"bit twiddling: 1. (pejorative) An exercise in tuning (see tune) in which incredible amounts of time and effort go to produce little noticeable improvement, often with the result that the code becomes incomprehensible."

- The Hackers Dictionary, version 4.4.7

Efficiency

- Computer Scientists don't just write programs.
- They also **analyze** them.
- How efficient is a program?
 - How much time does it take program to complete?
 - How much memory does a program use?
 - How do these change as the amount of data changes?
 - What is the difference between the average case and worst case efficiency if any?

Technique

- Informal approach for this class
 - more formal techniques in theory classes
- **How many computations will this program (method, algorithm) perform to get the answer?**
- Many simplifications
 - view algorithms as Java programs
 - count executable statements in program or method
 - find number of statements as function of the amount of data
 - focus on the **dominant term** in the function

Clicker Question 1

- “A program finds all the prime numbers between 2 and 1,000,000,000 from scratch in 0.37 seconds."
 - Is this a fast solution?
 A. no
 B. yes
 C. it depends
Counting Statements

```java
int x; // one statement
x = 12; // one statement
int y = z * x + 3 % 5 * x / i; // 1
x++; // one statement
boolean p = x < y && y % 2 == 0 || z >= y * x; // 1
int[] data = new int[100]; // 100
data[50] = x * x + y * y; // 1
```

Clicker 2

What is output by the following code?
```java
int total = 0;
for (int i = 0; i < 13; i++)
    for (int j = 0; j < 11; j++)
        total += 2;
System.out.println(total);
```

A. 24
B. 120
C. 143
D. 286
E. 338

Clicker 3

What is output when method sample is called?
```java
// pre: n >= 0, m >= 0
public static void sample(int n, int m) {
    int total = 0;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < m; j++)
            total += 5;
    System.out.println(total);
}
```

A. 5
B. n * m
C. n * m * 5
D. n\(^5\)
E. (n * m)\(^5\)

Example

```java
public int total(int[] values) {
    int result = 0;
    for (int i = 0; i < values.length; i++)
        result += values[i];
    return result;
}
```

How many statements are executed by method total as a function of values.length

Let N = values.length

N is commonly used as a variable that denotes the amount of data
Counting Up Statements

- `int result = 0;`
- `int i = 0;`
- `i < values.length; N + 1`
- `i++ N`
- `result += values[i]; N`
- `return total;`
- `T(N) = 3N + 4`
- `T(N)` is the number of executable statements in method `total` as function of `values.length`

Another Simplification

- When determining complexity of an algorithm we want to simplify things
 - hide some details to make comparisons easier
- Like assigning your grade for course
 - At the end of CS314 your transcript won’t list all the details of your performance in the course
 - it won’t list scores on all assignments, quizzes, and tests
 - simply a letter grade, B- or A or D+
- So we focus on the dominant term from the function and ignore the coefficient

Big O

- The most common method and notation for discussing the execution time of algorithms is Big O, also spoken Order
- Big O is the asymptotic execution time of the algorithm
 - In other words, how does the running time of the algorithm grow as a function of the amount of input data?
- Big O is an upper bounds
- It is a mathematical tool
- Hide a lot of unimportant details by assigning a simple grade (function) to algorithms

Formal Definition of Big O

- `T(N)` is `O(F(N))` if there are positive constants `c` and `N_0` such that `T(N) ≤ cF(N)` when `N ≥ N_0`
 - `N` is the size of the data set the algorithm works on
 - `T(N)` is a function that characterizes the actual running time of the algorithm
 - `F(N)` is a function that characterizes an upper bounds on `T(N)`. It is a limit on the running time of the algorithm. (The typical Big functions table)
 - `c` and `N_0` are constants
What it Means

- $T(N)$ is the actual growth rate of the algorithm
 - can be equated to the number of executable statements in a program or chunk of code
- $F(N)$ is the function that bounds the growth rate
 - may be upper or lower bound
- $T(N)$ may not necessarily equal $F(N)$
 - constants and lesser terms ignored because it is a bounding function

Showing $O(N)$ is Correct

- Recall the formal definition of Big O
 - $T(N)$ is $O(F(N))$ if there are positive constants c and N_0 such that $T(N) \leq cF(N)$ when $N > N_0$
- Recall method total, $T(N) = 3N + 4$
 - show method total is $O(N)$.
 - $F(N)$ is N
- We need to choose constants c and N_0
- how about $c = 4$, $N_0 = 5$?

