracking approach
B. the dynamic programming approach
C. they use about the same amount of memory