
Topic 25 

Tries
“In 1959, (Edward) Fredkin recommended

that BBN (Bolt, Beranek and Newman, now 

BBN Technologies) purchase the very first

PDP-1 to support research projects at 

BBN. The PDP-1 came with no software 

whatsoever.

Fredkin wrote a PDP-1 assembler called FRAP (Free 

of Rules Assembly Program);”

Tries were first described by René de la Briandais in 

File searching using variable length keys.

https://en.wikipedia.org/wiki/Edward_Fredkin


Clicker 1
How would you pronounce “Trie”

A. “tree”

B. “tri – ee”

C. “try”

D. “tiara”

E. something else
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Tries aka Prefix Trees
Pronunciation:

From retrieval

Name coined by Computer Scientist 

Edward Fredkin

Retrieval so “tree”

… but that is very confusing so most people 

pronounce it “try”
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Predictive Text and AutoComplete

Search engines and texting applications 

guess what you want after typing only a few 

characters



AutoComplete
So do other programs such as IDEs
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Searching a Dictionary
How?

Could search a set for all values that start 

with the given prefix.

Naively O(N) (search the whole data 

structure).

Could improve if possible to do a binary 

search for prefix and then localize search to 

that location.
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Tries
A general tree (more than 2 children possible)

Root node (or possibly a list of root nodes)

Nodes can have many children

– not a binary tree

In simplest form each node stores a character 

and a data structure (list?) to refer to its 

children

"Stores" all the words or phrases

in a dictionary.

How?
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René de la Briandais Original Paper
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https://dl.acm.org/citation.cfm?id=1457895
https://dl.acm.org/citation.cfm?id=1457895


????
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????
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Picture of a Dinosaur

https://thebrag.com/why-cant-some-people-see-magic-eye-pictures-an-investigation/
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Can
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Candy
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Fox
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Clicker 2
Is “fast” in the dictionary represented by this 

Trie?

A. No

B. Yes

C. It depends
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Clicker 3
Is “fist” in the dictionary represented by this 

Trie?

A. No

B. Yes

C. It depends
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Tries
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Another example 

of a Trie

Each node stores:

– A char

– A boolean 

indicating if the 

string ending at 

that node is a word

– A list of children



Predictive Text and AutoComplete
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As characters are entered 

we descend the Trie

… and from the current 

node …

… we can descend to 

terminators and leaves to 

see all possible words 

based on current prefix

b, e, e -> bee, been, bees

https://www.youtube.com/watch?v=T3wiGSXbeQE


Stores words and 

phrases.

– other values 

possible, but typically 

Strings

The whole word or 

phrase is not actually 

stored in a

single node.

… rather the path in 

the tree represents 

the word.

Tries



Implementing a Trie
public class Trie {

private TNode root;

private int size; // number of words

private int numNodes;

public Trie() {

root = new TNode();

numNodes = 1;
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TNode Class

Basic implementation uses a LinkedList of 

TNode objects for children

Other options?

– ArrayList?

– Something more exotic?
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private static class TNode {

private boolean word;

private char ch;

private LinkedList<TNode> children;



Basic Operations
Adding a word to the Trie

Getting all words with given prefix

Demo in IDE
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Compressed Tries
Some words, especially long ones, lead to a 

chain of nodes with single child, followed by 

single child:
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Compressed Trie
Reduce number of nodes, by having nodes 

store Strings

A chain of single child followed by single 

child (followed by single child … ) is 

compressed to a single node with that String

Does not have to be a chain that terminates 

in a leaf node

– Can be an internal chain of nodes
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Original, Uncompressed
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Compressed Version
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8 fewer nodes compared to uncompressed version
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Data Structures
Data structures we have studied

– arrays, array based lists, linked lists, maps, sets, 

stacks, queues, trees, binary search trees, 

graphs, hash tables, red-black trees, priority 

queues, heaps, tries

Most program languages have some built in 

data structures, native or library

Must be familiar with performance of data 

structures

– best learned by implementing them yourself
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Data Structures
We have not covered every data structure

Heaps

http://en.wikipedia.org/wiki/List_of_data_structures



Data Structures
deque, b-trees, quad-trees, binary space 

partition trees, skip list, sparse list, sparse 

matrix, union-find data structure, Bloom 

filters, AVL trees, 2-3-4 trees, and more!

Must be able to learn new and apply new 

data structures
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