Typical Big O Functions – "Grades"

<table>
<thead>
<tr>
<th>Function</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N!$</td>
<td>factorial</td>
</tr>
<tr>
<td>2^N</td>
<td>Exponential</td>
</tr>
<tr>
<td>N^d, $d > 3$</td>
<td>Polynomial</td>
</tr>
<tr>
<td>N^3</td>
<td>Cubic</td>
</tr>
<tr>
<td>N^2</td>
<td>Quadratic</td>
</tr>
<tr>
<td>$N\sqrt{N}$</td>
<td>N Square root N</td>
</tr>
<tr>
<td>$N \log N$</td>
<td>N log N</td>
</tr>
<tr>
<td>N</td>
<td>Linear</td>
</tr>
<tr>
<td>\sqrt{N}</td>
<td>Root - n</td>
</tr>
<tr>
<td>$\log N$</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>1</td>
<td>Constant</td>
</tr>
</tbody>
</table>

- Running time grows 'quickly' with more input.
- Running time grows 'slowly' with more input.
Clicker 4

- Which of the following is true?
 Recall \(T(N)_{\text{total}} = 3N + 4 \)
 A. Method total is \(O(N^{1/2}) \)
 B. Method total is \(O(N) \)
 C. Method total is \(O(N^2) \)
 D. Two of A – C are correct
 E. All of three of A – C are correct

Showing Order Briefly …

- Show \(10N^2 + 15N \) is \(O(N^2) \)
- Break into terms.

 \(10N^2 \leq 10N^2 \)
 \(15N \leq 15N^2 \) for \(N \geq 1 \) (Now add)
 \(10N^2 + 15N \leq 10N^2 + 15N^2 \) for \(N \geq 1 \)
 \(10N^2 + 15N \leq 25N^2 \) for \(N \geq 1 \)
 \(c = 25, N_0 = 1 \)
 Note, the choices for \(c \) and \(N_0 \) are not unique.

Dealing with other methods

- What do I do about method calls?
 double sum = 0.0;
 for (int i = 0; i < n; i++)
 sum += Math.sqrt(i);

 Long way
 – go to that method or constructor and count statements

 Short way
 – substitute the simplified Big O function for that method.
 – if Math.sqrt is constant time, \(O(1) \), simply count
 sum += Math.sqrt(i); as one statement.

Dealing With Other Methods

```java
public int foo(int[] data) {
    int total = 0;
    for (int i = 0; i < data.length; i++)
        total += countDups(data[i], data);
    return total;
}
```

// method countDups is \(O(N) \) where \(N \) is the
// length of the array it is passed

Clicker 5, What is the Big O of \(\text{foo} \)?

A. \(O(1) \) B. \(O(N) \) C. \(O(N\log N) \)
D. \(O(N^2) \) E. \(O(N!) \)
Independent Loops

// from the Matrix class
public void scale(int factor) {
 for (int r = 0; r < numRows(); r++)
 for (int c = 0; c < numCols(); c++)
 iCells[r][c] *= factor;
}

Assume numRows() = numCols() = N.
In other words, a square matrix.
numRows and numCols are O(1)

What is the T(N)? Clicker 6, What is the Order?
A. O(1) B. O(N) C. O(NlogN)
D. O(N^2) E. O(N!)

Bonus question. What if numRows is O(N)?

Just Count Loops, Right?

