"bit twiddling: 1. (pejorative) An exercise in tuning (see *tune*) in which incredible amounts of time and effort go to produce little noticeable improvement, often with the result that the code becomes incomprehensible."

- The Hackers Dictionary, version 4.4.7
Clicker Question 1

- “A program finds all the prime numbers between 2 and 1,000,000,000 from scratch in 0.37 seconds.”
 - Is this a fast solution?

A. no
B. yes
C. it depends
Computer Scientists don’t just write programs. They also **analyze** them.

How efficient is a program?
- How much time does it take for a program to complete?
- How much memory does a program use?
- How do these change as the amount of data changes?
- What is the difference between the average case and worst case efficiency if any?
Technique

- Informal approach for this class
 - more formal techniques in theory classes

- How many computations will this program (method, algorithm) perform to get the answer?

- Many simplifications
 - view algorithms as Java programs
 - count executable statements in program or method
 - find number of statements as function of the amount of data
 - focus on the dominant term in the function
Counting Statements

```java
int x; // one statement
x = 12; // one statement
int y = z * x + 3 % 5 * x / i; // 1
x++; // one statement
boolean p = x < y && y % 2 == 0 || z >= y * x; // 1
int[] data = new int[100]; // 100
data[50] = x * x + y * y; // 1
```
What is output by the following code?

```java
int total = 0;
for (int i = 0; i < 13; i++)
    for (int j = 0; j < 11; j++)
        total += 2;
System.out.println(total);
```

A. 24
B. 120
C. 143
D. 286
E. 338
What is output when method `sample` is called?

```java
// pre: n >= 0, m >= 0
public static void sample(int n, int m) {
    int total = 0;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < m; j++)
            total += 5;
    System.out.println(total);
}
```

A. 5
B. n * m
C. n * m * 5
D. n^m
E. (n * m)^5
Example

public int total(int[] values) {
 int result = 0;
 for (int i = 0; i < values.length; i++)
 result += values[i];
 return result;
}

- How many statements are executed by method `total` as a function of `values.length`?
- Let $N = \text{values.length}$
 - N is commonly used as a variable that denotes the amount of data.
Counting Up Statements

- `int result = 0;` \(\text{1} \)
- `int i = 0;` \(\text{1} \)
- `i < values.length;` \(N + 1 \)
- `i++` \(N \)
- `result += values[i];` \(N \)
- `return total;` \(\text{1} \)

\[T(N) = 3N + 4 \]

\[T(N) \text{ is the number of executable statements in method } total \text{ as function of values.length} \]
Another Simplification

- When determining complexity of an algorithm we want to simplify things
 - hide some details to make comparisons easier

- Like assigning your grade for course
 - At the end of CS314 your transcript won’t list all the details of your performance in the course
 - it won’t list scores on all assignments, quizzes, and tests
 - simply a letter grade, B- or A or D+

- So we focus on the dominant term from the function and ignore the coefficient
The most common method and notation for discussing the execution time of algorithms is *Big O*, also spoken *Order*.

Big O is the *asymptotic execution time* of the algorithm.

- In other words, how does the running time of the algorithm grow as a function of the amount of input data?

Big O is an upper bounds.

It is a mathematical tool.

Hide a lot of unimportant details by assigning a simple grade (function) to algorithms.
Formal Definition of Big O

- $T(N)$ is $O(F(N))$ if there are positive constants c and N_0 such that $T(N) \leq cF(N)$ when $N \geq N_0$
 - N is the size of the data set the algorithm works on
 - $T(N)$ is a function that characterizes the actual running time of the algorithm
 - $F(N)$ is a function that characterizes an upper bound on $T(N)$. It is a limit on the running time of the algorithm. (The typical Big functions table)
 - c and N_0 are constants
What it Means

- $T(N)$ is the actual growth rate of the algorithm
 - can be equated to the number of executable statements in a program or chunk of code

- $F(N)$ is the function that bounds the growth rate
 - may be upper or lower bound

- $T(N)$ may not necessarily equal $F(N)$
 - constants and lesser terms ignored because it is a bounding function
Showing $O(N)$ is Correct

- Recall the formal definition of Big O
 - $T(N)$ is $O(F(N))$ if there are positive constants c and N_0 such that $T(N) \leq cF(N)$ when $N > N_0$

