Efficiency

- Computer Scientists don’t just write programs.
- They also analyze them.
- How efficient is a program?
 - How much time does it take program to complete?
 - How much memory does a program use?
 - How do these change as the amount of data changes?
 - What is the difference between the best case and worst case efficiency if any?

Clicker Question 1

"My program finds all the primes between 2 and 1,000,000,000 in 1.37 seconds."
- how efficient is my solution, in terms of time?
 A. Good
 B. Bad
 C. It depends

Technique

- Informal approach for this class
 - more formal techniques in theory classes
- Many simplifications
 - view algorithms as Java programs
 - count executable statements in program or method
 - find number of statements as function of the amount of data
 - focus on the dominant term in the function

"bit twiddling: 1. (pejorative) An exercise in tuning (see tune) in which incredible amounts of time and effort go to produce little noticeable improvement, often with the result that the code becomes incomprehensible."
- The Hackers Dictionary, version 4.4.7
Clicker Question 2

What is output by the following code?

```java
int total = 0;
for (int i = 0; i < 13; i++)
    for (int j = 0; j < 11; j++)
        total += 2;
System.out.println(total);
```

A. 24
B. 120
C. 143
D. 286
E. 338

Clicker Question 3

What is output when method `sample` is called?

```java
public static void sample(int n, int m) {
    int total = 0;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < m; j++)
            total += 5;
    System.out.println(total);
}
```

A. 5
B. n * m
C. n * m * 5
D. n^m
E. (n * m)^5

Example

```java
public int total(int[] values) {
    int result = 0;
    for (int i = 0; i < values.length; i++)
        result += values[i];
    return result;
}
```

How many statements are executed by method `total` as a function of `values.length`?

Let N = `values.length`
N is commonly used as a variable that denotes the amount of data
Counting Up Statements

- `int result = 0;`
- `int i = 0;`
- `i < values.length;`
- `i++ N`
- `result += values[i];`
- `return total;`
- `T(N) = 3N + 4`
- `T(N)` is the number of executable statements in method `total` as function of `values.length`

Another Simplification

- When determining complexity of an algorithm we want to simplify things
 - hide some details to make comparisons easier
- Like assigning your grade for course
 - At the end of CS314 your transcript won’t list all the details of your performance in the course
 - it won’t list scores on all assignments, quizzes, and tests
 - simply a letter grade, B- or A or D+
- So we focus on the dominant term from the function and ignore the coefficient

Big O

- The most common method and notation for discussing the execution time of algorithms is Big O, also spoken **Order**
- Big O is the asymptotic execution time of the algorithm
- Big O is an upper bounds
- It is a mathematical tool
- Hide a lot of unimportant details by assigning a simple grade (function) to algorithms

Formal Definition of Big O

- `T(N)` is `O(F(N))` if there are positive constants `c` and `N_0` such that `T(N) \leq cF(N)` when `N \geq N_0`
 - `N` is the size of the data set the algorithm works on
 - `T(N)` is a function that characterizes the actual running time of the algorithm
 - `F(N)` is a function that characterizes an upper bounds on `T(N)`. It is a limit on the running time of the algorithm. (The typical Big functions table)
 - `c` and `N_0` are constants
What it Means

- T(N) is the actual growth rate of the algorithm
 - can be equated to the number of executable statements in a program or chunk of code
- F(N) is the function that bounds the growth rate
 - may be upper or lower bound
- T(N) may not necessarily equal F(N)
 - constants and lesser terms ignored because it is a bounding function

Showing O(N) is Correct

- Recall the formal definition of Big O
 - T(N) is O(F(N)) if there are positive constants c and N₀ such that T(N) ≤ cF(N) when N > N₀
- Recall method total, T(N) = 3N + 4
 - show method total is O(N).
 - F(N) is N
- We need to choose constants c and N₀
 - how about c = 4, N₀ = 5 ?

Typical Big O Functions – "Grades"

<table>
<thead>
<tr>
<th>Function</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>N!</td>
<td>factorial</td>
</tr>
<tr>
<td>2ᴺ</td>
<td>Exponential</td>
</tr>
<tr>
<td>N^d, d > 3</td>
<td>Polynomial</td>
</tr>
<tr>
<td>N³</td>
<td>Cubic</td>
</tr>
<tr>
<td>N²</td>
<td>Quadratic</td>
</tr>
<tr>
<td>N√N</td>
<td>N Square root N</td>
</tr>
<tr>
<td>N log N</td>
<td>N log N</td>
</tr>
<tr>
<td>N</td>
<td>Linear</td>
</tr>
<tr>
<td>√N</td>
<td>Root - n</td>
</tr>
<tr>
<td>log N</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>1</td>
<td>Constant</td>
</tr>
</tbody>
</table>
Clicker Question 4

Which of the following is true?
A. Method total is $O(N^{1/2})$
B. Method total is $O(N)$
C. Method total is $O(N^2)$
D. Two of A – C are correct
E. All of three of A – C are correct

Dealing with other methods

What do I do about method calls?