// assume mat is a 2d array of booleans
// assume mat is square with N rows,
// and N columns
public static void count(boolean[][] mat,
 int row, int col) {
 int numThings = 0;
 for (int r = row - 1; r <= row + 1; r++)
 for (int c = col - 1; c <= col + 1; c++)
 if (mat[r][c])
 numThings++;
}

Clicker 7, What is the order of the above method count?
A. O(1) B. O(N^{0.5}) C. O(N) D. O(N^2) E. O(N^3)

It is Not Just Counting Loops

// Second example from previous slide could be
// rewritten as follows:
int numThings = 0;
if (mat[r-1][c-1]) numThings++;
if (mat[r-1][c]) numThings++;
if (mat[r-1][c+1]) numThings++;
if (mat[r][c-1]) numThings++;
if (mat[r][c]) numThings++;
if (mat[r][c+1]) numThings++;
if (mat[r+1][c-1]) numThings++;
if (mat[r+1][c]) numThings++;
if (mat[r+1][c+1]) numThings++;

Sidetrack, the logarithm

• Thanks to Dr. Math
• 3^2 = 9
• likewise log_3 9 = 2
 – "The log to the base 3 of 9 is 2."
• The way to think about log is:
 – "the log to the base x of y is the number you can
 raise x to to get y."
 – Say to yourself "The log is the exponent." (and say
 it over and over until you believe it.)
 – In CS we work with base 2 logs, a lot
• log_2 32 = ? log_2 8 = ? log_2 1024 = ? log_{10} 1000 = ?
When Do Logarithms Occur

- Algorithms tend to have a logarithmic term when they use a divide and conquer technique.
- The size of the data set keeps getting divided by 2.

```java
public int foo(int n) {
    // pre n > 0
    int total = 0;
    while (n > 0) {
        n = n / 2;
        total++;
    }
    return total;
}
```

Clicker 8: What is the order of the above code?
- A. O(1)
- B. O(logN)
- C. O(N)
- D. O(NlogN)
- E. O(N^2)

The base of the log is typically not included as we can switch from one base to another by multiplying by a constant factor.

Replace Zeros – Typical Solution

```java
public void replace0s(int[] data){
    for(int i = 0; i < data.length; i++){
        if (data[i] == 0) {
            int max = 0;
            for(int j = i+1; j<data.length; j++)
                max = Math.max(max, data[j]);
            data[i] = max;
        }
    }
}
```

Assume all values are zeros. (worst case)

Example of a dependent loops.

Clicker 9: Number of times j < data.length evaluated?
- A. O(1)
- B. O(N)
- C. O(NlogN)
- D. O(N^2)
- E. O(N!)

Replace Zeros – Alternate Solution

```java
public void replace0s(int[] data){
    int max = Math.max(0, data[data.length - 1]);
    int start = data.length - 2;
    for (int i = start; i >= 0; i--) {
        if (data[i] == 0)
            data[i] = max;
        else
            max = Math.max(max, data[i]);
    }
}
```

Clicker 10: Big O of this approach?
- A. O(1)
- B. O(N)
- C. O(NlogN)
- D. O(N^2)
- E. O(N!)

Significant Improvement – Algorithm with Smaller Big O function

- Problem: Given an array of ints replace any element equal to 0 with the maximum positive value to the right of that element. (if no positive value to the right, leave unchanged.)

Given:

```
[0, 9, 0, 13, 0, 0, 7, 1, -1, 0, 1, 0]
```

Becomes:

```
[13, 9, 13, 13, 7, 7, 7, 1, -1, 1, 1, 0]
```

Replace Zeros
Clicker 11

- Is $O(N)$ really that much faster than $O(N^2)$?
 A. never
 B. always
 C. typically
- Depends on the actual functions and the value of N.
- $1000N + 250$ compared to $N^2 + 10$
- When do we use mechanized computation?
 N = 100,000
- $100,000,250 < 10,000,000,010$ ($10^8 < 10^{10}$)

A Useful Proportion

- Since $F(N)$ characterizes the running time of an algorithm the following proportion should hold true:
 $F(N_0) / F(N_1) \approx \frac{time_0}{time_1}$
- An algorithm that is $O(N^2)$ takes 3 seconds to run given 10,000 pieces of data.
 - How long do you expect it to take when there are 30,000 pieces of data?
 - common mistake
 - logarithms?