- Recall method total, $T(N) = 3N + 4$
 - show method total is $O(N)$.
 - $F(N)$ is N

- We need to choose constants c and N_0
- how about $c = 4, N_0 = 5$?
vertical axis: time for algorithm to complete. (simplified to number of executable statements)

$c \times F(N)$, in this case, $c = 4$, $c \times F(N) = 4N$

$T(N)$, actual function of number of computations. In this case $3N + 4$

$F(N)$, approximate function of computations. In this case N

$N_0 = 5$

horizontal axis: N, number of elements in data set
Typical Big O Functions – "Grades"

<table>
<thead>
<tr>
<th>Function</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>N!</td>
<td>factorial</td>
</tr>
<tr>
<td>2^N</td>
<td>Exponential</td>
</tr>
<tr>
<td>N^d, $d > 3$</td>
<td>Polynomial</td>
</tr>
<tr>
<td>N^3</td>
<td>Cubic</td>
</tr>
<tr>
<td>N^2</td>
<td>Quadratic</td>
</tr>
<tr>
<td>$N^{\sqrt{N}}$</td>
<td>N Square root N</td>
</tr>
<tr>
<td>$N \log N$</td>
<td>N log N</td>
</tr>
<tr>
<td>N^1</td>
<td>Linear</td>
</tr>
<tr>
<td>\sqrt{N}</td>
<td>Root - n</td>
</tr>
<tr>
<td>$\log N$</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>1</td>
<td>Constant</td>
</tr>
</tbody>
</table>

Running time grows 'quickly' with more input. Running time grows 'slowly' with more input.
Which of the following is true?
Recall $T(N)_{\text{total}} = 3N + 4$

A. Method total is $O(N^{1/2})$
B. Method total is $O(N)$
C. Method total is $O(N^2)$
D. Two of A – C are correct
E. All of three of A – C are correct
Showing Order Briefly …

- Show $10N^2 + 15N$ is $O(N^2)$
- Break into terms.

- $10N^2 \leq 10N^2$
- $15N \leq 15N^2$ for $N \geq 1$ (Now add)
- $10N^2 + 15N \leq 10N^2 + 15N^2$ for $N \geq 1$
- $10N^2 + 15N \leq 25N^2$ for $N \geq 1$
- $c = 25$, $N_0 = 1$
- Note, the choices for c and N_0 are not unique.
Dealing with other methods

- What do I do about method calls?
 double sum = 0.0;
 for (int i = 0; i < n; i++)
 sum += Math.sqrt(i);

- Long way
 - go to that method or constructor and count statements

- Short way
 - substitute the simplified Big O function for that method.
 - if Math.sqrt is constant time, O(1), simply count
 sum += Math.sqrt(i); as one statement.
Dealing With Other Methods

public int foo(int[] data) {
 int total = 0;
 for (int i = 0; i < data.length; i++)
 total += countDups(data[i], data);
 return total;
}

// method countDups is O(N) where N is the // length of the array it is passed

Clicker 5, What is the Big O of foo?
A. O(1)
B. O(N)
C. O(NlogN)
D. O(N^2)
E. O(N!)
Independent Loops

// from the Matrix class
public void scale(int factor) {
 for (int r = 0; r < numRows(); r++)
 for (int c = 0; c < numCols(); c++)
 iCells[r][c] *= factor;
}

Assume numRows() = numCols() = N.
In other words, a square matrix.
numRows and numCols are O(1)

What is the T(N)? Clicker 6, What is the Order?
A. O(1) B. O(N) C. O(NlogN)
D. O(N^2) E. O(N!)

Bonus question. What if numRows is O(N)?
// assume mat is a 2d array of booleans
// assume mat is square with N rows,
// and N columns
public static void count(boolean[][] mat, int row, int col) {
 int numThings = 0;
 for (int r = row - 1; r <= row + 1; r++)
 for (int c = col - 1; c <= col + 1; c++)
 if (mat[r][c])
 numThings++;
}

Clicker 7, What is the order of the above method count?
A. O(1) B. O(N^{0.5}) C. O(N) D. O(N^2) E. O(N^3)
It is Not Just Counting Loops