- go to that method or constructor and count statements

- substitute the simplified Big O function for that method.
 - if Math.sqrt is constant time, $O(1)$, simply count
 sum += Math.sqrt(i); as one statement.

Dealing With Other Methods

```java
public int foo(int[] data) {
    int total = 0;
    for (int i = 0; i < data.length; i++)
        total += countDups(data[i], data);
    return total;
}
```

// method countDups is $O(N)$ where N is the
// length of the array it is passed

What is the Big O of foo?
A. $O(1)$
B. $O(N)$
C. $O(N\log N)$
D. $O(N^2)$
E. $O(N!)$

Independent Loops

```java
// from the Matrix class
public void scale(int factor) {
    for (int r = 0; r < numRows(); r++)
        for (int c = 0; c < numCols(); c++)
            iCells[r][c] *= factor;
}
```

Assume numRows() = numCols() = N.
In other words, a square Matrix.
numRows and numCols are $O(1)$

What is the T(N)? What is the Big O?
A. $O(1)$
B. $O(N)$
C. $O(N\log N)$
D. $O(N^2)$
E. $O(N!)$
Just Count Loops, Right?

// assume mat is a 2d array of booleans
// assume mat is square with N rows,
// and N columns
public static void count(int[][] mat, int row, int col) {
 int numThings = 0;
 for (int r = row - 1; r <= row + 1; r++)
 for (int c = col - 1; c <= col + 1; c++)
 if (mat[r][c])
 numThings++;

What is the order of the above code?
A. O(1) B. O(N) C. O(N^2) D. O(N^3) E. O(N^(1/2))

It is Not Just Counting Loops

// Second example from previous slide could be rewritten as follows:
int numThings = 0;
if (mat[r-1][c-1]) numThings++;
if (mat[r-1][c]) numThings++;
if (mat[r-1][c+1]) numThings++;
if (mat[r][c-1]) numThings++;
if (mat[r][c+1]) numThings++;
if (mat[r+1][c-1]) numThings++;
if (mat[r+1][c]) numThings++;
if (mat[r+1][c+1]) numThings++;

Sidettrack, the logarithm

Thanks to Dr. Math

3^2 = 9

 Likewise \(\log_3 9 = 2 \)
- "The log to the base 3 of 9 is 2."

The way to think about log is:
- "the log to the base x of y is the number you can raise x to to get y."
- Say to yourself "The log is the exponent." (and say it over and over until you believe it.)
- In CS we work with base 2 logs, a lot
 \(\log_2 32 = ? \) \(\log_2 8 = ? \) \(\log_2 1024 = ? \) \(\log_{10} 1000 = ? \)

When Do Logarithms Occur

- Algorithms tend to have a logarithmic term when they use a divide and conquer technique

the data set keeps getting divided by 2

public int foo(int n) {
 // pre n > 0
 int total = 0;
 while (n > 0) {
 n = n / 2;
 total++;
 }
 return total;
}

What is the order of the above code?
A. O(1) B. O(logN) C. O(N)
D. O(Nlog N) E. O(N^2)
Problem: Given an array of ints replace any element equal to 0 with the maximum positive value to the right of that element. (if no positive value to the right, leave unchanged.)

Given:
[0, 9, 0, 13, 0, 0, 7, 1, -1, 0, 1, 0]

Becomes:
[13, 9, 13, 13, 7, 7, 7, 1, -1, 1, 1, 0]

```
public void replace0s(int[] data){
    int max = Math.max(0, data[data.length - 1]);
    int start = data.length - 2;
    for (int i = start; i >= 0; i--) {
        if (data[i] == 0)
            data[i] = max;
        else
            max = Math.max(max, data[i]);
    }
}
```

Replace Zeros – Typical Solution

Assume all values are zeros. (worst case)
Example of a **dependent loops**.

Replace Zeros – Alternate Solution

```
public void replace0s(int[] data){
    int max = Math.max(0, data[data.length - 1]);
    int start = data.length - 2;
    for (int i = start; i >= 0; i--) {
        if (data[i] == 0)
            data[i] = max;
        else
            max = Math.max(max, data[i]);
    }
}
```

Big O of this approach?
A. O(1) B. O(N) C. O(NlogN) D. O(N²) E. O(N!)

