# Topic 26 Dynamic Programming

"Thus, I thought *dynamic programming* was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities"

- Richard E. Bellman



# **Origins**

- A method for solving complex problems by breaking them into smaller, easier, sub problems
- ▶ Term *Dynamic Programming* coined by mathematician Richard Bellman in early 1950s
  - employed by Rand Corporation
  - Rand had many, large military contracts
  - Secretary of Defense, <u>Charles Wilson</u> "against research, especially mathematical research"
  - how could any one oppose "dynamic"?

CS314

Dynamic Programming

2

# **Dynamic Programming**

- Break big problem up into smaller problems ...
- Sound familiar?
- Recursion?N! = 1 for N == 0N! = N \* (N 1)! for N > 0

# Fibonacci Numbers

- ▶ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 114, ...
- $F_1 = 1$
- $F_2 = 1$
- $F_{N} = F_{N-1} + F_{N-2}$
- Recursive Solution?







# **Failing Spectacularly**

Naïve recursive method

```
// pre: n > 0
// post: return the nth Fibonacci number
public int fib(int n) {
    if (n <= 2)
        return 1;
    else
        return fib(n - 1) + fib (n - 2);
}

Clicker 1 - Order of this method?</pre>
```

A. O(1) B.  $O(\log N)$  C. O(N) D.  $O(N^2)$  E.  $O(2^N)$ 

CS314

Dynamic Programming

#### Failing Spectacularly

```
1th fibonnaci number: 1 -
                          Time: 4.467E-6
2th fibonnaci number: 1 -
                           Time: 4.47E-7
3th fibonnaci number: 2 -
                           Time: 4.46E-7
4th fibonnaci number: 3 -
                           Time: 4.46E-7
5th fibonnaci number: 5 -
                           Time: 4.47E-7
6th fibonnaci number: 8 -
                           Time: 4.47E-7
7th fibonnaci number: 13 -
                            Time: 1.34E-6
8th fibonnaci number: 21 -
                            Time: 1.787E-6
9th fibonnaci number: 34 -
                            Time: 2.233E-6
10th fibonnaci number: 55 -
                            Time: 3.573E-6
11th fibonnaci number: 89 -
                             Time: 1.2953E-5
12th fibonnaci number: 144 -
                              Time: 8.934E-6
13th fibonnaci number: 233 -
                              Time: 2.9033E-5
14th fibonnaci number: 377 -
                              Time: 3.7966E-5
15th fibonnaci number: 610 -
                              Time: 5.0919E-5
16th fibonnaci number: 987 -
                              Time: 7.1464E-5
17th fibonnaci number: 1597 -
                               Time: 1.08984E-4
```

# Failing Spectacularly

```
36th fibonnaci number: 14930352 -
                                    Time: 0.045372057
37th fibonnaci number: 24157817 -
                                    Time: 0.071195386
38th fibonnaci number: 39088169 -
                                   Time: 0.116922086
39th fibonnaci number: 63245986 -
                                    Time: 0.186926245
40th fibonnaci number: 102334155 -
                                    Time: 0.308602967
41th fibonnaci number: 165580141 -
                                    Time: 0.498588795
42th fibonnaci number: 267914296 -
                                    Time: 0.793824734
43th fibonnaci number: 433494437 -
                                    Time: 1.323325593
44th fibonnaci number: 701408733 -
                                    Time: 2.098209943
45th fibonnaci number: 1134903170 -
                                      Time: 3.392917489
46th fibonnaci number: 1836311903 -
                                      Time: 5.506675921
47th fibonnaci number: -1323752223 -
                                      Time: 8.803592621
48th fibonnaci number: 512559680 -
                                   Time: 14.295023778
49th fibonnaci number: -811192543 -
                                      Time: 23.030062974
50th fibonnaci number: -298632863 -
                                      Time: 37.217244704
51th fibonnaci number: -1109825406 -
                                      Time: 60.224418869
   CS314
                       Dynamic Programming
                                                     7
```

# Clicker 2 - Failing Spectacularly

50th fibonnaci number: -298632863 - Time: 37.217

- ▶ How long to calculate the 70<sup>th</sup> Fibonacci Number with this method?
- A. 37 seconds
- B. 74 seconds
- C. 740 seconds
- D. 14,800 seconds
- E. None of these

