
Topic 25 

Tries
“In 1959, (Edward) Fredkin recommended

that BBN (Bolt, Beranek and Newman, now 

BBN Technologies) purchase the very first

PDP-1 to support research projects at 

BBN. The PDP-1 came with no software 

whatsoever.

Fredkin wrote a PDP-1 assembler called FRAP (Free 

of Rules Assembly Program);”

Tries were first described by René de la Briandais in 

File searching using variable length keys.

https://en.wikipedia.org/wiki/Edward_Fredkin


Clicker 1
How would you pronounce “Trie”

A. “tree”

B. “tri – ee”

C. “try”

D. “tiara”

E. something else

CS314 Tries 2



Tries aka Prefix Trees
Pronunciation:

From retrieval

Name coined by Computer Scientist 

Edward Fredkin

Retrieval so “tree”

… but that is very confusing so most people 

pronounce it “try”

CS314 Tries 3



CS314 Tries 4

Predictive Text and AutoComplete

Search engines and texting applications 

guess what you want after typing only a few 

characters



AutoComplete
So do other programs such as IDEs

CS314 Tries 5



Searching a Dictionary
How?

Could search a set for all values that start 

with the given prefix.

Naively O(N) (search the whole data 

structure).

Could improve if possible to do a binary 

search for prefix and then localize search to 

that location.

CS314 Tries 6



Tries
A general tree (more than 2 children possible)

Root node (or possibly a list of root nodes)

Nodes can have many children

– not a binary tree

In simplest form each node stores a character 

and a data structure (list?) to refer to its 

children

"Stores" all the words or phrases

in a dictionary.

How?
CS314 Tries 7



René de la Briandais Original Paper

CS314 Tries 8

https://dl.acm.org/citation.cfm?id=1457895
https://dl.acm.org/citation.cfm?id=1457895


????

CS314 Tries 9



????

CS314 Tries 10

Picture of a Dinosaur

https://thebrag.com/why-cant-some-people-see-magic-eye-pictures-an-investigation/


Fall 2022 - Ryan P.

CS314 Tries 11

Created with Procreate: https://procreate.art/



Can

CS314 Tries 12



Candy

CS314 Tries 13



Fox

CS314 Tries 14



Clicker 2
Is “fast” in the dictionary represented by this 

Trie?

A. No

B. Yes

C. It depends

CS314 Tries 15



Clicker 3
Is “fist” in the dictionary represented by this 

Trie?

A. No

B. Yes

C. It depends

CS314 Tries 16



Tries

CS314 Tries 17

Another example 

of a Trie

Each node stores:

– A char

– A boolean 

indicating if the 

string ending at 

that node is a word

– A list of children



Predictive Text and AutoComplete

CS314 Tries 18

As characters are entered 

we descend the Trie

… and from the current 

node …

… we can descend to 

terminators and leaves to 

see all possible words 

based on current prefix

b, e, e -> bee, been, bees

https://www.youtube.com/watch?v=T3wiGSXbeQE


Stores words and 

phrases.

– other values 

possible, but typically 

Strings

The whole word or 

phrase is not actually 

stored in a

single node.

… rather the path in 

the tree represents 

the word.

Tries



Implementing a Trie
public class Trie {

private TNode root;

private int size; // number of words

private int numNodes;

public Trie() {

root = new TNode();

numNodes = 1;

CS314 Tries 20



TNode Class

Basic implementation uses a LinkedList of 

TNode objects for children

Other options?

– ArrayList?

– Something more exotic?

CS314 Tries 21

private static class TNode {

private boolean word;

private char ch;

private LinkedList<TNode> children;



Basic Operations
Adding a word to the Trie

Getting all words with given prefix

Demo in IDE

CS314 Tries 22



Compressed Tries
Some words, especially long ones, lead to a 

chain of nodes with single child, followed by 

single child:

b s

e i u

a

r

l

l

d o

y

y

e

l

l

t

o

c

k

p



Compressed Trie
Reduce number of nodes, by having nodes 

store Strings

A chain of single child followed by single 

child (followed by single child … ) is 

compressed to a single node with that String

Does not have to be a chain that terminates 

in a leaf node

– Can be an internal chain of nodes

CS314 Tries 24



Original, Uncompressed

CS314 Tries 25

b s

e i u

a

r

l

l

d s

y

y

e

l

l

t

o

c

k

p



Compressed Version

CS314 Tries 26

b s

e id u

ar ll sy y

ell to

ck p

8 fewer nodes compared to uncompressed version

s – t – o – c - k



Data Structures
Data structures we have studied

– arrays, array based lists, linked lists, maps, sets, 

stacks, queues, trees, binary search trees, 

graphs, hash tables, red-black trees, priority 

queues, heaps, tries

Most program languages have some built in 

data structures, native or library

Must be familiar with performance of data 

structures

– best learned by implementing them yourself

CS314 Heaps 27



Data Structures
We have not covered every data structure

Heaps

http://en.wikipedia.org/wiki/List_of_data_structures



Data Structures
deque, b-trees, quad-trees, binary space 

partition trees, skip list, sparse list, sparse 

matrix, union-find data structure, Bloom 

filters, AVL trees, 2-3-4 trees, and more!

Must be able to learn new and apply new 

data structures

CS314 Heaps 29