// Second example from previous slide could be rewritten as follows:
int numThings = 0;
if (mat[r-1][c-1]) numThings++;
if (mat[r-1][c]) numThings++;
if (mat[r-1][c+1]) numThings++;
if (mat[r][c-1]) numThings++;
if (mat[r][c]) numThings++;
if (mat[r][c+1]) numThings++;
if (mat[r+1][c-1]) numThings++;
if (mat[r+1][c]) numThings++;
if (mat[r+1][c+1]) numThings++;
Sidetrack, the logarithm

- Thanks to Dr. Math
- $3^2 = 9$
- likewise $\log_3 9 = 2$
 - "The log to the base 3 of 9 is 2."
- The way to think about log is:
 - "the log to the base x of y is the number you can raise x to to get y."
 - Say to yourself "The log is the exponent." (and say it over and over until you believe it.)
 - In CS we work with base 2 logs, a lot
 - $\log_2 32 = ?$ $\log_2 8 = ?$ $\log_2 1024 = ?$ $\log_{10} 1000 = ?$
When Do Logarithms Occur

- Algorithms tend to have a logarithmic term when they use a divide and conquer technique.
- The size of the data set keeps getting divided by 2.

```java
public int foo(int n) {
    // pre n > 0
    int total = 0;
    while (n > 0) {
        n = n / 2;
        total++;
    }
    return total;
}
```

Clicker 8, What is the order of the above code?

A. \(O(1)\)
B. \(O(\log N)\)
C. \(O(N)\)
D. \(O(N\log N)\)
E. \(O(N^2)\)

The base of the log is typically not included as we can switch from one base to another by multiplying by a constant factor.
Significant Improvement – Algorithm with Smaller Big O function

- Problem: Given an array of ints replace any element equal to 0 with the maximum positive value to the right of that element. (if no positive value to the right, leave unchanged.)

Given:

\[0, 9, 0, 13, 0, 0, 7, 1, -1, 0, 1, 0]\]

Becomes:

\[13, 9, 13, 13, 7, 7, 7, 1, -1, 1, 1, 0]\]
Replace Zeros – Typical Solution

```java
public void replace0s(int[] data) {
    for (int i = 0; i < data.length; i++) {
        if (data[i] == 0) {
            int max = 0;
            for (int j = i + 1; j < data.length; j++)
                max = Math.max(max, data[j]);
            data[i] = max;
        }
    }
}
```

Assume all values are zeros. (worst case)

Example of a **dependent loops**.

Clicker 9 - Number of times \(j < data.length \) evaluated?

A. \(O(1) \)
B. \(O(N) \)
C. \(O(N \log N) \)
D. \(O(N^2) \)
E. \(O(N!) \)
public void replace0s(int[] data) {
 int max =
 Math.max(0, data[data.length - 1]);
 int start = data.length - 2;
 for (int i = start; i >= 0; i--) {
 if (data[i] == 0) {
 data[i] = max;
 } else {
 max = Math.max(max, data[i]);
 }
 }
}

Clicker 10 - Big O of this approach?
A. O(1) B. O(N) C. O(NlogN)
D. O(N^2) E. O(N!)
Clicker 11

- Is $O(N)$ really that much faster than $O(N^2)$?
 A. never
 B. always
 C. typically
 - Depends on the actual functions and the value of N.
 - $1000N + 250$ compared to $N^2 + 10$
 - When do we use mechanized computation?
 - $N = 100,000$
 - $100,000,250 < 10,000,000,010$ ($10^8 < 10^{10}$)
A Useful Proportion

- Since \(F(N) \) is characterizes the running time of an algorithm the following proportion should hold true:

\[
\frac{F(N_0)}{F(N_1)} \sim \frac{\text{time}_0}{\text{time}_1}
\]

- An algorithm that is \(O(N^2) \) takes 3 seconds to run given 10,000 pieces of data.
 - How long do you expect it to take when there are 30,000 pieces of data?
 - common mistake
 - logarithms?
Why Use Big O?

- As we build data structures Big O is the tool we will use to decide under what conditions one data structure is better than another.