CS314 Dynamic Programming **8** 

#### Aside - Overflow

- ▶ at 47<sup>th</sup> Fibonacci number overflows int
- Could use BigInteger class instead

```
private static final BigInteger one
       = new BigInteger("1");
private static final BigInteger two
       = new BigInteger("2");
public static BigInteger fib(BigInteger n) {
       if (n.compareTo(two) <= 0)</pre>
              return one:
       else {
              BigInteger firstTerm = fib(n.subtract(two));
              BigInteger secondTerm = fib(n.subtract(one));
              return firstTerm.add(secondTerm);
CS314
                        Dynamic Programming
```

## Aside - BigInteger

- Answers correct beyond 46th Fibonacci number
- Even slower, math on BigIntegers, object creation, and garbage collection

```
Time: 2.406739213
37th fibonnaci number: 24157817 -
38th fibonnaci number: 39088169 -
                                   Time: 3.680196724
39th fibonnaci number: 63245986 -
                                   Time: 5.941275208
40th fibonnaci number: 102334155 -
                                    Time: 9.63855468
41th fibonnaci number: 165580141 - Time: 15.659745756
42th fibonnaci number: 267914296 -
                                    Time: 25.404417949
43th fibonnaci number: 433494437 -
                                    Time: 40.867030512
44th fibonnaci number: 701408733 - Time: 66.391845965
45th fibonnaci number: 1134903170 - Time: 106.964369924
46th fibonnaci number: 1836311903 -
                                     Time: 178.981819822
47th fibonnaci number: 2971215073 -
                                     Time: 287.052365326
  CS314
                      Dynamic Programming
                                                   10
```

#### Slow Fibonacci

- Why so slow?
- Algorithm keeps calculating the same value over and over
- When calculating the 40<sup>th</sup> Fibonacci number the algorithm calculates the 4<sup>th</sup> Fibonacci number **24,157,817** times!!!

11

#### Fast Fibonacci

- Instead of starting with the big problem and working down to the small problems
- ... start with the small problem and work up to the big problem

```
public static BigInteger fastFib(int n) {
        BigInteger smallTerm = one;
        BigInteger largeTerm = one;
        for (int i = 3; i \le n; i++) {
                BigInteger temp = largeTerm;
                largeTerm = largeTerm.add(smallTerm);
                smallTerm = temp;
        return largeTerm;
CS314
                          Dynamic Programming
                                                                   12
```

#### Fast Fibonacci

```
1th fibonnaci number: 1 -
                           Time: 4.467E-6
2th fibonnaci number: 1 -
                           Time: 4.47E-7
3th fibonnaci number: 2 -
                           Time: 7.146E-6
4th fibonnaci number: 3 -
                           Time: 2.68E-6
5th fibonnaci number: 5 -
                          Time: 2.68E-6
                           Time: 2.679E-6
6th fibonnaci number: 8 -
7th fibonnaci number: 13 - Time: 3.573E-6
8th fibonnaci number: 21 -
                            Time: 4.02E-6
9th fibonnaci number: 34 -
                            Time: 4.466E-6
10th fibonnaci number: 55 -
                             Time: 4.467E-6
11th fibonnaci number: 89 -
                             Time: 4.913E-6
12th fibonnaci number: 144 -
                              Time: 6.253E-6
13th fibonnaci number: 233 -
                              Time: 6.253E-6
14th fibonnaci number: 377 -
                              Time: 5.806E-6
15th fibonnaci number: 610 -
                              Time: 6.7E-6
16th fibonnaci number: 987 -
                              Time: 7.146E-6
17th fibonnaci number: 1597 - Time: 7.146E-6
```

#### Fast Fibonacci

```
45th fibonnaci number: 1134903170 -
                                     Time: 1.7419E-5
46th fibonnaci number: 1836311903 -
                                      Time: 1.6972E-5
47th fibonnaci number: 2971215073 -
                                      Time: 1.6973E-5
48th fibonnaci number: 4807526976 -
                                      Time: 2.3673E-5
49th fibonnaci number: 7778742049 -
                                     Time: 1.9653E-5
50th fibonnaci number: 12586269025 -
                                      Time: 2.01E-5
51th fibonnaci number: 20365011074 -
                                      Time: 1.9207E-5
52th fibonnaci number: 32951280099 -
                                      Time: 2.0546E-5
```

```
67th fibonnaci number: 44945570212853 - Time: 2.3673E-5
68th fibonnaci number: 72723460248141 - Time: 2.3673E-5
69th fibonnaci number: 117669030460994 - Time: 2.412E-5
70th fibonnaci number: 190392490709135 - Time: 2.4566E-5
71th fibonnaci number: 308061521170129 - Time: 2.4566E-5
72th fibonnaci number: 498454011879264 - Time: 2.5906E-5
73th fibonnaci number: 806515533049393 - Time: 2.5459E-5
74th fibonnaci number: 1304969544928657 - Time: 2.546E-5
```

