
1

Topic 10

Abstract Classes

“I prefer Agassiz in the

abstract, rather than in

the concrete.”

- Statue of Biologist

Louis Agassiz that fell from

a ledge on the Stanford

Quad during the 1906

San Francisco earthquake.

Back to the Monopoly Property Example

There are properties on a

monopoly board

Railroads, Utilities, and Streets are

kinds of properties
Property

Street Railroad Utility

A getRent Behavior

One behavior we want in Property

is the getRent method

problem: How do I get the rent of

something that is “just a Property”?

CS314 Abstract Classes 3

CS314 Abstract Classes 4

The Property class

public class Property {

private int cost;

private String name;

public int getRent() {

return hmmmmm??????;

}

Doesn’t seem like we have enough information to

get the rent if all we know is it is a Property.

CS314 Abstract Classes 5

Potential Solutions
1. Just leave it for the sub classes.

 Have each sub class define getRent()

2. Define getRent() in Property and simply

return -1.

 Sub classes override the method with more

meaningful behavior.

CS314 Abstract Classes 6

Leave it to the Sub - Classes
// no getRent() in Property

// Railroad and Utility DO have getRent() methods

public void printRents(Property[] props) {

for (Property p : props)

System.out.println(p.getRent());

}

Property[] props = new Property[2];

props[0] = new Railroad("NP", 200, 1);

props[1] = new Utility("Electric", 150, false);

printRents(props);

Clicker 1 - What is result of above code?

A. 200150 B. different every time

C. Syntax error D. Class Cast Exception

E. Null Pointer Exception

CS314 Abstract Classes 7

"Fix" by Casting
// no getRent() in Property

public void printRents(Property[] props) {

for (Property p : props) {

if (p instanceof Railroad)

System.out.println(((Railroad) p).getRent());

else if (p instanceof Utility)

System.out.println(((Utility) p).getRent());

else if (p instanceof Street)

System.out.println(((Street) p).getRent())

} // GACK!!!!

}

Property[] props= new Property[2];

props[0] = new Railroad("NP", 200, 1);

props[1] = new Utility("Electric", 150, false);

printRents(props);

What happens as we add more sub classes of Property?

What happens if one of the objects is just a Property?

CS314 Abstract Classes 8

Fix with Placeholder Return
// getRent() in Property returns -1

public void printRents(Property[] props) {

for (Property p : props)

System.out.println(p.getRent());

}

Property[] props= new Property[2];

props[0] = new Railroad("NP", 200, 1);

props[1] = new Utility("Electric", 150, false);

printRents(props);

What happens if sub classes don’t override
getRent()?

Is that a good answer?

CS314 Abstract Classes 9

A Better Fix
We know we want to be able to get the rent

of objects that are instances of Property

The problem is we don’t know how to do that
if all we know is it a Property

Make getRent an abstract method

Java keyword

CS314 Abstract Classes 10

Making getRent Abstract
public class Property {

private int cost;

private String name;

public abstract int getRent();

// I know I want it.

// Just don’t know how, yet…

}

Methods that are declared abstract have no body
an undefined behavior.

All non-default methods in a Java interface are
abstract.

Problems with Abstract Methods

If things can go wrong with a tool, provide

safeguards to prevent that from happening.

Given getRent() is now an abstract method

what is wrong with the following code?

Property p = new Property();

System.out.println(p.getRent());

CS314 Abstract Classes 12

Undefined Behavior = Bad
Not good to have undefined behaviors

If a class has 1 or more abstract methods,

the class must also be declared abstract.

– version of Property shown would cause a

compile error

Even if a class has zero abstract methods a

programmer can still choose to make it

abstract

– if it models some abstract thing

– is there anything that is just a “Mammal”?

Abstract Classes Safety
1. A class with one or more abstract methods must be

declared abstract.

- Syntax error if not done.

- Can still decide to make class abstract even if no

abstract methods.

2. Objects of an abstract type cannot be instantiated.

- Just like interfaces

- Can still declare variables of this type

3. A subclass must implement all inherited abstract

methods or be abstract itself.

CS314 Abstract Classes 13

CS314 Abstract Classes 14

Abstract Classes
public abstract class Property {

private int cost;

private String name;

public abstract double getRent();

// I know I want it.

// Just don’t know how, yet…

}

// Other methods not shown

if a class is abstract the compiler will not allow

constructors of that class to be called
Property s = new Property(1, 2);

//syntax error

CS314 Abstract Classes 15

Abstract Classes
In other words you can’t create instances of

objects where the lowest or most specific

class type is an abstract class

Prevents having an object with an undefined

behavior

Why would you still want to have

constructors in an abstract class?

Object variables of classes that are abstract

types may still be declared

Property p; //okay

CS314 Abstract Classes 16

Sub Classes of Abstract Classes

Classes that extend an abstract class must

provided a working version of any and all

abstract methods from the parent class

– or they must be declared to be abstract as well

– could still decide to keep a class abstract

regardless of status of abstract methods

CS314 Abstract Classes 17

Implementing getRent()

public class Railroad extends Property {

private static int[] rents

= {25, 50, 100, 200};

private int numOtherRailroadsOwned;

public double getRent() {

return rents[numOtherRailroadsOwned];}

// other methods not shown

}

CS314 Abstract Classes 18

A Utility Class

CS314 Abstract Classes 19

Polymorphism in Action

// getRent() in Property is abstract

public void printRents(Property[] props) {

for (Property p : props)

System.out.println(p.getRent());

}

• Add the Street class. What needs to change in

printRents method?

• Inheritance is can be described as new code using

old code.

• Koan of Polymorphism: Polymorphism can be

described as old code reusing new code.

CS314 Abstract Classes 20

Comparable in Property
public abstract class Property

implements Comparable<Property> {

private int cost;

private String name;

public abstract int getRent();

public int compareTo(Property other) {

return this.getRent()

– otherProperty.getRent();

}

}

Back to Lists
We suggested having a list interface

public interface IList<E> extends Iterable<E> {

public void add(E value);

public int size();

public E get(int location);

public E remove(int location);

public boolean contains(E value);

public void addAll(IList<E> other);

public boolean containsAll(IList<E> other);

}

CS314 Abstract Classes 21

Data Structures
When implementing data structures:

- Specify an interface

- Create an abstract class that is skeletal

implementation interface

- Create classes that extend the skeletal

interface

public boolean contains(E val) {

for (E e : this)

if val.equals(e)

return true;

return false
CS314 Abstract Classes 22