- Think about performance when there is a lot of data.
 - "It worked so well with small data sets..."
 - [Joel Spolsky, Schlemiel the painter's Algorithm](https://www.joelospolsky.com/blog/)

- Lots of trade offs
 - some data structures good for certain types of problems, bad for other types
 - often able to trade SPACE for TIME.
 - Faster solution that uses more space
 - Slower solution that uses less space
Big O Space

- Big O could be used to specify how much space is needed for a particular algorithm – in other words how many variables are needed
- Often there is a time – space tradeoff – can often take less time if willing to use more memory – can often use less memory if willing to take longer – truly beautiful solutions take less time and space

The biggest difference between time and space is that you can't reuse time. - Merrick Furst
Quantifiers on Big O

- It is often useful to discuss different cases for an algorithm
- **Best Case**: what is the best we can hope for?
 - least interesting
- **Average Case** (a.k.a. expected running time): what usually happens with the algorithm?
- **Worst Case**: what is the worst we can expect of the algorithm?
 - very interesting to compare this to the average case
Best, Average, Worst Case

- To Determine the best, average, and worst case Big O we must make assumptions about the data set

- Best case -> what are the properties of the data set that will lead to the fewest number of executable statements (steps in the algorithm)

- Worst case -> what are the properties of the data set that will lead to the largest number of executable statements

- Average case -> Usually this means assuming the data is randomly distributed
 - or if I ran the algorithm a large number of times with different sets of data what would the average amount of work be for those runs?
Another Example

```java
public double minimum(double[] values) {
    int n = values.length;
    double minValue = values[0];
    for (int i = 1; i < n; i++)
        if (values[i] < minValue)
            minValue = values[i];
    return minValue;
}
```

- T(N)? F(N)? Big O? Best case? Worst Case? Average Case?
- If no other information, assume asking average case
Example of Dominance

- Look at an extreme example. Assume the actual number as a function of the amount of data is:
 \[\frac{N^2}{10000} + 2N \log_{10} N + 100000 \]

- Is it plausible to say the \(N^2 \) term dominates even though it is divided by 10000 and that the algorithm is \(O(N^2) \)?

- What if we separate the equation into \(\frac{N^2}{10000} \) and \(2N \log_{10} N + 100000 \) and graph the results.
Summing Execution Times

For large values of N the N^2 term dominates so the algorithm is $O(N^2)$

When does it make sense to use a computer?

red line is $2N\log_{10} N + 100000$

blue line is $N^2/10000$
Comparing Grades

- Assume we have a problem
- Algorithm A solves the problem correctly and is $O(N^2)$
- Algorithm B solves the same problem correctly and is $O(N \log_2 N)$
- Which algorithm is faster?
- One of the assumptions of Big O is that the data set is large.
- The "grades" should be accurate tools if this is true
Running Times

• Assume $N = 100,000$ and processor speed is $1,000,000,000$ operations per second

<table>
<thead>
<tr>
<th>Function</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^N</td>
<td>$3.2 \times 10^{30,086}$ years</td>
</tr>
<tr>
<td>N^4</td>
<td>3171 years</td>
</tr>
<tr>
<td>N^3</td>
<td>11.6 days</td>
</tr>
<tr>
<td>N^2</td>
<td>10 seconds</td>
</tr>
<tr>
<td>\sqrt{N}</td>
<td>0.032 seconds</td>
</tr>
<tr>
<td>$N \log N$</td>
<td>0.0017 seconds</td>
</tr>
<tr>
<td>\sqrt{N}</td>
<td>0.0001 seconds</td>
</tr>
<tr>
<td>\sqrt{N}</td>
<td>3.2×10^{-7} seconds</td>
</tr>
<tr>
<td>$\log N$</td>
<td>1.2×10^{-8} seconds</td>
</tr>
</tbody>
</table>
Theory to Practice OR
Dykstra says: "Pictures are for the Weak."