200th fibonnaci number: 280571172992510140037611932413038677189525 - Time: 1.0273E-5

#### Memoization

- Store (cache) results from computations for later lookup
- Memoization of Fibonacci Numbers

#### Fibonacci Memoization

```
public static BigInteger fib(int n) {
    // check lookup table
    if (n < lookupTable.size()) {</pre>
        return lookupTable.get(n);
    // Calculate nth Fibonacci.
    // Don't repeat work. Start with the last known.
    BigInteger smallTerm
        = lookupTable.get(lookupTable.size() - 2);
    BigInteger largeTerm
        = lookupTable.get(lookupTable.size() - 1);
    for(int i = lookupTable.size(); i <= n; i++) {</pre>
        BigInteger temp = largeTerm;
        largeTerm = largeTerm.add(smallTerm);
        lookupTable.add(largeTerm); // memo
        smallTerm = temp;
    return largeTerm;
```

# **Dynamic Programming**

- When to use?
- When a big problem can be broken up into sub problems.
- Solution to original problem can be calculated from results of smaller problems.
  - larger problems depend on previous solutions
- Sub problems must have a natural ordering from smallest to largest (simplest to hardest)
- Multiple techniques within DP

CS314 Dynamic Programming

# **DP Algorithms**

- Step 1: Define the \*meaning\* of the subproblems (in English for sure, Mathematically as well if you find it helpful).
- ▶ Step 2: Show where the solution will be found.
- Step 3: Show how to set the first subproblem.
- Step 4: Define the order in which the subproblems are solved.
- Step 5: Show how to compute the answer to each subproblem using the previously computed subproblems. (This step is typically polynomial, once the other subproblems are solved.)

CS314 Dynamic Programming 18

# Dynamic Programming Requires:

- overlapping sub problems:
  - problem can be broken down into sub problems
  - obvious with Fibonacci
  - Fib(N) = Fib(N 2) + Fib(N 1) for N >= 3
- optimal substructure:
  - the optimal solution for a problem can be constructed from optimal solutions of its sub problems
  - In Fibonacci just sub problems, no optimality
  - $\min \text{ coins opt}(36) = 1_{12} + \text{ opt}(24)$  [1, 5, 12]

# **Dynamic Programing Example**

Another simple example

17

19

- Finding the best solution involves finding the best answer to simpler problems
- ▶ Given a set of coins with values (V<sub>1</sub>, V<sub>2</sub>, ... V<sub>N</sub>) and a target sum S, find the fewest coins required to equal S
- What is Greedy Algorithm approach?
- Does it always work?
- ▶ {1, 5, 12} and target sum = 15 (12, 1, 1, 1)
- Could use recursive backtracking ...

CS314 Dynamic Programming

#### Minimum Number of Coins

- To find minimum number of coins to sum to 15 with values {1, 5, 12} start with sum 0
   recursive backtracking would likely start with 15
- Let M(S) = minimum number of coins to sum to S
- At each step look at target sum,
   coins available, and previous sums
   pick the smallest option

CS314 Dynamic Programming

#### Minimum Number of Coins

- M(0) = 0 coins
- M(1) = 1 coin (1 coin)
- M(2) = 2 coins (1 coin + M(1))
- M(3) = 3 coins (1 coin + M(2))
- M(4) = 4 coins (1 coin + M(3))
- M(5) = interesting, 2 options available: 1 + others OR single 5 if 1 then 1 + M(4) = 5, if 5 then 1 + M(0) = 1 clearly better to pick the coin worth 5

CS314 Dynamic Programming 22

#### Minimum Number of Coins

- M(0) = 0
- M(1) = 1 (1 coin)
- M(2) = 2 (1 coin + M(1))
- M(3) = 3 (1 coin + M(2))
- M(4) = 4 (1 coin + M(3))
- M(5) = 1 (1 coin + M(0))
- M(6) = 2 (1 coin + M(5))
- M(7) = 3 (1 coin + M(6))
- M(8) = 4 (1 coin + M(7))
- M(9) = 5 (1 coin + M(8))
- M(10) = 2 (1 coin + M(5)) options: 1, 5

M(11) = 2 (1 coin + M(10)) options: 1, 5

21

- M(12) = 1 (1 coin + M(0)) options: 1, 5, 12
- M(13) = 2 (1 coin + M(12)) options: 1, 12
- M(14) = 3 (1 coin + M(13)) options: 1, 12
- M(15) = 3 (1 coin + M(10)) options: 1, 5, 12

