Topic 25 Tries

"In 1959, (Edward) Fredkin recommended that BBN (Bolt, Beranek and Newman, now BBN Technologies) purchase the very first PDP-1 to support research projects at BBN. *The PDP-1 came with no software whatsoever.*

Fredkin wrote a PDP-1 assembler called FRAP (Free of Rules Assembly Program);"

Tries were first described by René de la Briandais in *File searching using variable length keys*.

Clicker 1

- How would you pronounce "Trie"
- A. "tree"
- B. "tri ee"
- C. "try"
- D. "tiara"
- E. something else

Tries aka Prefix Trees

- Pronunciation:
- From retrieval
- Name coined by Computer Scientist Edward Fredkin
- Retrieval so "tree"
- but that is very confusing so most people pronounce it "try"

Predictive Text and AutoComplete

 Search engines and texting applications guess what you want after typing only a few characters

Hel

hello hellboy hello fresh helen keller helena christensen hello may hell or high water hello neighbor helzberg help synonym

AutoComplete

So do other programs such as IDEs

String name = "Kelly J"; name.s while substring(int beginIndex, int endIndex) : String - String - 0.11% \land split(String regex) : String[] - String split(String regex, int limit) : String[] - String startsWith(String prefix) : boolean - String • startsWith(String prefix, int toffset) : boolean - String subSequence(int beginIndex, int endIndex) : CharSequence - Sti substring(int beginIndex) : String - String

Searching a Dictionary

- How?
- Could search a set for all values that start with the given prefix.
- Naively O(N) (search the whole data structure).
- Could improve if possible to do a binary search for prefix and then localize search to that location.

Tries

- A general tree (more than 2 children possible)
- Root node (or possibly a list of root nodes)
- Nodes can have many children
 - not a binary tree
- In simplest form each node stores a character and a data structure (list?) to refer to its children
- Stores" all the words or phrases in a dictionary.
- How?

René de la Briandais Original Paper

*All entries of any one table are covered by a single arc (-),

????

????

Picture of a Dinosaur

Fall 2022 - Ryan P.

Created with Procreate: https://procreate.art/

Can

*All entries of any one table are covered by a single arc (-),

Candy

*All entries of any one table are covered by a single arc (-),

Fox

*All entries of any one table are covered by a single arc (-),

Clicker 2

Is "fast" in the dictionary represented by this Trie?

A. No

B. Yes

C. It depends

Clicker 3

Is "fist" in the dictionary represented by this Trie?

A. No

B. Yes

C. It depends

Tries

- Another example of a Trie
- Each node stores:
 - A char
 - A boolean
 indicating if the
 string ending at
 that node is a word
 - A list of children

Predictive Text and AutoComplete

- As characters are entered we descend the Trie
- ... and from the current node ...
- we can descend to terminators and leaves to see all possible words based on current prefix
- b, e, e -> bee, been, bees

d

S

root

be

been

bee

0

g

Tries

- Stores words and phrases.
 - other values
 possible, but typically
 Strings
- The whole word or phrase is not actually stored in a single node.
- ... rather the path in the tree represents the word.

Implementing a Trie

public class Trie {

```
private TNode root;
private int size; // number of words
private int numNodes;
public Trie() {
  root = new TNode();
  numNodes = 1;
```

TNode Class

private static class TNode { private boolean word; private char ch; private LinkedList<TNode> children;

- Basic implementation uses a LinkedList of TNode objects for children
- Other options?
 - ArrayList?
 - Something more exotic?

Basic Operations

- Adding a word to the Trie
- Getting all words with given prefix
- Demo in IDE

Compressed Tries

Some words, especially long ones, lead to a chain of nodes with single child, followed by single child:

Compressed Trie

- Reduce number of nodes, by having nodes store Strings
- A chain of single child followed by single child (followed by single child ...) is compressed to a single node with that String
- Does not have to be a chain that terminates in a leaf node
 - Can be an internal chain of nodes

8 fewer nodes compared to uncompressed version s - t - o - c - k

Data Structures

- Data structures we have studied
 - arrays, array based lists, linked lists, maps, sets, stacks, queues, trees, binary search trees, graphs, hash tables, red-black trees, priority queues, heaps, tries
- Most program languages have some built in data structures, native or library
- Must be familiar with performance of data structures
 - best learned by implementing them yourself

Data Structures

We have not covered every data structure

Abstract data types [edit source | edit beta]

- Container
- Map/Associative array/Dictionary
- Multimap
- List
- Set
- Multiset
- Priority queue
- Queue
- Deque
- Stack
- String
- Tree
- Graph

Some properties of abstract data types:

Structure	Stable	Unique	Cells per Node
Bag (multiset)	no	no	1
Set	no	yes	1
List	yes	no	1
Мар	no	yes	2

"Stable" means that input order is retained. Other stru

Arrays [edit source | edit beta]

- Array
- Bidirectional map
- Bit array
- Bit field
- Bitboard
- Bitmap
- Circular buffer
- Control table
- Image
- Dynamic array
- Gap buffer
- Hashed array tree
- Heightmap
- Lookup table
- Matrix
- Parallel array
- Sorted array
- Sparse array
- Sparse matrix
- Iliffe vector
- Variable-length array

Lists [edit source | edit beta]

- Doubly linked list
- Linked list
- Self-organizing list
- Skip list
- Unrolled linked list
- VList
- Xor linked list
- Zipper

http://en.wikipedia.org/wiki/List_of_data_structures

- Doubly connected edge list
- Difference list

Heaps [edit source | edit

- Heap
- Binary heap
- Weak heap
- Binomial heap
- Fibonacci heap
- AF-heap
- 2-3 heap
- Soft heap
- Pairing heap
- Leftist heap
- Treap
- Beap
- Skew heap
- Ternary heap
- D-ary heap

Trees [edit source | edit t

In these data structures eacl

- Tree
- Radix tree
- Suffix tree
- Suffix array
- Compressed suffix array
- FM-index
- Generalised suffix tree
- B-tree
- Judy array
- X-fast tree
- Y-fast tree
- Ctree

Multiwav trees Ledit source

- Graphs [edit source | edit beta]
- Graph
- Adjacency list
- Adjacency matrix
- Graph-structured stack
- Scene graph
- Binary decision diagram
- Zero suppressed decision diagram
- And-inverter graph
- Directed graph
- Directed acyclic graph
- Propositional directed acyclic graph
- Multigraph
- Hypergraph

Other [edit source | edit beta]

Doubly connected edge list

Lightmap

•

•

Winged edge

Quad-edge

Routing table

Symbol table

Data Structures

- deque, b-trees, quad-trees, binary space partition trees, skip list, sparse list, sparse matrix, union-find data structure, Bloom filters, AVL trees, 2-3-4 trees, and more!
- Must be able to learn new and apply new data structures