<table>
<thead>
<tr>
<th></th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
<th>16000</th>
<th>32000</th>
<th>64000</th>
<th>128K</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(n))</td>
<td>(2.2 \times 10^{-5})</td>
<td>(2.7 \times 10^{-5})</td>
<td>(5.4 \times 10^{-5})</td>
<td>(4.2 \times 10^{-5})</td>
<td>(6.8 \times 10^{-5})</td>
<td>(1.2 \times 10^{-4})</td>
<td>(2.3 \times 10^{-4})</td>
<td>(5.1 \times 10^{-4})</td>
</tr>
<tr>
<td>(O(n \log n))</td>
<td>(8.5 \times 10^{-5})</td>
<td>(1.9 \times 10^{-4})</td>
<td>(3.7 \times 10^{-4})</td>
<td>(4.7 \times 10^{-4})</td>
<td>(1.0 \times 10^{-3})</td>
<td>(2.1 \times 10^{-3})</td>
<td>(4.6 \times 10^{-3})</td>
<td>(1.2 \times 10^{-2})</td>
</tr>
<tr>
<td>(O(n^{3/2}))</td>
<td>(3.5 \times 10^{-5})</td>
<td>(6.9 \times 10^{-4})</td>
<td>(1.7 \times 10^{-3})</td>
<td>(5.0 \times 10^{-3})</td>
<td>(1.4 \times 10^{-2})</td>
<td>(3.8 \times 10^{-2})</td>
<td>(0.11)</td>
<td>(0.30)</td>
</tr>
<tr>
<td>(O(n^2)) ind.</td>
<td>(3.4 \times 10^{-3})</td>
<td>(1.4 \times 10^{-3})</td>
<td>(4.4 \times 10^{-3})</td>
<td>(0.22)</td>
<td>(0.86)</td>
<td>(3.45)</td>
<td>(13.79)</td>
<td>(55)</td>
</tr>
<tr>
<td>(O(n^2)) dep.</td>
<td>(1.8 \times 10^{-3})</td>
<td>(7.1 \times 10^{-3})</td>
<td>(2.7 \times 10^{-2})</td>
<td>(0.11)</td>
<td>(0.43)</td>
<td>(1.73)</td>
<td>(6.90)</td>
<td>(27.6)</td>
</tr>
<tr>
<td>(O(n^3))</td>
<td>(3.40)</td>
<td>(27.26)</td>
<td>((218))</td>
<td>((1745))</td>
<td>((13,957))</td>
<td>((112k))</td>
<td>((896k))</td>
<td>((7.2m))</td>
</tr>
</tbody>
</table>

Times in Seconds. Red indicates predecdated value.
Change between Data Points

<table>
<thead>
<tr>
<th>Function</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
<th>16000</th>
<th>32000</th>
<th>64000</th>
<th>128K</th>
<th>256k</th>
<th>512k</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(N)</td>
<td>-</td>
<td>1.21</td>
<td>2.02</td>
<td>0.78</td>
<td>1.62</td>
<td>1.76</td>
<td>1.89</td>
<td>2.24</td>
<td>2.11</td>
<td>1.62</td>
</tr>
<tr>
<td>O(N\log N)</td>
<td>-</td>
<td>2.18</td>
<td>1.99</td>
<td>1.27</td>
<td>2.13</td>
<td>2.15</td>
<td>2.15</td>
<td>2.71</td>
<td>1.64</td>
<td>2.40</td>
</tr>
<tr>
<td>O(N^{3/2})</td>
<td>-</td>
<td>1.98</td>
<td>2.48</td>
<td>2.87</td>
<td>2.79</td>
<td>2.76</td>
<td>2.85</td>
<td>2.79</td>
<td>2.82</td>
<td>2.81</td>
</tr>
<tr>
<td>O(N^2) ind</td>
<td>-</td>
<td>4.06</td>
<td>3.98</td>
<td>3.94</td>
<td>3.99</td>
<td>4.00</td>
<td>3.99</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O(N^2) dep</td>
<td>-</td>
<td>4.00</td>
<td>3.82</td>
<td>3.97</td>
<td>4.00</td>
<td>4.01</td>
<td>3.98</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O(N^3)</td>
<td>-</td>
<td>8.03</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Value obtained by $\frac{\text{Time}_x}{\text{Time}_{x-1}}$
Okay, Pictures

Results on a 2Ghz laptop

Value of N vs Time for different functions:
- N
- NlogN
- NsqrtN
- N^2
- N^2
Put a Cap on Time

Results on a 2Ghz laptop

<table>
<thead>
<tr>
<th>Value of N</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>NlogN</td>
<td>NlogN</td>
</tr>
<tr>
<td>NsqrtN</td>
<td>NsqrtN</td>
</tr>
<tr>
<td>N^2</td>
<td>N^2</td>
</tr>
</tbody>
</table>