# KNAPSACK PROBLEM RECURSIVE BACKTRACKING AND DYNAMIC PROGRAMMING

CS314 Dynamic Programming 23 CS314 Dynamic Programming 24

# **Knapsack Problem**

- A variation of a *bin packing* problem
- Similar to fair teams problem from recursion assignment
- You have a set of items
- Each item has a weight and a value
- You have a knapsack with a weight limit
- Goal: Maximize the <u>value</u> of the items you put in the knapsack without exceeding the weight limit

CS314

Dynamic Programming

25

#### **Knapsack Example**

| Items:    | Item<br>Number | Weight<br>of Item | Value of<br>Item | Value<br>per unit<br>Weight |
|-----------|----------------|-------------------|------------------|-----------------------------|
|           | 1              | 1                 | 6                | 6.0                         |
|           | 2              | 2                 | 11               | 5.5                         |
| ▶ Weight  | 3              | 4                 | 1                | 0.25                        |
| •         | 4              | 4                 | 12               | 3.0                         |
| Limit = 8 | 5              | 6                 | 19               | 3.167                       |
|           | 6              | 7                 | 12               | 1.714                       |

- One greedy solution: Take the highest ratio item that will fit: (1, 6), (2, 11), and (4, 12)
- ▶ Total value = 6 + 11 + 12 = 29
- Clicker 3 Is this optimal? A. No B. Yes

# **Knapsack - Recursive Backtracking**

```
private static int knapsack(ArrayList<Item> items,
        int current, int capacity) {
    int result = 0;
    if (current < items.size()) {</pre>
        // don't use item
        int withoutItem
            = knapsack(items, current + 1, capacity);
        int withItem = 0;
        // if current item will fit, try it
        Item currentItem = items.get(current);
        if (currentItem.weight <= capacity) {</pre>
            withItem += currentItem.value;
            withItem += knapsack(items, current + 1,
                    capacity - currentItem.weight);
        result = Math.max(withoutItem, withItem);
    return result;
```

# Knapsack - Dynamic Programming

- Recursive backtracking starts with max capacity and makes choice for items: choices are:
  - take the item if it fits
  - don't take the item
- Dynamic Programming, start with simpler problems
- Reduce number of items available
- ▶ ... AND Reduce weight limit on knapsack
- Creates a 2d array of possibilities

CS314 Dynamic Programming

28

# **Knapsack - Optimal Function**

- OptimalSolution(items, weight) is best solution given a subset of items and a weight limit
- ▶ 2 options:
- OptimalSolution does not select ith item
  - select best solution for items 1 to i 1with weight limit of w
- OptimalSolution selects i<sup>th</sup> item
  - New weight limit = w weight of i<sup>th</sup> item
  - select best solution for items 1 to i 1with new weight limit

# **Knapsack Optimal Function**

OptimalSolution(items, weight limit) =

0 if 0 items

OptimalSolution(items - 1, weight) if weight of ith item is greater than allowed weight  $w_i > w$  (In others i<sup>th</sup> item doesn't fit)

max of (OptimalSolution(items - 1, w), value of i<sup>th</sup> item + OptimalSolution(items - 1, w - w<sub>i</sub>)

30

# Knapsack - Algorithm

Create a 2d array to store value of best option given subset of items and possible weights

| ltem<br>Number | Weight of Item | Value of Item |
|----------------|----------------|---------------|
| 1              | 1              | 6             |
| 2              | 2              | 11            |
| 3              | 4              | 1             |
| 4              | 4              | 12            |
| 5              | 6              | 19            |
| 6              | 7              | 12            |

- In our example 0 to 6 items and weight limits of of 0 to 8
- Fill in table using OptimalSolution Function

# Knapsack Algorithm

Given N items and WeightLimit

Create Matrix M with N + 1 rows and WeightLimit + 1 columns

For weight = 0 to WeightLimit M[0, w] = 0

For item = 1 to N
for weight = 1 to WeightLimit
if(weight of ith item > weight)
M[item, weight] = M[item - 1, weight]
else

M[item, weight] = max of
M[item - 1, weight] AND
value of item + M[item - 1, weight - weight of item]

# Knapsack - Table

| ltem | Weight | Value |
|------|--------|-------|
| 1    | 1      | 6     |
| 2    | 2      | 11    |
| 3    | 4      | 1     |
| 4    | 4      | 12    |
| 5    | 6      | 19    |
| 6    | 7      | 12    |
|      |        |       |

| items / capacity           | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|----------------------------|---|---|---|---|---|---|---|---|---|
| O                          | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| <b>(1)</b>                 |   |   |   |   |   |   |   |   |   |
| {1, <u>2</u> }             |   |   |   |   |   |   |   |   |   |
| {1, 2, <u>3</u> }          |   |   |   |   |   |   |   |   |   |
| {1, 2, 3, <u>4</u> }       |   |   |   |   |   |   |   |   |   |
| {1, 2, 3, 4, <u>5</u> }    |   |   |   |   |   |   |   |   |   |
| {1, 2, 3, 4, 5, <u>6</u> } |   |   |   |   |   |   |   |   |   |