Why Use Big O?

- As we build data structures Big O is the tool we will use to decide under what conditions one data structure is better than another
- Think about performance when there is a lot of data.
 - "It worked so well with small data sets..."
 - Joel Spolsky, Schlemiel the painter's Algorithm
- Lots of tradeoffs
 - some data structures good for certain types of problems, bad for other types
 - often able to trade SPACE for TIME.
 - Faster solution that uses more space
 - Slower solution that uses less space

Big O Space

- Big O could be used to specify how much space is needed for a particular algorithm
 - in other words how many variables are needed
- Often there is a time – space tradeoff
 - can often take less time if willing to use more memory
 - can often use less memory if willing to take longer
 - truly beautiful solutions take less time and space

The biggest difference between time and space is that you can't reuse time. - Merrick Furst
Quantifiers on Big O

- It is often useful to discuss different cases for an algorithm
- Best Case: what is the best we can hope for?
 - least interesting
- Average Case (a.k.a. expected running time): what usually happens with the algorithm?
- Worst Case: what is the worst we can expect of the algorithm?
 - very interesting to compare this to the average case

Best, Average, Worst Case

- To Determine the best, average, and worst case Big O we must make assumptions about the data set
- Best case -> what are the properties of the data set that will lead to the fewest number of executable statements (steps in the algorithm)
- Worst case -> what are the properties of the data set that will lead to the largest number of executable statements
- Average case -> Usually this means assuming the data is randomly distributed
 - or if I ran the algorithm a large number of times with different sets of data what would the average amount of work be for those runs?

Another Example

```java
public double minimum(double[] values) {
    int n = values.length;
    double minValue = values[0];
    for (int i = 1; i < n; i++)
        if (values[i] < minValue)
            minValue = values[i];
    return minValue;
}
```

- T(N)? F(N)? Big O? Best case? Worst Case? Average Case?
- If no other information, assume asking average case

Example of Dominance

- Look at an extreme example. Assume the actual number as a function of the amount of data is:
 \[\frac{N^2}{10000} + 2N\log_{10} N + 100000 \]
- Is it plausible to say the \(N^2\) term dominates even though it is divided by 10000 and that the algorithm is \(O(N^2)\)?
- What if we separate the equation into \((N^2/10000)\) and \((2N \log_{10} N + 100000)\) and graph the results.
Summing Execution Times

- For large values of N the N^2 term dominates so the algorithm is $O(N^2)$
- When does it make sense to use a computer?

Comparing Grades

- Assume we have a problem
- Algorithm A solves the problem correctly and is $O(N^2)$
- Algorithm B solves the same problem correctly and is $O(N \log_2 N)$
- Which algorithm is faster?
- One of the assumptions of Big O is that the data set is large.
- The "grades" should be accurate tools if this is true

Running Times

- Assume $N = 100,000$ and processor speed is $1,000,000,000$ operations per second

<table>
<thead>
<tr>
<th>Function</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^N</td>
<td>$3.2 \times 10^{30,086}$ years</td>
</tr>
<tr>
<td>N^4</td>
<td>3171 years</td>
</tr>
<tr>
<td>N^3</td>
<td>11.6 days</td>
</tr>
<tr>
<td>N^2</td>
<td>10 seconds</td>
</tr>
<tr>
<td>\sqrt{N}</td>
<td>0.032 seconds</td>
</tr>
<tr>
<td>$N \log N$</td>
<td>0.0017 seconds</td>
</tr>
<tr>
<td>N</td>
<td>0.0001 seconds</td>
</tr>
<tr>
<td>$\log N$</td>
<td>3.2×10^{-7} seconds</td>
</tr>
<tr>
<td>$\log N$</td>
<td>1.2×10^{-8} seconds</td>
</tr>
</tbody>
</table>

Theory to Practice OR

Dyckstra says: "Pictures are for the Weak."