A Useful Proportion

Since F(N) is characterizes the running time of an algorithm the following proportion should hold true:

\[F(N_0) / F(N_1) \sim \text{time}_0 / \text{time}_1 \]

An algorithm that is O(N²) takes 3 seconds to run given 10,000 pieces of data.
- How long do you expect it to take when there are 30,000 pieces of data?
- common mistake
- logarithms?
Why Use Big O?
- As we build data structures Big O is the tool we will use to decide under what conditions one data structure is better than another
- Think about performance when there is a lot of data.
 - "It worked so well with small data sets..."
 - Joel Spolsky, Schlemiel the painter's Algorithm
- Lots of trade offs
 - some data structures good for certain types of problems, bad for other types
 - often able to trade SPACE for TIME.
 - Faster solution that uses more space
 - Slower solution that uses less space

Big O Space
- Big O could be used to specify how much space is needed for a particular algorithm
 - in other words how many variables are needed
- Often there is a time – space tradeoff
 - can often take less time if willing to use more memory
 - can often use less memory if willing to take longer
 - truly beautiful solutions take less time and space

 The biggest difference between time and space is that you can't reuse time. - Merrick Furst

Quantifiers on Big O
- It is often useful to discuss different cases for an algorithm
 - Best Case: what is the best we can hope for?
 - least interesting
 - Average Case (a.k.a. expected running time): what usually happens with the algorithm?
 - Worst Case: what is the worst we can expect of the algorithm?
 - very interesting to compare this to the average case

Best, Average, Worst Case
- To Determine the best, average, and worst case Big O we must make assumptions about the data set
 - Best case -> what are the properties of the data set that will lead to the fewest number of executable statements (steps in the algorithm)
 - Worst case -> what are the properties of the data set that will lead to the largest number of executable statements
 - Average case -> Usually this means assuming the data is randomly distributed
 - or if I ran the algorithm a large number of times with different sets of data what would the average amount of work be for those runs?
Another Example

public double minimum(double[] values) {
 int n = values.length;
 double minValue = values[0];
 for(int i = 1; i < n; i++)
 if(values[i] < minValue)
 minValue = values[i];
 return minValue;
}

T(N)? F(N)? Big O? Best case? Worst Case? Average Case?
If no other information, assume asking average case

Example of Dominance

- Look at an extreme example. Assume the actual number as a function of the amount of data is:
 \[\frac{N^2}{10000} + 2N \log_{10} N + 100000 \]
- Is it plausible to say the \(N^2 \) term dominates even though it is divided by 10000 and that the algorithm is \(O(N^2) \)?
- What if we separate the equation into \(\left(\frac{N^2}{10000} \right) \) and \(2N \log_{10} N + 100000 \) and graph the results.

Example of Dominance

- Look at an extreme example. Assume the actual number as a function of the amount of data is:
 \[\frac{N^2}{10000} + 2N \log_{10} N + 100000 \]
- Is it plausible to say the \(N^2 \) term dominates even though it is divided by 10000 and that the algorithm is \(O(N^2) \)?
- What if we separate the equation into \(\left(\frac{N^2}{10000} \right) \) and \(2N \log_{10} N + 100000 \) and graph the results.

Summing Execution Times

- For large values of \(N \) the \(N^2 \) term dominates so the algorithm is \(O(N^2) \)
- When does it make sense to use a computer?

Comparing Grades

- Assume we have a problem
- Algorithm A solves the problem correctly and is \(O(N^2) \)
- Algorithm B solves the same problem correctly and is \(O(N \log_2 N) \)
- Which algorithm is faster?
- One of the assumptions of Big O is that the data set is large.
- The "grades" should be accurate tools if this is true
Running Times

- Assume $N = 100,000$ and processor speed is $1,000,000,000$ operations per second

<table>
<thead>
<tr>
<th>Function</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^N</td>
<td>$3.2 \times 10^{30,086}$ years</td>
</tr>
<tr>
<td>N^4</td>
<td>3171 years</td>
</tr>
<tr>
<td>N^3</td>
<td>11.6 days</td>
</tr>
<tr>
<td>N^2</td>
<td>10 seconds</td>
</tr>
<tr>
<td>N/\sqrt{N}</td>
<td>0.032 seconds</td>
</tr>
<tr>
<td>$N \log N$</td>
<td>0.0017 seconds</td>
</tr>
<tr>
<td>N</td>
<td>0.0001 seconds</td>
</tr>
<tr>
<td>\sqrt{N}</td>
<td>3.2×10^{-7} seconds</td>
</tr>
<tr>
<td>$\log N$</td>
<td>1.2×10^{-8} seconds</td>
</tr>
</tbody>
</table>