### **Knapsack - Completed Table**

| items / weight                | 0 | 1 | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|-------------------------------|---|---|----|----|----|----|----|----|----|
| Ð                             | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| {1}<br>[1, 6]                 | 0 | 6 | 6  | 6  | 6  | 6  | 6  | 6  | 6  |
| {1,2}<br>[2, 11]              | 0 | 6 | 11 | 17 | 17 | 17 | 17 | 17 | 17 |
| {1, 2, 3}<br>[4, 1]           | 0 | 6 | 11 | 17 | 17 | 17 | 17 | 18 | 18 |
| {1, 2, 3, 4}<br>[4, 12]       | 0 | 6 | 11 | 17 | 17 | 18 | 23 | 29 | 29 |
| {1, 2, 3, 4, 5}<br>[6, 19]    | 0 | 6 | 11 | 17 | 17 | 18 | 23 | 29 | 30 |
| {1, 2, 3, 4, 5, 6}<br>[7, 12] | 0 | 6 | 11 | 17 | 17 | 18 | 23 | 29 | 30 |

# Knapsack - Items to Take

| items / weight                | 0 | 1 | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|-------------------------------|---|---|----|----|----|----|----|----|----|
| 0                             | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| {1}<br>[1, 6]                 | 0 | 6 | 6  | 6  | 6  | 6  | 6  | 6  | 6  |
| {1,2}<br>[2, 11]              | 0 | 6 | 11 | 17 | 17 | 17 | 17 | 17 | 17 |
| {1, 2, 3}<br>[4, 1]           | 0 | 6 | 11 | 17 | 17 | 17 | 17 | 17 | 17 |
| {1, 2, 3, 4}<br>[4, 12]       | 0 | 6 | 11 | 17 | 17 | 18 | 23 | 29 | 29 |
| {1, 2, 3, 4, 5}<br>[6, 19]    | 0 | 6 | 11 | 17 | 17 | 18 | 23 | 29 | 30 |
| {1, 2, 3, 4, 5, 6}<br>[7, 12] | 0 | 6 | 11 | 17 | 17 | 18 | 23 | 29 | 30 |

# Dynamic Knapsack

```
// dynamic programming approach
public static int knapsack(ArrayList<Item> items, int maxCapacity) {
    final int ROWS = items.size() + 1;
    final int COLS = maxCapacity + 1;
    int[][] partialSolutions = new int[ROWS][COLS];
    // first row and first column all zeros
    for(int item = 1; item <= items.size(); item++) {</pre>
        for(int capacity = 1; capacity <= maxCapacity; capacity++) {</pre>
            Item currentItem = items.get(item - 1);
            int bestSoFar = partialSolutions[item - 1][capacity];
            if( currentItem.weight <= capacity) {</pre>
                int withItem = currentItem.value;
                int capLeft = capacity - currentItem.weight;
                withItem += partialSolutions[item - 1][capLeft];
                if (withItem > bestSoFar) {
                    bestSoFar = withItem;
            partialSolutions[item][capacity] = bestSoFar;
    return partialSolutions[ROWS - 1][COLS - 1];
```

# Dynamic vs. Recursive Backtracking Timing Data

Number of items: 32. Capacity: 123

Recursive knapsack. Answer: 740, time: 10.0268025 Dynamic knapsack. Answer: 740, time: 3.43999E-4

Number of items: 33. Capacity: 210

Recursive knapsack. Answer: 893, time: 23.0677814 Dynamic knapsack. Answer: 893, time: 6.76899E-4

Number of items: 34. Capacity: 173

Recursive knapsack. Answer: 941, time: 89.8400178 Dynamic knapsack. Answer: 941, time: 0.0015702

Number of items: 35. Capacity: 93

Recursive knapsack. Answer: 638, time: 81.0132219 Dynamic knapsack. Answer: 638, time: 2.95601E-4

CS314 Dynamic Programming

37

#### Clicker 4

- Which approach to the knapsack problem uses more memory?
- A. the recursive backtracking approach
- B. the dynamic programming approach
- C. they use about the same amount of memory

CS314 Dynamic Programming 38