<table>
<thead>
<tr>
<th></th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
<th>16000</th>
<th>32000</th>
<th>64000</th>
<th>128K</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(N)$</td>
<td>2.2x10^5</td>
<td>2.7x10^5</td>
<td>5.4x10^5</td>
<td>4.2x10^5</td>
<td>6.8x10^5</td>
<td>1.2x10^4</td>
<td>2.3x10^4</td>
<td>5.1x10^4</td>
</tr>
<tr>
<td>$O(N \log N)$</td>
<td>8.5x10^5</td>
<td>1.9x10^4</td>
<td>3.7x10^4</td>
<td>4.7x10^4</td>
<td>1.0x10^3</td>
<td>2.1x10^3</td>
<td>4.6x10^3</td>
<td>1.2x10^3</td>
</tr>
<tr>
<td>$O(N^{3/2})$</td>
<td>3.5x10^5</td>
<td>6.9x10^4</td>
<td>1.7x10^3</td>
<td>5.0x10^3</td>
<td>1.4x10^2</td>
<td>3.8x10^2</td>
<td>0.11</td>
<td>0.30</td>
</tr>
<tr>
<td>$O(N^2)$</td>
<td>3.4x10^3</td>
<td>1.4x10^3</td>
<td>4.4x10^3</td>
<td>0.22</td>
<td>0.86</td>
<td>3.45</td>
<td>13.79</td>
<td>(55)</td>
</tr>
<tr>
<td>$O(\sqrt{N})$</td>
<td>1.8x10^3</td>
<td>7.1x10^3</td>
<td>2.7x10^2</td>
<td>0.11</td>
<td>0.43</td>
<td>1.73</td>
<td>6.90</td>
<td>(27.6)</td>
</tr>
<tr>
<td>$O(N^2)$</td>
<td>3.40</td>
<td>27.26</td>
<td>(218)</td>
<td>(1745)</td>
<td>29 min.</td>
<td>(13,957)</td>
<td>233 min</td>
<td>(112k)</td>
</tr>
<tr>
<td>$O(N^3)$</td>
<td>3.40</td>
<td>27.26</td>
<td>(218)</td>
<td>(1745)</td>
<td>29 min.</td>
<td>(13,957)</td>
<td>233 min</td>
<td>(112k)</td>
</tr>
</tbody>
</table>

Times in Seconds. Red indicates predicted value.
Change between Data Points

<table>
<thead>
<tr>
<th></th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
<th>16000</th>
<th>32000</th>
<th>64000</th>
<th>128K</th>
<th>256k</th>
<th>512k</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(N)</td>
<td>-</td>
<td>1.21</td>
<td>2.02</td>
<td>0.78</td>
<td>1.62</td>
<td>1.76</td>
<td>1.89</td>
<td>2.24</td>
<td>2.11</td>
<td>1.62</td>
</tr>
<tr>
<td>O(NlogN)</td>
<td>-</td>
<td>2.18</td>
<td>1.99</td>
<td>1.27</td>
<td>2.13</td>
<td>2.15</td>
<td>2.15</td>
<td>2.71</td>
<td>1.64</td>
<td>2.40</td>
</tr>
<tr>
<td>O(N^{3/2})</td>
<td>-</td>
<td>1.98</td>
<td>2.48</td>
<td>2.87</td>
<td>2.79</td>
<td>2.76</td>
<td>2.85</td>
<td>2.79</td>
<td>2.82</td>
<td>2.81</td>
</tr>
<tr>
<td>O(N^2) ind</td>
<td>-</td>
<td>4.06</td>
<td>3.98</td>
<td>3.94</td>
<td>3.99</td>
<td>4.00</td>
<td>3.99</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O(N^2) dep</td>
<td>-</td>
<td>4.00</td>
<td>3.82</td>
<td>3.97</td>
<td>4.00</td>
<td>4.01</td>
<td>3.98</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O(N^3)</td>
<td>-</td>
<td>8.03</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Value obtained by $\frac{\text{Time}_x}{\text{Time}_{x-1}}$