CS 314 Efficiency - Complexity
No $O(N^2)$ Data

Results on a 2GhZ laptop

Value of N vs. Time

- N
- $N\log N$
- $N\sqrt{N}$
Just $O(N)$ and $O(N\log N)$

Results on a 2Ghz laptop

Value of N

Time

N

$N\log N$

CS 314

Efficiency - Complexity
Just $O(N)$
10^9 instructions/sec, runtimes

<table>
<thead>
<tr>
<th>N</th>
<th>$O(\log N)$</th>
<th>$O(N)$</th>
<th>$O(N \log N)$</th>
<th>$O(N^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.0000000003</td>
<td>0.000000001</td>
<td>0.0000000033</td>
<td>0.000000001</td>
</tr>
<tr>
<td>100</td>
<td>0.0000000007</td>
<td>0.000000010</td>
<td>0.0000000664</td>
<td>0.0001000</td>
</tr>
<tr>
<td>1,000</td>
<td>0.0000000010</td>
<td>0.000000100</td>
<td>0.00001000</td>
<td>0.001</td>
</tr>
<tr>
<td>10,000</td>
<td>0.0000000013</td>
<td>0.00001000</td>
<td>0.000132900</td>
<td>0.1 min</td>
</tr>
<tr>
<td>100,000</td>
<td>0.0000000017</td>
<td>0.00010000</td>
<td>0.001661000</td>
<td>10 seconds</td>
</tr>
<tr>
<td>1,000,000</td>
<td>0.0000000020</td>
<td>0.001</td>
<td>0.0199</td>
<td>16.7 minutes</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>0.0000000030</td>
<td>1.0 second</td>
<td>30 seconds</td>
<td>31.7 years</td>
</tr>
</tbody>
</table>
Formal Definition of Big O (repeated)

- T(N) is $O(F(N))$ if there are positive constants c and N_0 such that $T(N) \leq cF(N)$ when $N \geq N_0$
 - N is the size of the data set the algorithm works on
 - $T(N)$ is a function that characterizes the actual running time of the algorithm
 - $F(N)$ is a function that characterizes an upper bounds on $T(N)$. It is a limit on the running time of the algorithm
 - c and N_0 are constants
More on the Formal Definition

- There is a point N_0 such that for all values of N that are past this point, $T(N)$ is bounded by some multiple of $F(N)$

- Thus if $T(N)$ of the algorithm is $O(N^2)$ then, ignoring constants, at some point we can *bound* the running time by a quadratic function.

- given a *linear* algorithm it is *technically correct* to say the running time is $O(N^2)$. $O(N)$ is a more precise answer as to the Big O of the linear algorithm
 - thus the caveat “pick the most restrictive function” in Big O type questions.
What it All Means

- $T(N)$ is the actual growth rate of the algorithm
 - can be equated to the number of executable statements in a program or chunk of code
- $F(N)$ is the function that bounds the growth rate
 - may be upper or lower bound
- $T(N)$ may not necessarily equal $F(N)$
 - constants and lesser terms ignored because it is a bounding function
Other Algorithmic Analysis Tools

- **Big Omega** $T(N)$ is $\Omega(F(N))$ if there are positive constants c and N_0 such that $T(N) \geq cF(N)$ when $N \geq N_0$
 - Big O is similar to less than or equal, an upper bounds
 - Big Omega is similar to greater than or equal, a lower bound

- **Big Theta** $T(N)$ is $\theta(F(N))$ if and only if $T(N)$ is $O(F(N))$ and $T(N)$ is $\Omega(F(N))$.
 - Big Theta is similar to equals
Relative Rates of Growth

<table>
<thead>
<tr>
<th>Analysis Type</th>
<th>Mathematical Expression</th>
<th>Relative Rates of Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big O</td>
<td>$T(N) = O(F(N))$</td>
<td>$T(N) \leq F(N)$</td>
</tr>
<tr>
<td>Big Ω</td>
<td>$T(N) = \Omega(F(N))$</td>
<td>$T(N) \geq F(N)$</td>
</tr>
<tr>
<td>Big θ</td>
<td>$T(N) = \theta(F(N))$</td>
<td>$T(N) = F(N)$</td>
</tr>
</tbody>
</table>

"In spite of the additional precision offered by Big Theta, Big O is more commonly used, except by researchers in the algorithms analysis field" - Mark Weiss