Change between Data Points

<table>
<thead>
<tr>
<th>Function</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
<th>16000</th>
<th>32000</th>
<th>64000</th>
<th>128k</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(N)$</td>
<td>1.21</td>
<td>2.02</td>
<td>0.78</td>
<td>1.62</td>
<td>1.76</td>
<td>1.89</td>
<td>2.24</td>
<td>2.11</td>
</tr>
<tr>
<td>$O(N \log N)$</td>
<td>2.18</td>
<td>1.99</td>
<td>1.27</td>
<td>2.13</td>
<td>2.15</td>
<td>2.15</td>
<td>2.71</td>
<td>2.82</td>
</tr>
<tr>
<td>$O(N^2)$</td>
<td>1.98</td>
<td>2.48</td>
<td>2.87</td>
<td>2.79</td>
<td>2.76</td>
<td>2.85</td>
<td>2.79</td>
<td>2.82</td>
</tr>
<tr>
<td>$O(N^3)$</td>
<td>4.00</td>
<td>3.82</td>
<td>3.97</td>
<td>4.00</td>
<td>4.01</td>
<td>3.98</td>
<td>4.00</td>
<td>4.01</td>
</tr>
<tr>
<td>$O(N^4)$</td>
<td>8.03</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Times in Seconds. Red indicates predicated value.

Dykstra says: "Pictures are for the Weak."

Okay, Pictures

Results on a 2Ghz laptop
Put a Cap on Time

Results on a 2Ghz laptop

No O(N^2) Data

Just O(N) and O(NlogN)

Just O(N)
Formal Definition of Big O (repeated)

- **T(N) is** \(O(F(N)) \) **if there are positive constants** \(c \) **and** \(N_0 \) **such that** \(T(N) \leq cF(N) \) **when** \(N \geq N_0 \)
 - **N** is the size of the data set the algorithm works on
 - **T(N)** is a function that characterizes the *actual* running time of the algorithm
 - **F(N)** is a function that characterizes an upper bounds on **T(N)**. It is a limit on the running time of the algorithm
 - **c** and **\(N_0 \)** are constants

More on the Formal Definition

- There is a point \(N_0 \) such that for all values of **N** that are past this point, **T(N)** is bounded by some multiple of **F(N)**
- Thus if **T(N)** of the algorithm is \(O(N^2) \) then, ignoring constants, at some point we can *bound* the running time by a quadratic function.
- given a *linear* algorithm it is *technically correct* to say the running time is \(O(N^2) \). **O(N)** is a more precise answer as to the Big O of the linear algorithm
 - thus the caveat “pick the most restrictive function” in Big O type questions.

What it All Means

- **T(N)** is the actual growth rate of the algorithm
 - can be equated to the number of executable statements in a program or chunk of code
- **F(N)** is the function that bounds the growth rate
 - may be upper or lower bound
- **T(N)** may not necessarily equal **F(N)**
 - constants and lesser terms ignored because it is a *bounding function*
Other Algorithmic Analysis Tools

- **Big Omega** \(T(N) = \Omega(F(N)) \) if there are positive constants \(c \) and \(N_0 \) such that \(T(N) \geq cF(N) \) when \(N \geq N_0 \)
 - Big O is similar to less than or equal, an upper bounds
 - Big Omega is similar to greater than or equal, a lower bound

- **Big Theta** \(T(N) = \theta(F(N)) \) if and only if \(T(N) \) is \(O(F(N)) \) and \(T(N) \) is \(\Omega(F(N)) \).
 - Big Theta is similar to equals

Relative Rates of Growth

<table>
<thead>
<tr>
<th>Analysis Type</th>
<th>Mathematical Expression</th>
<th>Relative Rates of Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big O</td>
<td>(T(N) = O(F(N)))</td>
<td>(T(N) \leq F(N))</td>
</tr>
<tr>
<td>Big (\Omega)</td>
<td>(T(N) = \Omega(F(N)))</td>
<td>(T(N) \geq F(N))</td>
</tr>
<tr>
<td>Big (\theta)</td>
<td>(T(N) = \theta(F(N)))</td>
<td>(T(N) = F(N))</td>
</tr>
</tbody>
</table>

"In spite of the additional precision offered by Big Theta, Big O is more commonly used, except by researchers in the algorithms analysis field" - Mark Weiss