Okay, Pictures

Put a Cap on Time

No O(N^2) Data
Just $O(N)$ and $O(N \log N)$

10⁹ instructions/sec, runtimes

<table>
<thead>
<tr>
<th>N</th>
<th>$O(\log N)$</th>
<th>$O(N)$</th>
<th>$O(N \log N)$</th>
<th>$O(N^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.000000003</td>
<td>0.00000001</td>
<td>0.000000033</td>
<td>0.000001</td>
</tr>
<tr>
<td>100</td>
<td>0.000000007</td>
<td>0.00000010</td>
<td>0.000000664</td>
<td>0.0001000</td>
</tr>
<tr>
<td>1,000</td>
<td>0.000000010</td>
<td>0.00000100</td>
<td>0.000010000</td>
<td>0.001</td>
</tr>
<tr>
<td>10,000</td>
<td>0.000000013</td>
<td>0.00001000</td>
<td>0.000132900</td>
<td>0.1 min</td>
</tr>
<tr>
<td>100,000</td>
<td>0.000000017</td>
<td>0.00010000</td>
<td>0.001661000</td>
<td>10 seconds</td>
</tr>
<tr>
<td>1,000,000</td>
<td>0.000000020</td>
<td>0.001</td>
<td>0.0199</td>
<td>16.7 minutes</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>0.000000030</td>
<td>1.0 second</td>
<td>30 seconds</td>
<td>31.7 years</td>
</tr>
</tbody>
</table>

Formal Definition of Big O (repeated)

- $T(N)$ is $O(F(N))$ if there are positive constants c and N_0 such that $T(N) \leq cF(N)$ when $N \geq N_0$
 - N is the size of the data set the algorithm works on
 - $T(N)$ is a function that characterizes the actual running time of the algorithm
 - $F(N)$ is a function that characterizes an upper bound on $T(N)$. It is a limit on the running time of the algorithm
 - c and N_0 are constants
More on the Formal Definition

- There is a point N_0 such that for all values of N that are past this point, $T(N)$ is bounded by some multiple of $F(N)$.
- Thus if $T(N)$ of the algorithm is $O(N^2)$ then, ignoring constants, at some point we can bound the running time by a quadratic function.
- Given a linear algorithm it is technically correct to say the running time is $O(N^2)$. $O(N)$ is a more precise answer as to the Big O of the linear algorithm.
 - Thus the caveat “pick the most restrictive function” in Big O type questions.

What it All Means

- $T(N)$ is the actual growth rate of the algorithm.
 - Can be equated to the number of executable statements in a program or chunk of code.
- $F(N)$ is the function that bounds the growth rate.
 - May be upper or lower bound.
- $T(N)$ may not necessarily equal $F(N)$.
 - Constants and lesser terms ignored because it is a bounding function.

Other Algorithmic Analysis Tools

- **Big Omega** $T(N)$ is $\Omega(F(N))$ if there are positive constants c and N_0 such that $T(N) \geq cF(N)$ when $N \geq N_0$.
 - Big O is similar to less than or equal, an upper bound.
 - Big Omega is similar to greater than or equal, a lower bound.

- **Big Theta** $T(N)$ is $\Theta(F(N))$ if and only if $T(N)$ is $O(F(N))$ and $T(N)$ is $\Omega(F(N))$.
 - Big Theta is similar to equals.

Relative Rates of Growth

<table>
<thead>
<tr>
<th>Analysis Type</th>
<th>Mathematical Expression</th>
<th>Relative Rates of Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big O</td>
<td>$T(N) = O(F(N))$</td>
<td>$T(N) \leq F(N)$</td>
</tr>
<tr>
<td>Big Ω</td>
<td>$T(N) = \Omega(F(N))$</td>
<td>$T(N) \geq F(N)$</td>
</tr>
<tr>
<td>Big θ</td>
<td>$T(N) = \Theta(F(N))$</td>
<td>$T(N) = F(N)$</td>
</tr>
</tbody>
</table>

"In spite of the additional precision offered by Big Theta, Big O is more commonly used, except by researchers in the algorithms analysis field" - Mark Weiss