
1

Topic 10
Abstract Classes

abstract, rather than in

- Statue of Biologist
Louis Agassiz that fell from
a ledge on the Stanford
Quad during the 1906
San Francisco earthquake.

Back to the Monopoly Property Example

There are properties on a
monopoly board

Railroads, Utilities, and Streets are
kinds of properties

Property

Street Railroad Utility

A getRent Behavior
One behavior we want in Property

is the getRent method

problem: How do I get the rent of

CS314 Abstract Classes 3 CS314 Abstract Classes 4

The Property class
public class Property {

private int cost;
private String name;

public int getRent() {
return hmmmmm??????;

}

get the rent if all we know is it is a Property.

CS314 Abstract Classes 5

Potential Solutions
1. Just leave it for the sub classes.

Have each sub class define getRent()

2. Define getRent() in Property and simply
return -1.

Sub classes override the method with more
meaningful behavior.

CS314 Abstract Classes 6

Leave it to the Sub - Classes
// no getRent() in Property
// Railroad and Utility DO have getRent() methods

public void printRents(Property[] props) {
for (Property p : props)

System.out.println(p.getRent());

}

Property[] props = new Property[2];
props[0] = new Railroad("NP", 200, 1);
props[1] = new Utility("Electric", 150, false);
printRents(props);

Clicker 1 - What is result of above code?
A. 200150 B. different every time
C. Syntax error D. Class Cast Exception
E. Null Pointer Exception

CS314 Abstract Classes 7

"Fix" by Casting
// no getRent() in Property
public void printRents(Property[] props) {

for (Property p : props) {
if (p instanceof Railroad)

System.out.println(((Railroad) p).getRent());
else if (p instanceof Utility)

System.out.println(((Utility) p).getRent());
else if (p instanceof Street)

System.out.println(((Street) p).getRent())
} // GACK!!!!

}
Property[] props= new Property[2];
props[0] = new Railroad("NP", 200, 1);
props[1] = new Utility("Electric", 150, false);
printRents(props);

What happens as we add more sub classes of Property?

What happens if one of the objects is just a Property?
CS314 Abstract Classes 8

Fix with Placeholder Return
// getRent() in Property returns -1

public void printRents(Property[] props) {
for (Property p : props)

System.out.println(p.getRent());
}

Property[] props= new Property[2];
props[0] = new Railroad("NP", 200, 1);
props[1] = new Utility("Electric", 150, false);
printRents(props);

getRent()?

Is that a good answer?

CS314 Abstract Classes 9

A Better Fix
We know we want to be able to get the rent
of objects that are instances of Property

if all we know is it a Property

Make getRent an abstract method

Java keyword

CS314 Abstract Classes 10

Making getRent Abstract
public class Property {

private int cost;
private String name;

public abstract int getRent();
// I know I want it.

}
Methods that are declared abstract have no body
an undefined behavior.

All non-default methods in a Java interface are
abstract.

Problems with Abstract Methods

If things can go wrong with a tool, provide
safeguards to prevent that from happening.

Given getRent() is now an abstract method
what is wrong with the following code?

Property p = new Property();
System.out.println(p.getRent());

CS314 Abstract Classes 12

Undefined Behavior = Bad
Not good to have undefined behaviors

If a class has 1 or more abstract methods,
the class must also be declared abstract.

version of Property shown would cause a
compile error

Even if a class has zero abstract methods a
programmer can still choose to make it
abstract

if it models some abstract thing

Abstract Classes Safety
1. A class with one or more abstract methods must be

declared abstract.
- Syntax error if not done.
- Can still decide to make class abstract even if no
abstract methods.

2. Objects of an abstract type cannot be instantiated.
- Just like interfaces
- Can still declare variables of this type

3. A subclass must implement all inherited abstract
methods or be abstract itself.

CS314 Abstract Classes 13 CS314 Abstract Classes 14

Abstract Classes
public abstract class Property {

private int cost;
private String name;

public abstract double getRent();
// I know I want it.

}
// Other methods not shown

if a class is abstract the compiler will not allow
constructors of that class to be called
Property s = new Property(1, 2);
//syntax error

CS314 Abstract Classes 15

Abstract Classes

objects where the lowest or most specific
class type is an abstract class

Prevents having an object with an undefined
behavior

Why would you still want to have
constructors in an abstract class?

Object variables of classes that are abstract
types may still be declared
Property p; //okay

CS314 Abstract Classes 16

Sub Classes of Abstract Classes
Classes that extend an abstract class must
provided a working version of any and all
abstract methods from the parent class

or they must be declared to be abstract as well

could still decide to keep a class abstract
regardless of status of abstract methods

CS314 Abstract Classes 17

Implementing getRent()

public class Railroad extends Property {

private static int[] rents
= {25, 50, 100, 200};

private int numOtherRailroadsOwned;

public double getRent() {
return rents[numOtherRailroadsOwned];}

// other methods not shown
}

CS314 Abstract Classes 18

A Utility Class

CS314 Abstract Classes 19

Polymorphism in Action
// getRent() in Property is abstract

public void printRents(Property[] props) {
for (Property p : props)

System.out.println(p.getRent());
}

Add the Street class. What needs to change in
printRents method?

Inheritance is can be described as new code using
old code.

Koan of Polymorphism: Polymorphism can be
described as old code reusing new code.

CS314 Abstract Classes 20

Comparable in Property
public abstract class Property

implements Comparable<Property> {
private int cost;
private String name;

public abstract int getRent();

public int compareTo(Property other) {
return this.getRent()

otherProperty.getRent();
}

}

Back to Lists
We suggested having a list interface

public interface IList<E> extends Iterable<E> {

public void add(E value);

public int size();

public E get(int location);

public E remove(int location);

public boolean contains(E value);

public void addAll(IList<E> other);

public boolean containsAll(IList<E> other);

}

CS314 Abstract Classes 21

Data Structures
When implementing data structures:

- Specify an interface

- Create an abstract class that is skeletal
implementation interface

- Create classes that extend the skeletal
interface
public boolean contains(E val) {

for (E e : this)
if val.equals(e)

return true;
return false

CS314 Abstract Classes 22

